Rapid nondestructive detection of peanut varieties and peanut mildew based on hyperspectral imaging and stacked machine learning models

Moldy peanut seeds are damaged by mold, which seriously affects the germination rate of peanut seeds. At the same time, the quality and variety purity of peanut seeds profoundly affect the final yield of peanuts and the economic benefits of farmers. In this study, hyperspectral imaging technology wa...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in plant science Vol. 13; p. 1047479
Main Authors: Wu, Qingsong, Xu, Lijia, Zou, Zhiyong, Wang, Jian, Zeng, Qifeng, Wang, Qianlong, Zhen, Jiangbo, Wang, Yuchao, Zhao, Yongpeng, Zhou, Man
Format: Journal Article
Language:English
Published: Switzerland Frontiers Media SA 10.11.2022
Frontiers Media S.A
Subjects:
ISSN:1664-462X, 1664-462X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Moldy peanut seeds are damaged by mold, which seriously affects the germination rate of peanut seeds. At the same time, the quality and variety purity of peanut seeds profoundly affect the final yield of peanuts and the economic benefits of farmers. In this study, hyperspectral imaging technology was used to achieve variety classification and mold detection of peanut seeds. In addition, this paper proposed to use median filtering (MF) to preprocess hyperspectral data, use four variable selection methods to obtain characteristic wavelengths, and ensemble learning models (SEL) as a stable classification model. This paper compared the model performance of SEL and extreme gradient boosting algorithm (XGBoost), light gradient boosting algorithm (LightGBM), and type boosting algorithm (CatBoost). The results showed that the MF-LightGBM-SEL model based on hyperspectral data achieves the best performance. Its prediction accuracy on the data training and data testing reach 98.63% and 98.03%, respectively, and the modeling time was only 0.37s, which proved that the potential of the model to be used in practice. The approach of SEL combined with hyperspectral imaging techniques facilitates the development of a real-time detection system. It could perform fast and non-destructive high-precision classification of peanut seed varieties and moldy peanuts, which was of great significance for improving crop yields.
AbstractList Moldy peanut seeds are damaged by mold, which seriously affects the germination rate of peanut seeds. At the same time, the quality and variety purity of peanut seeds profoundly affect the final yield of peanuts and the economic benefits of farmers. In this study, hyperspectral imaging technology was used to achieve variety classification and mold detection of peanut seeds. In addition, this paper proposed to use median filtering (MF) to preprocess hyperspectral data, use four variable selection methods to obtain characteristic wavelengths, and ensemble learning models (SEL) as a stable classification model. This paper compared the model performance of SEL and extreme gradient boosting algorithm (XGBoost), light gradient boosting algorithm (LightGBM), and type boosting algorithm (CatBoost). The results showed that the MF-LightGBM-SEL model based on hyperspectral data achieves the best performance. Its prediction accuracy on the data training and data testing reach 98.63% and 98.03%, respectively, and the modeling time was only 0.37s, which proved that the potential of the model to be used in practice. The approach of SEL combined with hyperspectral imaging techniques facilitates the development of a real-time detection system. It could perform fast and non-destructive high-precision classification of peanut seed varieties and moldy peanuts, which was of great significance for improving crop yields.
Moldy peanut seeds are damaged by mold, which seriously affects the germination rate of peanut seeds. At the same time, the quality and variety purity of peanut seeds profoundly affect the final yield of peanuts and the economic benefits of farmers. In this study, hyperspectral imaging technology was used to achieve variety classification and mold detection of peanut seeds. In addition, this paper proposed to use median filtering (MF) to preprocess hyperspectral data, use four variable selection methods to obtain characteristic wavelengths, and ensemble learning models (SEL) as a stable classification model. This paper compared the model performance of SEL and extreme gradient boosting algorithm (XGBoost), light gradient boosting algorithm (LightGBM), and type boosting algorithm (CatBoost). The results showed that the MF-LightGBM-SEL model based on hyperspectral data achieves the best performance. Its prediction accuracy on the data training and data testing reach 98.63% and 98.03%, respectively, and the modeling time was only 0.37s, which proved that the potential of the model to be used in practice. The approach of SEL combined with hyperspectral imaging techniques facilitates the development of a real-time detection system. It could perform fast and non-destructive high-precision classification of peanut seed varieties and moldy peanuts, which was of great significance for improving crop yields.
Moldy peanut seeds are damaged by mold, which seriously affects the germination rate of peanut seeds. At the same time, the quality and variety purity of peanut seeds profoundly affect the final yield of peanuts and the economic benefits of farmers. In this study, hyperspectral imaging technology was used to achieve variety classification and mold detection of peanut seeds. In addition, this paper proposed to use median filtering (MF) to preprocess hyperspectral data, use four variable selection methods to obtain characteristic wavelengths, and ensemble learning models (SEL) as a stable classification model. This paper compared the model performance of SEL and extreme gradient boosting algorithm (XGBoost), light gradient boosting algorithm (LightGBM), and type boosting algorithm (CatBoost). The results showed that the MF-LightGBM-SEL model based on hyperspectral data achieves the best performance. Its prediction accuracy on the data training and data testing reach 98.63% and 98.03%, respectively, and the modeling time was only 0.37s, which proved that the potential of the model to be used in practice. The approach of SEL combined with hyperspectral imaging techniques facilitates the development of a real-time detection system. It could perform fast and non-destructive high-precision classification of peanut seed varieties and moldy peanuts, which was of great significance for improving crop yields.Moldy peanut seeds are damaged by mold, which seriously affects the germination rate of peanut seeds. At the same time, the quality and variety purity of peanut seeds profoundly affect the final yield of peanuts and the economic benefits of farmers. In this study, hyperspectral imaging technology was used to achieve variety classification and mold detection of peanut seeds. In addition, this paper proposed to use median filtering (MF) to preprocess hyperspectral data, use four variable selection methods to obtain characteristic wavelengths, and ensemble learning models (SEL) as a stable classification model. This paper compared the model performance of SEL and extreme gradient boosting algorithm (XGBoost), light gradient boosting algorithm (LightGBM), and type boosting algorithm (CatBoost). The results showed that the MF-LightGBM-SEL model based on hyperspectral data achieves the best performance. Its prediction accuracy on the data training and data testing reach 98.63% and 98.03%, respectively, and the modeling time was only 0.37s, which proved that the potential of the model to be used in practice. The approach of SEL combined with hyperspectral imaging techniques facilitates the development of a real-time detection system. It could perform fast and non-destructive high-precision classification of peanut seed varieties and moldy peanuts, which was of great significance for improving crop yields.
Author Wang, Jian
Wang, Yuchao
Zou, Zhiyong
Zhao, Yongpeng
Wang, Qianlong
Xu, Lijia
Zeng, Qifeng
Zhen, Jiangbo
Zhou, Man
Wu, Qingsong
AuthorAffiliation 1 College of Mechanical and Electrical Engineering, Sichuan Agricultural University , Yaan , China
2 College of Food Sciences, Sichuan Agricultural University , Yaan , China
AuthorAffiliation_xml – name: 2 College of Food Sciences, Sichuan Agricultural University , Yaan , China
– name: 1 College of Mechanical and Electrical Engineering, Sichuan Agricultural University , Yaan , China
Author_xml – sequence: 1
  givenname: Qingsong
  surname: Wu
  fullname: Wu, Qingsong
– sequence: 2
  givenname: Lijia
  surname: Xu
  fullname: Xu, Lijia
– sequence: 3
  givenname: Zhiyong
  surname: Zou
  fullname: Zou, Zhiyong
– sequence: 4
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
– sequence: 5
  givenname: Qifeng
  surname: Zeng
  fullname: Zeng, Qifeng
– sequence: 6
  givenname: Qianlong
  surname: Wang
  fullname: Wang, Qianlong
– sequence: 7
  givenname: Jiangbo
  surname: Zhen
  fullname: Zhen, Jiangbo
– sequence: 8
  givenname: Yuchao
  surname: Wang
  fullname: Wang, Yuchao
– sequence: 9
  givenname: Yongpeng
  surname: Zhao
  fullname: Zhao, Yongpeng
– sequence: 10
  givenname: Man
  surname: Zhou
  fullname: Zhou, Man
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36438117$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1r3DAQNSWlSdP8gF6KoZdedqsPW7IuhRL6EQgUSgu9ibE03tXWllzJTsgv6N-unN2EJIfqotHMe4-Z0XtZHPngsSheU7LmvFHvu7FPa0YYW1NSyUqqZ8UJFaJaVYL9OnoQHxdnKe1IPjUhSskXxTEXFW8olSfF3-8wOltmbYtpirOZ3BWWFifMUfBl6MoRwc9TeQXR4eQwleDtXXJwvcXrsoWEtszw7c2IMY2ZHKEv3QAb5ze3hDSB-Z1BA5it81j2CNEvxSFY7NOr4nkHfcKzw31a_Pz86cf519Xlty8X5x8vV6ZSfFrZtgUJIFqjJHbUMKWgEpzb_GhJw1oKRGBLBBGy7oBXxuQ8Nspy2nRC8tPiYq9rA-z0GHOL8UYHcPo2EeJGQ5yc6VF3rAFZ1azm2FRSgMKWEmsYtw2vBaFZ68Nea5zbAa1Bv0z9SPRxxbut3oQrrURTC0GywLuDQAx_5rx_PbhksO_BY5iTZrIiioia1Bn69gl0F-bo86o0ZzL7gQmyTPfmYUf3rdz9dwbQPcDEkFLE7h5CiV5spRdb6cVW-mCrzJFPOMZNsLgjD-X6_zD_AQR71cs
CitedBy_id crossref_primary_10_1080_03610470_2024_2405233
crossref_primary_10_3389_fpls_2024_1387925
crossref_primary_10_3389_fpls_2024_1434163
crossref_primary_10_1016_j_jfca_2024_106635
crossref_primary_10_1007_s00521_024_10218_x
crossref_primary_10_1080_19392699_2023_2239710
crossref_primary_10_17221_109_2024_CJFS
crossref_primary_10_3390_agriculture14122273
crossref_primary_10_3390_foods14061063
crossref_primary_10_3390_foods13060897
crossref_primary_10_48130_vegres_0025_0010
crossref_primary_10_1016_j_jfca_2025_107904
crossref_primary_10_1111_jfs_13166
crossref_primary_10_1016_j_afres_2025_100941
crossref_primary_10_1016_j_jfca_2025_108025
crossref_primary_10_1093_ijfood_vvaf017
crossref_primary_10_1016_j_postharvbio_2025_113489
crossref_primary_10_1002_jsfa_13296
crossref_primary_10_1016_j_foodchem_2024_142689
crossref_primary_10_1016_j_tifs_2024_104793
Cites_doi 10.3389/fpls.2018.00674
10.1016/j.tifs.2019.01.015
10.1016/j.infrared.2022.104308
10.1016/j.jrmge.2021.08.011
10.1016/j.saa.2021.120772
10.1016/j.ijfoodmicro.2012.09.020
10.3389/fpls.2022.860656
10.1016/j.infrared.2020.103518
10.1088/1742-6596/2089/1/012020
10.3390/s21030930
10.3964/j.issn.1000-0593(2020)10-3235-06
10.1016/j.trac.2020.116017
10.1016/j.saa.2022.121785
10.1016/j.microc.2021.106608
10.1016/j.jfoodeng.2015.06.009
10.1016/j.aap.2021.106261
10.1016/j.foodcont.2020.107203
10.1016/j.infrared.2020.103226
10.3389/fpls.2021.736334
10.1016/j.atmosenv.2021.118212
10.1080/00387010.2021.1986543
10.1109/TNNLS.2020.3009776
10.1016/j.foodchem.2021.131047
10.1016/j.neucom.2021.07.084
10.1016/j.chemolab.2021.104243
10.1016/j.atmosres.2022.106159
10.1016/j.jhazmat.2020.124155
10.1016/j.atmosres.2022.106238
10.1016/j.ijepes.2022.108243
10.1016/j.foodcont.2014.01.038
10.1016/j.jag.2022.102890
10.1016/j.biosystemseng.2017.11.018
10.1016/j.foodchem.2008.07.049
10.1007/s13197-019-03745-2
10.1016/j.cose.2021.102289
10.1016/j.compbiomed.2020.103899
10.1109/JSTARS.2020.2994335
10.3390/agriculture11050393
10.1111/pbr.12358
10.1016/j.ecoinf.2022.101678
10.1109/ACCESS.2015.2485943
10.1016/j.ocsci.2021.10.002
10.1016/j.foodcont.2022.109178
10.1016/j.foodchem.2020.128517
10.1016/j.inpa.2022.05.003
10.1016/j.infrared.2021.103652
10.1016/j.jmapro.2021.04.014
10.1016/j.compag.2021.106157
10.1016/j.compeleceng.2022.108077
ContentType Journal Article
Copyright Copyright © 2022 Wu, Xu, Zou, Wang, Zeng, Wang, Zhen, Wang, Zhao and Zhou.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2022 Wu, Xu, Zou, Wang, Zeng, Wang, Zhen, Wang, Zhao and Zhou 2022 Wu, Xu, Zou, Wang, Zeng, Wang, Zhen, Wang, Zhao and Zhou
Copyright_xml – notice: Copyright © 2022 Wu, Xu, Zou, Wang, Zeng, Wang, Zhen, Wang, Zhao and Zhou.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2022 Wu, Xu, Zou, Wang, Zeng, Wang, Zhen, Wang, Zhao and Zhou 2022 Wu, Xu, Zou, Wang, Zeng, Wang, Zhen, Wang, Zhao and Zhou
DBID AAYXX
CITATION
NPM
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3389/fpls.2022.1047479
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database
MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_f28a745253e8476a9eb10dc23d835601
PMC9685660
36438117
10_3389_fpls_2022_1047479
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IPNFZ
NPM
RIG
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c493t-dbba7aa6bc97ef1c299a4633def1b082b1a06eb060675fa34cc1b0e89d318f673
IEDL.DBID DOA
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000889235300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-462X
IngestDate Fri Oct 03 12:46:26 EDT 2025
Thu Aug 21 18:39:29 EDT 2025
Thu Oct 02 05:38:57 EDT 2025
Fri Nov 21 21:43:18 EST 2025
Thu Apr 03 07:03:33 EDT 2025
Sat Nov 29 02:07:05 EST 2025
Tue Nov 18 22:17:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords nondestructive testing
variety classification
peanut seeds
stacked ensemble learning model
mildew detection
Language English
License Copyright © 2022 Wu, Xu, Zou, Wang, Zeng, Wang, Zhen, Wang, Zhao and Zhou.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-dbba7aa6bc97ef1c299a4633def1b082b1a06eb060675fa34cc1b0e89d318f673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Sustainable and Intelligent Phytoprotection, a section of the journal Frontiers in Plant Science
These authors have contributed equally to this work
Edited by: Ning Yang, Jiangsu University, China
Reviewed by: Yongcheng Jiang, Tianjin Agricultural University, China; Yongming Chen, Hubei Normal University, China
OpenAccessLink https://doaj.org/article/f28a745253e8476a9eb10dc23d835601
PMID 36438117
PQID 3273892607
PQPubID 7426805
ParticipantIDs doaj_primary_oai_doaj_org_article_f28a745253e8476a9eb10dc23d835601
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9685660
proquest_miscellaneous_2740906505
proquest_journals_3273892607
pubmed_primary_36438117
crossref_primary_10_3389_fpls_2022_1047479
crossref_citationtrail_10_3389_fpls_2022_1047479
PublicationCentury 2000
PublicationDate 2022-11-10
PublicationDateYYYYMMDD 2022-11-10
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-10
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2022
Publisher Frontiers Media SA
Frontiers Media S.A
Publisher_xml – name: Frontiers Media SA
– name: Frontiers Media S.A
References Wang (B37) 2021; 11
He (B11) 2021; 114
Khan (B15) 2022; 69
Liu (B27) 2019; 39
Kopec (B17) 2022; 141
Kumar (B18) 2021
Xiang (B42) 2022; 13
Sun (B33) 2020; 105
Zou (B50) 2023; 284
He (B10) 2022; 142
Lee (B20) 2021; 169
Liu (B26) 2022; 270
Pasupuleti (B30) 2016; 135
Zhang (B46) 2021; 32
Eyo (B7) 2022; 14
Badaró (B1) 2021; 343
Wang (B36) 2014; 42
Yuan (B44) 2020; 111
Liu (B25) 2021; 21
Pang (B29) 2020; 40
Mohi-Alden (B28) 2022; 9
Zhang (B48) 2020; 13
Fernandez-Ibanez (B8) 2009; 113
Kimuli (B16) 2018; 166
Li (B23) 2021; 186
Wang (B40) 2021; 66
Fu (B9) 2022; 112
Wen (B41) 2021; 159
Jiang (B13) 2022; 125
Lattab (B19) 2012; 160
Liu (B24) 2021; 106
Dong (B6) 2021; 462
Su (B34) 2021; 12
Leng (B21) 2020; 113
Wang (B39) 2021; 6
Wang (B38) 2015; 166
Jin (B14) 2022; 101
Tan (B35) 2018; 9
Li (B22) 2022; 276
Qi (B31) 2019; 56
Zandi (B45) 2022; 272
Chen (B3) 2020; 123
Sharma (B32) 2021; 404
Zhang (B47) 2022; 370
Ding (B5) 2021; 249
Xu (B43) 2020; 131
Cortés (B4) 2019; 85
Bianchi (B2) 2015; 3
Zou (B49) 2021; 54
Huang (B12) 2021; 210
References_xml – volume: 9
  year: 2018
  ident: B35
  article-title: Analysis of different hyperspectral variables for diagnosing leaf nitrogen accumulation in wheat
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00674
– volume: 85
  start-page: 138
  year: 2019
  ident: B4
  article-title: Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2019.01.015
– volume: 125
  start-page: 104308
  year: 2022
  ident: B13
  article-title: Rapid determination of acidity index of peanuts by near-infrared spectroscopy technology: Comparing the performance of different near-infrared spectral models
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2022.104308
– volume: 14
  start-page: 603
  year: 2022
  ident: B7
  article-title: Multiclass stand-alone and ensemble machine learning algorithms utilised to classify soils based on their physico-chemical characteristics
  publication-title: J. Rock Mechanics Geotechnical Eng.
  doi: 10.1016/j.jrmge.2021.08.011
– volume: 270
  start-page: 120772
  year: 2022
  ident: B26
  article-title: Variety classification of coated maize seeds based on raman hyperspectral imaging
  publication-title: Spectrochimica Acta Part A: Mol. Biomolecular Spectrosc.
  doi: 10.1016/j.saa.2021.120772
– volume: 160
  start-page: 80
  year: 2012
  ident: B19
  article-title: Effect of storage conditions (relative humidity, duration, and temperature) on the germination time of aspergillus carbonarius and penicillium chrysogenum
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2012.09.020
– volume: 13
  year: 2022
  ident: B42
  article-title: Deep learning and hyperspectral images based tomato soluble solids content and firmness estimation
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.860656
– volume: 111
  start-page: 103518
  year: 2020
  ident: B44
  article-title: Selecting key wavelengths of hyperspectral imagine for nondestructive classification of moldy peanuts using ensemble classifier
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103518
– year: 2021
  ident: B18
  article-title: Design of exponentially weighted median filter cascaded with adaptive median filter
  publication-title: J. Physics: Conf. Ser.
  doi: 10.1088/1742-6596/2089/1/012020
– volume: 21
  year: 2021
  ident: B25
  article-title: Research on the prediction of green plum acidity based on improved XGBoost
  publication-title: Sensors
  doi: 10.3390/s21030930
– volume: 40
  start-page: 3235
  year: 2020
  ident: B29
  article-title: Identification of melamine in milk powder by mid-infrared spectroscopy combined with pattern recognition method
  publication-title: Spectrosc. Spectral Anal.
  doi: 10.3964/j.issn.1000-0593(2020)10-3235-06
– volume: 131
  start-page: 116017
  year: 2020
  ident: B43
  article-title: Raman spectroscopy coupled with chemometrics for food authentication: A review
  publication-title: TrAC Trends Analytical Chem.
  doi: 10.1016/j.trac.2020.116017
– volume: 284
  start-page: 121785
  year: 2023
  ident: B50
  article-title: Research on non-destructive testing of hotpot oil quality by fluorescence hyperspectral technology combined with machine learning
  publication-title: Spectrochimica Acta Part A: Mol. Biomolecular Spectrosc.
  doi: 10.1016/j.saa.2022.121785
– volume: 169
  start-page: 106608
  year: 2021
  ident: B20
  article-title: On overview of PCA application strategy in processing high dimensionality forensic data
  publication-title: Microchemical J.
  doi: 10.1016/j.microc.2021.106608
– volume: 166
  start-page: 182
  year: 2015
  ident: B38
  article-title: Feasibility of detecting aflatoxin b-1 in single maize kernels using hyperspectral imaging
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2015.06.009
– volume: 159
  year: 2021
  ident: B41
  article-title: Quantifying and comparing the effects of key risk factors on various types of roadway segment crashes with LightGBM and SHAP
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2021.106261
– volume: 113
  year: 2020
  ident: B21
  article-title: Quantitative detection of binary and ternary adulteration of minced beef meat with pork and duck meat by NIR combined with chemometrics
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2020.107203
– volume: 105
  start-page: 103226
  year: 2020
  ident: B33
  article-title: Detection of fat content in peanut kernels based on chemometrics and hyperspectral imaging technology
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103226
– volume: 12
  year: 2021
  ident: B34
  article-title: Application of hyperspectral imaging for maturity and soluble solids content determination of strawberry with deep learning approaches
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.736334
– volume: 249
  start-page: 118212
  year: 2021
  ident: B5
  article-title: A CatBoost approach with wavelet decomposition to improve satellite-derived high-resolution PM2.5 estimates in Beijing-Tianjin-Hebei
  publication-title: Atmospheric Environ.
  doi: 10.1016/j.atmosenv.2021.118212
– volume: 54
  start-page: 675
  year: 2021
  ident: B49
  article-title: Rapid identification of adulterated safflower seed oil by use of hyperspectral spectroscopy
  publication-title: Spectrosc. Lett.
  doi: 10.1080/00387010.2021.1986543
– volume: 32
  start-page: 3156
  year: 2021
  ident: B46
  article-title: GBDT-MO: Gradient-boosted decision trees for multiple outputs
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2020.3009776
– volume: 370
  start-page: 131047
  year: 2022
  ident: B47
  article-title: Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.131047
– volume: 462
  start-page: 169
  year: 2021
  ident: B6
  article-title: Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.07.084
– volume: 210
  year: 2021
  ident: B12
  article-title: Online detection of soluble solids content and maturity of tomatoes using Vis/NIR full transmittance spectra
  publication-title: Chemometrics Intelligent Lab. Syst.
  doi: 10.1016/j.chemolab.2021.104243
– volume: 272
  start-page: 106159
  year: 2022
  ident: B45
  article-title: Stacking machine learning models versus a locally weighted linear model to generate high-resolution monthly precipitation over a topographically complex area
  publication-title: Atmospheric Res.
  doi: 10.1016/j.atmosres.2022.106159
– volume: 404
  start-page: 124155
  year: 2021
  ident: B32
  article-title: Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against aspergillus flavus infection
  publication-title: J. Hazardous Materials
  doi: 10.1016/j.jhazmat.2020.124155
– volume: 276
  start-page: 106238
  year: 2022
  ident: B22
  article-title: Application of XGBoost algorithm in the optimization of pollutant concentration
  publication-title: Atmospheric Res.
  doi: 10.1016/j.atmosres.2022.106238
– volume: 142
  start-page: 108243
  year: 2022
  ident: B10
  article-title: Short-term power load probability density forecasting based on GLRQ-stacking ensemble learning method
  publication-title: Int. J. Electrical Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108243
– volume: 42
  start-page: 78
  year: 2014
  ident: B36
  article-title: Identification of aflatoxin B1 on maize kernel surfaces using hyperspectral imaging
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2014.01.038
– volume: 112
  start-page: 102890
  year: 2022
  ident: B9
  article-title: Comparison of RFE-DL and stacking ensemble learning algorithms for classifying mangrove species on UAV multispectral images
  publication-title: Int. J. Appl. Earth Observation Geoinformation
  doi: 10.1016/j.jag.2022.102890
– volume: 166
  start-page: 150
  year: 2018
  ident: B16
  article-title: Utilisation of visible/near-infrared hyperspectral images to classify aflatoxin B1 contaminated maize kernels
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2017.11.018
– volume: 113
  start-page: 629
  year: 2009
  ident: B8
  article-title: Application of near infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barley as analytical quality assessment
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2008.07.049
– volume: 56
  start-page: 3195
  year: 2019
  ident: B31
  article-title: Identification of fungi-contaminated peanuts using hyperspectral imaging technology and joint sparse representation model
  publication-title: J. Food Sci. Technol.
  doi: 10.1007/s13197-019-03745-2
– volume: 106
  year: 2021
  ident: B24
  article-title: A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102289
– volume: 123
  start-page: 103899
  year: 2020
  ident: B3
  article-title: Improving protein-protein interactions prediction accuracy using XGBoost feature selection and stacked ensemble classifier
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103899
– volume: 13
  start-page: 2264
  year: 2020
  ident: B48
  article-title: Classification of paddy rice using a stacked generalization approach and the spectral mixture method based on MODIS time series
  publication-title: IEEE J. Selected Topics Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2020.2994335
– volume: 11
  year: 2021
  ident: B37
  article-title: Classification of amanita species based on bilinear networks with attention mechanism
  publication-title: Agriculture-Basel
  doi: 10.3390/agriculture11050393
– volume: 135
  start-page: 355
  year: 2016
  ident: B30
  article-title: Foliar fungal disease-resistant introgression lines of groundnut (Arachis hypogaea l.) record higher pod and haulm yield in multilocation testing
  publication-title: Plant Breed.
  doi: 10.1111/pbr.12358
– volume: 69
  start-page: 101678
  year: 2022
  ident: B15
  article-title: A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications
  publication-title: Ecol. Inf.
  doi: 10.1016/j.ecoinf.2022.101678
– volume: 3
  start-page: 1931
  year: 2015
  ident: B2
  article-title: Short-term electric load forecasting using echo state networks and PCA decomposition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2485943
– volume: 6
  start-page: 164
  year: 2021
  ident: B39
  article-title: Effect of variety and seed dressing on emergence of high-oleic peanut under low temperature and high soil humidity conditions
  publication-title: Oil Crop Sci.
  doi: 10.1016/j.ocsci.2021.10.002
– volume: 141
  start-page: 109178
  year: 2022
  ident: B17
  article-title: Analysis of eggs depending on the hens' breeding systems by raman spectroscopy
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2022.109178
– volume: 343
  start-page: 128517
  year: 2021
  ident: B1
  article-title: Near infrared hyperspectral imaging and spectral unmixing methods for evaluation of fiber distribution in enriched pasta
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.128517
– volume: 9
  year: 2022
  ident: B28
  article-title: A machine vision-intelligent modelling based technique for in-line bell pepper sorting
  publication-title: Inf. Process. Agriculture
  doi: 10.1016/j.inpa.2022.05.003
– volume: 114
  start-page: 103652
  year: 2021
  ident: B11
  article-title: Classification of aflatoxin B1 naturally contaminated peanut using visible and near-infrared hyperspectral imaging by integrating spectral and texture features
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2021.103652
– volume: 66
  start-page: 281
  year: 2021
  ident: B40
  article-title: Vision and sound fusion-based material removal rate monitoring for abrasive belt grinding using improved LightGBM algorithm
  publication-title: J. Manufacturing Processes
  doi: 10.1016/j.jmapro.2021.04.014
– volume: 186
  year: 2021
  ident: B23
  article-title: Boosting the generalization ability of vis-NIR-spectroscopy-based regression models through dimension reduction and transfer learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106157
– volume: 101
  start-page: 108077
  year: 2022
  ident: B14
  article-title: Spatial-spectral feature extraction of hyperspectral images for wheat seed identification
  publication-title: Comput. Electrical Eng.
  doi: 10.1016/j.compeleceng.2022.108077
– volume: 39
  start-page: 223
  year: 2019
  ident: B27
  article-title: Study on detection method of wheat unsound kernel based on near-infrared hyperspectral imaging technology
  publication-title: Spectrosc. Spectral Anal.
SSID ssj0000500997
Score 2.4568782
Snippet Moldy peanut seeds are damaged by mold, which seriously affects the germination rate of peanut seeds. At the same time, the quality and variety purity of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1047479
SubjectTerms Accuracy
Airborne microorganisms
Algorithms
Cameras
Chromatography
Classification
Crop yield
Ensemble learning
Food
Food quality
Germination
Humidity
Hyperspectral imaging
Imaging techniques
Legumes
Machine learning
Mildew
mildew detection
Mold
nondestructive testing
Nuts
peanut seeds
Peanuts
Plant Science
Real time
Seeds
Spectrum analysis
stacked ensemble learning model
variety classification
Vision systems
Wavelengths
SummonAdditionalLinks – databaseName: Agricultural Science Database
  dbid: M0K
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag9MCl5VlSCjISJ6SoTpy14xOiqBUSUCEEUm-W40cbaTdZutut-AX8bWYcb2Ar1AuXleLYq0lmPPONZzJDyGtT1tYpyfPCW55XCn4MKL3ciwDmvTLBh8jpT_L0tD47U1_SgdsipVWudWJU1K63eEZ-yPEbEgXoW76d_8ixaxRGV1MLjbvkHgBlhSl9n9nH8YyFTRAAySGYCb6YOgzzKdboLkuMbQKSVhvmKFbt_xfUvJkx-ZcJOtn9X-IfkJ0EPum7QVoekju-e0S2j3oAiD8fk19fzbx1tOs751NZ2ZWnzi9jtlZH-0Dx3P5qSVfoYGMlVmo6tx6ctVPnrymaRUdh-gV4uMOHnPAotJ3FdkhxAQBS0B2OzmIip6epc8U5jW15Fk_I95Pjb-8_5KlPQ24rxZe5axojjRGNVdKHwoKFM5Xg3MFFAxCjKQwTvmECvZNgeGUtjPtaOVAoQUj-lGzBs_lnhDLrPCgh1QSO3CkMeJvBGhaaCfy9Fxlha3Zpm4qYYy-NqQZnBjmskcMaOawThzPyZlwyHyp43Db5CGVgnIjFt-NAf3mu017WoayNxHgw92DbhVFg75izJXcAZ8HBzcjBWgp00ggL_UcEMvJqvA17GQM0pvP9FVAiwdtGzDzJyN4gcCMlXGAxtgJWyw1R3CB1807XXsR64UrUANrZ_u1kPSf38U3kMcXxgGyBnPkXZNuulu3i8mXcWL8Bw2wxMA
  priority: 102
  providerName: ProQuest
Title Rapid nondestructive detection of peanut varieties and peanut mildew based on hyperspectral imaging and stacked machine learning models
URI https://www.ncbi.nlm.nih.gov/pubmed/36438117
https://www.proquest.com/docview/3273892607
https://www.proquest.com/docview/2740906505
https://pubmed.ncbi.nlm.nih.gov/PMC9685660
https://doaj.org/article/f28a745253e8476a9eb10dc23d835601
Volume 13
WOSCitedRecordID wos000889235300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M0K
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M7P
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: BENPR
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: PIMPY
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BsgcuiOUZWCojcUKKNomzdnykqKtdwVbRCqRyihw_2EhtWtFuEReu_G1mnLRq0QouXCzFj2jiGY9n4vE3AG90VhirJI9TZ3icKyw0Kr3YCY_be66984HTH-V4XEwmqtxJ9UUxYR08cDdxJz4rtKTDN-5QkQqtULkk1mTcou0guptbiVQ7zlSH6k2mj-yOMdELUyd-MSV07iyjU020odXeRhTw-m8zMv-MldzZfM4ewoPeamTvOmqP4I5rH8HhcI6W3Y_H8OtKLxrL0JG3rseDXTtm3SqEWbVs7hn9cL9ZsTV5xgShynRrN5WzZmrdd0b7mWXY_Rpd0-4GJlLCmlnIYxQGoCWJi96yWYjAdKxPOfGVhXw6yyfw-Wz06f153CdYiE2u-Cq2da2l1qI2SjqfGtyadC44t_hQo21QpzoRrk4EuRVe89wYrHeFsqgJvJD8KRzgt7nnwBJjHWoPVXtOk5tqdBO90YmvT_H1TkSQbGa7Mj36OCXBmFbohRCDKmJQRQyqegZF8HY7ZNFBb_yt85BYuO1IqNmhAmWp6mWp-pcsRXC8EYCqX8rLitPlJYVun4zg9bYZFyGdrOjWzW-QEoluMhm7pxE86-RlSwkXhKKW4mi5J0l7pO63tM11APpWokBrO3nxP77tJdyn-YpDBOMxHKA0uldwaNarZvltAHflpBjAveFoXF4NwlrC8jL5QKUsqfw5wvby4rL88htorilX
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VbSW4lDcsFDASXJCiJnE2iQ8IUaDqqtvVChWpnFLHj3al3WTb3W7VX8C_4Tcy4zxgEeqtBy6R4tiR43ye-cZjzwC8kWGqtEi4FxjFvUjgRaLQ80xsUb1H0hrr_vQgGQ7ToyMxWoOfzVkY2lbZyEQnqHWpaI18m9MZEoHsO_kwO_MoaxR5V5sUGhUs9s3VJZps8_f9z_h_34bh7pfDT3tenVXAU5HgC0_nuUykjHMlEmMDhfJYRjHnGm9yVIh5IP3Y5H5MXNpKHimF5SYVGuFv44Tje2_BeoRg9zuwPuofjL63qzp-jyhXUrlP0foT23Y2oajgYUjeVOTuYkUBujwB_yK3f-_R_EPp7d7934brHmzW9Jp9rObDfVgzxQPY2CmRAl89hB9f5WysWVEW2tSBc5eGabNw-9EKVlpGnomLBVvSEgLFmmWy0E3hdDzR5pKR4tcMq5-iDV8dVcWhY-OpS_jkGiDlRumo2dRtVTWszs1xwlziofkj-HYjg_AYOvht5ikwX2mDYlbklhMaAon2tFXSt3kPX2_iLvgNPDJVh2mnbCGTDM01QlRGiMoIUVmNqC68a5vMqhgl11XeIcy1FSm8uCsoz0-yWlplNkxlQh5vbpC9xFKgRve1CrlGwo4mfBe2GtRltcybZ78h14XX7WOUVuSCkoUpL7AnSeQLsgp6XXhSAbztCY8p3FyArZMV6K90dfVJMT51EdFFnKJZ4j-7vluv4Pbe4cEgG_SH-8_hDo2K5zZ0bkEHMWdewIZaLsbz85f1tGZwfNNT4xcB7ZFx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+nondestructive+detection+of+peanut+varieties+and+peanut+mildew+based+on+hyperspectral+imaging+and+stacked+machine+learning+models&rft.jtitle=Frontiers+in+plant+science&rft.au=Qingsong+Wu&rft.au=Lijia+Xu&rft.au=Zhiyong+Zou&rft.au=Jian+Wang&rft.date=2022-11-10&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=13&rft_id=info:doi/10.3389%2Ffpls.2022.1047479&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f28a745253e8476a9eb10dc23d835601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon