Wavelength Selection for NIR Spectroscopy Based on the Binary Dragonfly Algorithm

Wavelength selection is an important preprocessing issue in near-infrared (NIR) spectroscopy analysis and modeling. Swarm optimization algorithms (such as genetic algorithm, bat algorithm, etc.) have been successfully applied to select the most effective wavelengths in previous studies. However, the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Molecules (Basel, Switzerland) Ročník 24; číslo 3; s. 421
Hlavní autori: Chen, Yuanyuan, Wang, Zhibin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 24.01.2019
MDPI
Predmet:
ISSN:1420-3049, 1420-3049
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Wavelength selection is an important preprocessing issue in near-infrared (NIR) spectroscopy analysis and modeling. Swarm optimization algorithms (such as genetic algorithm, bat algorithm, etc.) have been successfully applied to select the most effective wavelengths in previous studies. However, these algorithms suffer from the problem of unrobustness, which means that the selected wavelengths of each optimization are different. To solve this problem, this paper proposes a novel wavelength selection method based on the binary dragonfly algorithm (BDA), which includes three typical frameworks: single-BDA, multi-BDA, ensemble learning-based BDA settings. The experimental results for the public gasoline NIR spectroscopy dataset showed that: (1) By using the multi-BDA and ensemble learning-based BDA methods, the stability of wavelength selection can improve; (2) With respect to the generalized performance of the quantitative analysis model, the model established with the wavelengths selected by using the multi-BDA and the ensemble learning-based BDA methods outperformed the single-BDA method. The results also indicated that the proposed method is not limited to the dragonfly algorithm but can also be combined with other swarm optimization algorithms. In addition, the ensemble learning idea can be applied to other feature selection areas to obtain more robust results.
AbstractList Wavelength selection is an important preprocessing issue in near-infrared (NIR) spectroscopy analysis and modeling. Swarm optimization algorithms (such as genetic algorithm, bat algorithm, etc.) have been successfully applied to select the most effective wavelengths in previous studies. However, these algorithms suffer from the problem of unrobustness, which means that the selected wavelengths of each optimization are different. To solve this problem, this paper proposes a novel wavelength selection method based on the binary dragonfly algorithm (BDA), which includes three typical frameworks: single-BDA, multi-BDA, ensemble learning-based BDA settings. The experimental results for the public gasoline NIR spectroscopy dataset showed that: (1) By using the multi-BDA and ensemble learning-based BDA methods, the stability of wavelength selection can improve; (2) With respect to the generalized performance of the quantitative analysis model, the model established with the wavelengths selected by using the multi-BDA and the ensemble learning-based BDA methods outperformed the single-BDA method. The results also indicated that the proposed method is not limited to the dragonfly algorithm but can also be combined with other swarm optimization algorithms. In addition, the ensemble learning idea can be applied to other feature selection areas to obtain more robust results.
Wavelength selection is an important preprocessing issue in near-infrared (NIR) spectroscopy analysis and modeling. Swarm optimization algorithms (such as genetic algorithm, bat algorithm, etc.) have been successfully applied to select the most effective wavelengths in previous studies. However, these algorithms suffer from the problem of unrobustness, which means that the selected wavelengths of each optimization are different. To solve this problem, this paper proposes a novel wavelength selection method based on the binary dragonfly algorithm (BDA), which includes three typical frameworks: single-BDA, multi-BDA, ensemble learning-based BDA settings. The experimental results for the public gasoline NIR spectroscopy dataset showed that: (1) By using the multi-BDA and ensemble learning-based BDA methods, the stability of wavelength selection can improve; (2) With respect to the generalized performance of the quantitative analysis model, the model established with the wavelengths selected by using the multi-BDA and the ensemble learning-based BDA methods outperformed the single-BDA method. The results also indicated that the proposed method is not limited to the dragonfly algorithm but can also be combined with other swarm optimization algorithms. In addition, the ensemble learning idea can be applied to other feature selection areas to obtain more robust results.Wavelength selection is an important preprocessing issue in near-infrared (NIR) spectroscopy analysis and modeling. Swarm optimization algorithms (such as genetic algorithm, bat algorithm, etc.) have been successfully applied to select the most effective wavelengths in previous studies. However, these algorithms suffer from the problem of unrobustness, which means that the selected wavelengths of each optimization are different. To solve this problem, this paper proposes a novel wavelength selection method based on the binary dragonfly algorithm (BDA), which includes three typical frameworks: single-BDA, multi-BDA, ensemble learning-based BDA settings. The experimental results for the public gasoline NIR spectroscopy dataset showed that: (1) By using the multi-BDA and ensemble learning-based BDA methods, the stability of wavelength selection can improve; (2) With respect to the generalized performance of the quantitative analysis model, the model established with the wavelengths selected by using the multi-BDA and the ensemble learning-based BDA methods outperformed the single-BDA method. The results also indicated that the proposed method is not limited to the dragonfly algorithm but can also be combined with other swarm optimization algorithms. In addition, the ensemble learning idea can be applied to other feature selection areas to obtain more robust results.
Author Chen, Yuanyuan
Wang, Zhibin
AuthorAffiliation 1 School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
2 Engineering Technology Research Center of Shanxi Province for Opto-Electronic Information and Instrument, North University of China, Taiyuan 030051, China; wangzhibin@nuc.edu.cn
3 School of Science, North University of China, Taiyuan 030051, China
AuthorAffiliation_xml – name: 3 School of Science, North University of China, Taiyuan 030051, China
– name: 1 School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
– name: 2 Engineering Technology Research Center of Shanxi Province for Opto-Electronic Information and Instrument, North University of China, Taiyuan 030051, China; wangzhibin@nuc.edu.cn
Author_xml – sequence: 1
  givenname: Yuanyuan
  orcidid: 0000-0001-8749-6923
  surname: Chen
  fullname: Chen, Yuanyuan
– sequence: 2
  givenname: Zhibin
  surname: Wang
  fullname: Wang, Zhibin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30682788$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1vFCEUhompsR_6A7wxk3jjzSoMzAzcmLTV6iaNRqvxkjBwmGXDwAozTfbfl3Vr09bEKw7nvOfhfHCMDkIMgNBLgt9SKvC7MXrQs4dcM0wxq8kTdERYjRflIg7u2YfoOOc1xjVhpHmGDilued1xfoS-_VLX4CEM06q6KoaeXAyVjan6svxeXW2KI8Ws42ZbnakMpirRaQXVmQsqbasPSQ0xWL-tTv0Qk5tW43P01Cqf4cXteYJ-Xnz8cf55cfn10_L89HKhmaDTwhhrQJO-J40SgBWwBkTD-9ZaxSlnoseWdkYJoQVtey6YAdNgMLpVpVtBT9ByzzVRreUmubEUJKNy8o8jpkGqNDntQTaYMyVwTVtOmcG2MNvOEKMMFragCuv9nrWZ-7E8AWFKyj-APowEt5JDvJbtrtJ6B3hzC0jx9wx5kqPLGrxXAeKcZU06wYgoUy_S14-k6zinUEYl64YJTJuWkqJ6db-iu1L-bq4IyF6gy35yAnsnIVjufof853eUnO5RjnaT2m28NOX8fzJvADNlwkM
CitedBy_id crossref_primary_10_1007_s00226_021_01272_y
crossref_primary_10_1155_2019_9293617
crossref_primary_10_1016_j_infrared_2022_104140
crossref_primary_10_1089_jmf_2019_4607
crossref_primary_10_1016_j_matcom_2020_06_012
crossref_primary_10_1016_j_microc_2024_112203
crossref_primary_10_1007_s11042_020_10255_3
crossref_primary_10_1016_j_foodcont_2022_108886
crossref_primary_10_1016_j_infrared_2024_105374
crossref_primary_10_1016_j_jfca_2025_107802
crossref_primary_10_1016_j_knosys_2023_110472
crossref_primary_10_3390_molecules24234370
Cites_doi 10.2298/JSC120303080G
10.1016/j.chemolab.2017.01.020
10.1007/s00521-015-1920-1
10.1364/TRANSLATIONAL.2018.JTu3A.27
10.1016/j.aca.2016.12.010
10.1016/j.chemolab.2018.08.001
10.1016/S0169-7439(97)00038-5
10.1002/cem.2977
10.1016/j.aca.2008.10.024
10.1007/s00521-014-1743-5
10.1109/ICTCS.2017.43
10.1016/j.aca.2010.03.048
10.1016/j.swevo.2012.09.002
10.1016/j.infrared.2018.07.013
10.1021/ac960321m
10.1366/0003702001949500
10.1080/00032719.2017.1365882
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules24030421
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_5084a90236834d0f99c67d1dad09f393
PMC6384923
30682788
10_3390_molecules24030421
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61605176
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESTFP
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IHR
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c493t-ddfdec1bb15a9e0ae45e958b6ffa83849b0f37da99c936b894ded50edc6a40393
IEDL.DBID DOA
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458934000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1420-3049
IngestDate Fri Oct 03 12:28:03 EDT 2025
Tue Nov 04 01:59:08 EST 2025
Sun Nov 09 10:13:24 EST 2025
Tue Oct 07 07:14:40 EDT 2025
Thu Apr 03 06:58:48 EDT 2025
Sat Nov 29 07:14:34 EST 2025
Tue Nov 18 21:29:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords ensemble learning
quantitative analysis modeling
wavelength selection
binary dragonfly algorithm
NIR spectroscopy
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-ddfdec1bb15a9e0ae45e958b6ffa83849b0f37da99c936b894ded50edc6a40393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8749-6923
OpenAccessLink https://doaj.org/article/5084a90236834d0f99c67d1dad09f393
PMID 30682788
PQID 2549035631
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_5084a90236834d0f99c67d1dad09f393
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6384923
proquest_miscellaneous_2179419682
proquest_journals_2549035631
pubmed_primary_30682788
crossref_primary_10_3390_molecules24030421
crossref_citationtrail_10_3390_molecules24030421
PublicationCentury 2000
PublicationDate 2019-01-24
PublicationDateYYYYMMDD 2019-01-24
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-24
  day: 24
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Mirjalili (ref_8) 2016; 27
Kalivas (ref_13) 1997; 37
Le (ref_14) 2018; 93
Centner (ref_3) 1996; 68
Yuanyuan (ref_12) 2018; 181
Zou (ref_1) 2010; 667
Acquarelli (ref_16) 2017; 954
Moros (ref_4) 2008; 6
Givianrad (ref_6) 2013; 78
Mirjalili (ref_11) 2013; 9
Zhang (ref_19) 2018; 51
Saremi (ref_10) 2015; 26
ref_17
ref_15
Zhang (ref_5) 2017; 163
ref_9
Norgaard (ref_2) 2000; 54
Malek (ref_18) 2018; 32
ref_7
References_xml – ident: ref_7
– volume: 78
  start-page: 555
  year: 2013
  ident: ref_6
  article-title: Genetic algorithm-based wavelength selection in multicomponent spectrophotometric determinations by partial least square regression: Application to a sulfamethoxazole and trimethoprim mixture in bovine milk
  publication-title: J. Serb. Chem. Soc.
  doi: 10.2298/JSC120303080G
– volume: 163
  start-page: 7
  year: 2017
  ident: ref_5
  article-title: A novel ensemble L1 regularization based variable selection framework with an application in near infrared spectroscopy
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.01.020
– volume: 27
  start-page: 1053
  year: 2016
  ident: ref_8
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– ident: ref_17
  doi: 10.1364/TRANSLATIONAL.2018.JTu3A.27
– ident: ref_15
– volume: 954
  start-page: 22
  year: 2017
  ident: ref_16
  article-title: Convolutional neural networks for vibrational spectroscopic data analysis
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.12.010
– volume: 181
  start-page: 1
  year: 2018
  ident: ref_12
  article-title: Quantitative analysis modeling of infrared spectroscopy based on ensemble convolutional neural networks
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2018.08.001
– volume: 37
  start-page: 255
  year: 1997
  ident: ref_13
  article-title: Two data sets of near infrared spectra
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00038-5
– volume: 32
  start-page: e2977
  year: 2018
  ident: ref_18
  article-title: One-dimensional convolutional neural networks for spectroscopic signal regression
  publication-title: J. Chemom.
  doi: 10.1002/cem.2977
– volume: 6
  start-page: 150
  year: 2008
  ident: ref_4
  article-title: New cut-off criterion for uninformative variable elimination in multivariate calibration of near-infrared spectra for the determination of heroin in illicit street drugs
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2008.10.024
– volume: 26
  start-page: 625
  year: 2015
  ident: ref_10
  article-title: How important is a transfer function in discrete heuristic algorithms
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1743-5
– ident: ref_9
  doi: 10.1109/ICTCS.2017.43
– volume: 667
  start-page: 14
  year: 2010
  ident: ref_1
  article-title: Variables selection methods in near-infrared spectroscopy
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2010.03.048
– volume: 9
  start-page: 1
  year: 2013
  ident: ref_11
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.09.002
– volume: 93
  start-page: 34
  year: 2018
  ident: ref_14
  article-title: Coal analysis based on visible-infrared spectroscopy and a deep neural network
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2018.07.013
– volume: 68
  start-page: 3851
  year: 1996
  ident: ref_3
  article-title: Elimination of uninformative variables for multivariate calibration
  publication-title: Anal. Chem.
  doi: 10.1021/ac960321m
– volume: 54
  start-page: 413
  year: 2000
  ident: ref_2
  article-title: Interval partial least-squares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702001949500
– volume: 51
  start-page: 1029
  year: 2018
  ident: ref_19
  article-title: Sparse Representation Classification of Tobacco Leaves Using Near-Infrared Spectroscopy and a Deep Learning Algorithm
  publication-title: Anal. Lett.
  doi: 10.1080/00032719.2017.1365882
SSID ssj0021415
Score 2.3454216
Snippet Wavelength selection is an important preprocessing issue in near-infrared (NIR) spectroscopy analysis and modeling. Swarm optimization algorithms (such as...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 421
SubjectTerms binary dragonfly algorithm
ensemble learning
Exploitation
Feature selection
Genetic algorithms
Methods
NIR spectroscopy
Optimization
Population
Quantitative analysis
quantitative analysis modeling
Random variables
Sparsity
Spectrum analysis
wavelength selection
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgiwSX8iwECjISJ6Ro7dhJ7BPqFip6YLW8RDlFfmW3Upssu2ml_ntmkmxgAfXENfYq9n7j8UzG_j5CXnGLcXHK4iR3LpZCmRhMOY0Ta7gOzHrhOrGJfDpVJyd61l-PXvfHKjc-sXXUHdszntsGJzz2tcMv5mNMa5hIM8HfLH_EqCGFtdZeUOMm2UHiLTYiO7PjD7PvQwLGYbfqKpsCUv3xeSdAG9bISQfGy7f2ppbC_19x55_HJ3_bj47u_t-Z3CO7fVxKDzpDuk9uhOoBuX24kYN7SD5-M6hRUc2bBf3ciucAohRCXjo9_kRRxr5BYsx6eUUnsDN6Cq0QXNJJe-GXvl2ZOd5AuaIHZ3N4f7M4f0S-Hr37cvg-7vUYYie1aGLvSx8ct5anBnA0QaZBp8pmZWmUUFJbVorcG62dFplVWvrgUwZ_VGYk3gHeI6OqrsITQlNnZZkHbaTI28os4w4yPSsSV2Y8MxFhGyQK15OVo2bGWQFJC4JX_AVeRF4PP1l2TB3XdZ4gvENHJNluH9SredGv2QJiV2k0UuwrIT0rYV5Z7rk3nukSphOR_Q3ARb_y18UvPCPycmgGrLAQY6pQX0Af9ILg-lQSkcedLQ0jgRROJblSEcm3rGxrqNst1emi5QXPEINEPL1-WM_IHQj68JBcnMh9MmpWF-E5ueUum9P16kW_ZH4CCVYqvQ
  priority: 102
  providerName: ProQuest
Title Wavelength Selection for NIR Spectroscopy Based on the Binary Dragonfly Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/30682788
https://www.proquest.com/docview/2549035631
https://www.proquest.com/docview/2179419682
https://pubmed.ncbi.nlm.nih.gov/PMC6384923
https://doaj.org/article/5084a90236834d0f99c67d1dad09f393
Volume 24
WOSCitedRecordID wos000458934000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1420-3049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021415
  issn: 1420-3049
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BQIIXxPgMjMpIPCFFc2Inth_XsWl7oCoDRHmK_JW20pZObYa0_56zk1YrIPayl0iOHcW-O_vuZPv3A_iQmRAXFzTNhbUpZ1KnaMpFmhudKU-NY7YjmxCjkZxM1PgG1Vc4E9bBA3eC28cAgmsVcM4l447WStlSuMxpR1XNVMT5pEKtk6k-1crQL3V7mAyT-v2LjmrWrwL6HJpptuWFIlj_vyLMPw9K3vA8x0_hSR8ykoOuq7twzzfP4NHhmqntOXz5oQN9RDNtZ-Rr5LVBYROMRsno9IwEhvk2YFYuLq_JEJ2WI1iLcR8Zxru45NNST8PlkGtycD5dLOft7OIFfD8--nZ4kvZUCanlirWpc7XzNjMmKzSKWHteeFVIU9a1lkxyZWjNhNMoPcVKIxV33hUUR1ZqHq7nvoSdZtH410AKa3gtvNKcibhpSjOLSZhhua3LrNQJ0LXoKtvjiAc6i_MK84kg7eovaSfwcfPJZQei8b_Gw6CPTcOAfx1foFVUvVVUt1lFAntrbVb9pFxVIRemrCgZ_uP9php1FfZIdOMXV9gmLFC4Ksk8gVed8jc9wexK5kLKBMSWWWx1dbummc8iZHcZdJCzN3cxtrfwGKO2cMotzfke7LTLK_8OHtpf7Xy1HMB9MRHxKQfwYHg0Gp8N4tzA0vj08_jnb9JrE_Y
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDml74RsWGGAkeEGK5sROYj8gtG5Mq7ZVhQ0xnoJjO-2kLS1tB-o_xd_IOV9QQHvbA6-xG93VP5_vcr77AbwMMucXR9QPE619zoTyEcqRH2YqkJZmhumKbCLp98XpqRyswI-mFsZdq2xsYmmozVi7b-RbLpChLIpZ8Hby1XesUS672lBoVLA4sIvvGLLN3vR2cX1fheHeu5Odfb9mFfA1l2zuG5Mbq4MsCyKF0ijLIysjkcV5rgQTXGY0Z4lRUmrJ4kxIbqyJqDU6VtxVsuJ7b8AqR7DTDqwOekeDz22IF-B5WOVOGZN066KiuLUz1_UOt0ewdPqVJAH_8mz_vKD524m3d_t_-6_uwK3atybb1Wa4Cyu2uAdrOw2l3X14_0k5no1iOB-R45IACFFJ0G0n_d4HcjwpGYFcnc6CdPF0NwRH0UEm3bJomexO1dBV0SzI9vkQ9Z2PLh7Ax2vR6CF0inFhN4BEOuN5YqXiLCmzyzTQGK1mLNR5HMTKA9qsdarrhuuO9-M8xcDLwSP9Cx4evG5_Mqm6jVw1uesA1E50jcLLB-PpMK3tTor-N1fS0QQIxg3NUa84MYFRhsoc1fFgs4FQWluvWfoLPx68aIdxrVwySRV2fIlznCVH8y1CDx5VaG0lwTBUhIkQHiRLOF4SdXmkOBuVvc1jtwYhe3y1WM9hbf_k6DA97PUPnsA6OrHu0p8f8k3ozKeX9inc1N_mZ7Pps3qDEvhy3Tj_Casof5w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHQJeuF8CA4wEL0hRk9hJ7AeE1nUV1VBUNhB7C47ttJO2tLQZqH-NX8dxblBAe9sDr7EbHdefzyXH53wAL_3M-sWh5waxUi6jXLoI5dANMukL42WaqppsIk4SfnwsJlvwo62FsdcqW51YKWo9V_Ybed8GMh4NI-r38-ZaxGQ4erv46loGKZtpbek0aogcmPV3DN9Wb8ZD3OtXQTDa_7j3zm0YBlzFBC1drXNtlJ9lfihRMmlYaETIsyjPJaeciczLaaylEErQKOOCaaNDz2gVSWarWvG9V2A7phj09GB7sJ9MDrtwz0fbWOdRKRVe_6ymuzUr2wEPj4q_YQkrwoB_ebl_Xtb8zfqNbv3P_9ttuNn43GS3PiR3YMsUd-H6Xkt1dw8-fJaWf6OYljNyVBEDIVoJuvMkGR-So0XFFGTrd9ZkgFZfExxFx5kMqmJmMlzKqa2uWZPd0ymut5yd3YdPl7KiB9Ar5oV5BCRUGctjIySjcZV19nyFUWxGA5VHfiQd8Np9T1XTiN3ygZymGJBZqKR_QcWB191PFnUXkosmDyyYuom2gXj1YL6cpo0-StEvZ1JY-gBOmfZyXFcUa19L7Ykcl-PATguntNFqq_QXlhx40Q3jXtkkkyzM_BznWA2Pap0HDjyskdtJguEpD2LOHYg3ML0h6uZIcTKrep5Hdg8C-vhisZ7DNQR3-n6cHDyBG-jb2ruAbsB2oFcuz81TuKq-lSer5bPmrBL4ctkw_wlb94g2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelength+Selection+for+NIR+Spectroscopy+Based+on+the+Binary+Dragonfly+Algorithm&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Yuanyuan&rft.au=Wang%2C+Zhibin&rft.date=2019-01-24&rft.eissn=1420-3049&rft.volume=24&rft.issue=3&rft_id=info:doi/10.3390%2Fmolecules24030421&rft_id=info%3Apmid%2F30682788&rft.externalDocID=30682788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon