A Product Partition Model With Regression on Covariates

We propose a probability model for random partitions in the presence of covariates. In other words, we develop a model-based clustering algorithm that exploits available covariates. The motivating application is predicting time to progression for patients in a breast cancer trial. We proceed by repo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and graphical statistics Vol. 20; no. 1; pp. 260 - 278
Main Authors: Müller, Peter, Quintana, Fernando, Rosner, Gary L.
Format: Journal Article
Language:English
Published: United States Taylor & Francis 01.03.2011
JCGS Management Committee of the American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Subjects:
ISSN:1061-8600, 1537-2715
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a probability model for random partitions in the presence of covariates. In other words, we develop a model-based clustering algorithm that exploits available covariates. The motivating application is predicting time to progression for patients in a breast cancer trial. We proceed by reporting a weighted average of the responses of clusters of earlier patients. The weights should be determined by the similarity of the new patient's covariate with the covariates of patients in each cluster. We achieve the desired inference by defining a random partition model that includes a regression on covariates. Patients with similar covariates are a priori more likely to be clustered together. Posterior predictive inference in this model formalizes the desired prediction. We build on product partition models (PPM). We define an extension of the PPM to include a regression on covariates by including in the cohesion function a new factor that increases the probability of experimental units with similar covariates to be included in the same cluster. We discuss implementations suitable for any combination of continuous, categorical, count, and ordinal covariates. An implementation of the proposed model as R-package is available for download.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1061-8600
1537-2715
DOI:10.1198/jcgs.2011.09066