Deep Learning in Medical Imaging

The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing g...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurospine Ročník 16; číslo 4; s. 657 - 668
Hlavní autoři: Kim, Mingyu, Yun, Jihye, Cho, Yongwon, Shin, Keewon, Jang, Ryoungwoo, Bae, Hyun-jin, Kim, Namkug
Médium: Journal Article
Jazyk:angličtina
Vydáno: Korea (South) Korean Spinal Neurosurgery Society 01.12.2019
대한척추신경외과학회
Témata:
ISSN:2586-6583, 2586-6591
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing gradient problems for training deep networks. The advancement of computing power with graphics processing units and the availability of large data acquisition, deep neural network outperforms human or other ML capabilities in computer vision and speech recognition tasks. These potentials are recently applied to healthcare problems, including computer-aided detection/diagnosis, disease prediction, image segmentation, image generation, etc. In this review article, we will explain the history, development, and applications in medical imaging.
AbstractList The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing gradient problems for training deep networks. The advancement of computing power with graphics processing units and the availability of large data acquisition, deep neural network outperforms human or other ML capabilities in computer vision and speech recognition tasks. These potentials are recently applied to healthcare problems, including computer-aided detection/diagnosis, disease prediction, image segmentation, image generation, etc. In this review article, we will explain the history, development, and applications in medical imaging
The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing gradient problems for training deep networks. The advancement of computing power with graphics processing units and the availability of large data acquisition, deep neural network outperforms human or other ML capabilities in computer vision and speech recognition tasks. These potentials are recently applied to healthcare problems, including computer-aided detection/diagnosis, disease prediction, image segmentation, image generation, etc. In this review article, we will explain the history, development, and applications in medical imaging KCI Citation Count: 27
The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing gradient problems for training deep networks. The advancement of computing power with graphics processing units and the availability of large data acquisition, deep neural network outperforms human or other ML capabilities in computer vision and speech recognition tasks. These potentials are recently applied to healthcare problems, including computer-aided detection/diagnosis, disease prediction, image segmentation, image generation, etc. In this review article, we will explain the history, development, and applications in medical imaging.The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing gradient problems for training deep networks. The advancement of computing power with graphics processing units and the availability of large data acquisition, deep neural network outperforms human or other ML capabilities in computer vision and speech recognition tasks. These potentials are recently applied to healthcare problems, including computer-aided detection/diagnosis, disease prediction, image segmentation, image generation, etc. In this review article, we will explain the history, development, and applications in medical imaging.
The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing gradient problems for training deep networks. The advancement of computing power with graphics processing units and the availability of large data acquisition, deep neural network outperforms human or other ML capabilities in computer vision and speech recognition tasks. These potentials are recently applied to healthcare problems, including computer-aided detection/diagnosis, disease prediction, image segmentation, image generation, etc. In this review article, we will explain the history, development, and applications in medical imaging.
Author Jang, Ryoungwoo
Cho, Yongwon
Shin, Keewon
Kim, Namkug
Bae, Hyun-jin
Kim, Mingyu
Yun, Jihye
Author_xml – sequence: 1
  givenname: Mingyu
  surname: Kim
  fullname: Kim, Mingyu
– sequence: 2
  givenname: Jihye
  surname: Yun
  fullname: Yun, Jihye
– sequence: 3
  givenname: Yongwon
  surname: Cho
  fullname: Cho, Yongwon
– sequence: 4
  givenname: Keewon
  surname: Shin
  fullname: Shin, Keewon
– sequence: 5
  givenname: Ryoungwoo
  surname: Jang
  fullname: Jang, Ryoungwoo
– sequence: 6
  givenname: Hyun-jin
  surname: Bae
  fullname: Bae, Hyun-jin
– sequence: 7
  givenname: Namkug
  orcidid: 0000-0002-3438-2217
  surname: Kim
  fullname: Kim, Namkug
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31905454$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002542239$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp1kc1LXDEUxUOxVKuu3ZW3bBejL-_mc1MQq3VgSqHoOuTrjalvkmnyRvC_N_PhUAtdnXDzuyeHnI_oIKboETrD7TkmHaEXsZxjCQIkqyreoaOOCjZhVOKD_VnAITotJZiWEE4JAP6ADgHLlhJKjlDzzftlM_M6xxDnTYjND--C1UMzXeh5HZ2g970eij_d6TG6v7m-u7qdzH5-n15dziaWSBgn2gM3roPOMMItYbrrrcNeYgzSSg0cqLGOdL6rEYSoiO2FNYJQLkB4Acfoy9Y35l492qCSDhudJ_WY1eWvu6liBEtK1-x0y7qkf6tlDgudnzcLm0HKc6XzGOzgVQ_MGCoclrYn2oGRmNdUghvubJ1Vr69br-XKLLyzPo5ZD29M397E8FAzPSkmCW1bVg0-7wxy-rPyZVSLUKwfBh19WhXVAdSyOBNr9NPfb-0fea2jAhdbwOZUSvb9HsGt2nSuYlG7zquuv4L-s2HDqMeQ1mHD8N-9F17frcE
CitedBy_id crossref_primary_10_3389_fbioe_2022_1019531
crossref_primary_10_1016_j_engappai_2023_106126
crossref_primary_10_1016_j_engstruct_2024_117530
crossref_primary_10_1109_ACCESS_2020_3033762
crossref_primary_10_3390_healthcare11091222
crossref_primary_10_1007_s12055_022_01448_6
crossref_primary_10_1016_j_compmedimag_2025_102630
crossref_primary_10_1016_j_ins_2023_119005
crossref_primary_10_1016_j_semss_2021_100878
crossref_primary_10_1016_j_ajoms_2022_12_002
crossref_primary_10_3233_NAI_240740
crossref_primary_10_3390_diagnostics12112569
crossref_primary_10_1016_j_compbiomed_2023_106998
crossref_primary_10_1016_j_nut_2021_111227
crossref_primary_10_3390_electronics12081786
crossref_primary_10_1002_widm_1410
crossref_primary_10_1016_j_optlaseng_2022_107471
crossref_primary_10_1088_1361_6560_ad94c7
crossref_primary_10_3390_s20113085
crossref_primary_10_3390_jcm13144042
crossref_primary_10_7717_peerj_cs_1033
crossref_primary_10_1016_j_ajoms_2024_04_009
crossref_primary_10_1109_ACCESS_2022_3163384
crossref_primary_10_3390_a17120550
crossref_primary_10_1016_j_compbiomed_2025_110501
crossref_primary_10_3171_2022_1_FOCUS21745
crossref_primary_10_1016_j_compag_2023_107802
crossref_primary_10_3390_electronics14122407
crossref_primary_10_1177_0271678X221083387
crossref_primary_10_1177_2192568220961353
crossref_primary_10_1016_j_bspc_2023_105078
crossref_primary_10_1038_s42256_023_00633_5
crossref_primary_10_1109_ACCESS_2023_3239212
crossref_primary_10_3390_chemosensors10100377
crossref_primary_10_1002_aisy_202300017
crossref_primary_10_3390_ijms232416070
crossref_primary_10_3171_2021_11_SPINE211136
crossref_primary_10_1016_j_imavis_2025_105601
crossref_primary_10_3390_app12031401
crossref_primary_10_4103_SIJM_SIJM_29_25
crossref_primary_10_1016_j_jnoncrysol_2023_122802
crossref_primary_10_1155_2023_9303688
crossref_primary_10_1007_s13246_023_01317_5
crossref_primary_10_1088_1361_6560_ac6d9c
crossref_primary_10_3390_bioengineering10101155
crossref_primary_10_1080_02713683_2024_2303713
crossref_primary_10_1038_s41392_024_01953_7
crossref_primary_10_1016_j_cmpb_2025_109073
crossref_primary_10_3390_agronomy12010085
crossref_primary_10_3390_app14083419
crossref_primary_10_1016_j_ultras_2022_106744
crossref_primary_10_3389_fmed_2025_1502830
crossref_primary_10_3390_ijerph18062842
crossref_primary_10_3390_tomography11070078
crossref_primary_10_3390_cancers16244196
crossref_primary_10_3389_frai_2022_939967
crossref_primary_10_13005_bpj_3079
crossref_primary_10_3390_medicina58040504
crossref_primary_10_1016_j_postharvbio_2022_112154
crossref_primary_10_1038_s41598_022_20698_3
crossref_primary_10_7717_peerj_cs_806
crossref_primary_10_55969_paradigmplus_v4n1a1
crossref_primary_10_1165_rcmb_2023_0051MA
crossref_primary_10_1088_1742_6596_2094_3_032008
crossref_primary_10_3389_fneur_2025_1581422
crossref_primary_10_1002_wmh3_70015
crossref_primary_10_1007_s10029_022_02621_x
crossref_primary_10_1016_j_jnoncrysol_2022_121640
crossref_primary_10_1007_s00586_025_09179_z
crossref_primary_10_3389_fcvm_2023_1101765
crossref_primary_10_1007_s10815_021_02228_8
crossref_primary_10_1097_COC_0000000000001036
crossref_primary_10_3390_app15095087
crossref_primary_10_1016_j_mimet_2025_107131
crossref_primary_10_1155_2024_3026500
crossref_primary_10_1371_journal_pone_0266147
crossref_primary_10_1007_s10278_024_01175_x
crossref_primary_10_1109_TRPMS_2024_3439010
crossref_primary_10_3389_fonc_2024_1401095
crossref_primary_10_1016_j_patol_2024_04_003
crossref_primary_10_1038_s41598_021_89848_3
crossref_primary_10_3390_diagnostics12010072
crossref_primary_10_1016_j_ejrad_2022_110592
crossref_primary_10_1016_j_media_2025_103454
crossref_primary_10_1007_s00500_025_10516_z
crossref_primary_10_3390_app142210524
crossref_primary_10_1111_jop_13042
crossref_primary_10_1016_j_imed_2021_03_003
crossref_primary_10_1038_s41746_025_01923_5
crossref_primary_10_3390_jcm12165246
crossref_primary_10_1155_2022_2456550
crossref_primary_10_1007_s11042_025_20635_2
crossref_primary_10_1371_journal_pone_0262736
crossref_primary_10_1109_JSTQE_2022_3228567
crossref_primary_10_1109_TGRS_2023_3328922
crossref_primary_10_3390_biom15030444
crossref_primary_10_1007_s00261_021_03254_x
crossref_primary_10_1016_j_acra_2020_12_017
crossref_primary_10_1093_ibd_izae030
crossref_primary_10_1016_j_cmpbup_2021_100025
crossref_primary_10_1371_journal_pone_0272715
crossref_primary_10_1007_s00586_025_09167_3
crossref_primary_10_1109_ACCESS_2021_3089704
crossref_primary_10_1371_journal_pdig_0000391
crossref_primary_10_20538_1682_0363_2021_4_193_204
crossref_primary_10_1109_ACCESS_2024_3497346
crossref_primary_10_1007_s00330_021_08456_x
crossref_primary_10_4103_jmp_JMP_22_21
crossref_primary_10_1016_j_imu_2024_101582
crossref_primary_10_1109_ACCESS_2023_3233969
crossref_primary_10_3390_brainsci13091255
crossref_primary_10_1055_a_2171_2674
crossref_primary_10_1259_dmfr_20200375
crossref_primary_10_3390_ijerph20075335
crossref_primary_10_1016_j_vrih_2024_08_005
crossref_primary_10_3390_app11125488
crossref_primary_10_1016_j_compbiomed_2024_108592
crossref_primary_10_1088_2057_1976_ad97c2
crossref_primary_10_1016_j_burns_2020_08_016
crossref_primary_10_1007_s10278_024_01341_1
crossref_primary_10_3390_jpm14030328
crossref_primary_10_1007_s00330_024_11105_8
crossref_primary_10_1093_ejo_cjae056
crossref_primary_10_1016_j_jhazmat_2023_132853
crossref_primary_10_1109_ACCESS_2021_3107163
crossref_primary_10_1109_ACCESS_2024_3485000
crossref_primary_10_1016_j_artmed_2022_102431
crossref_primary_10_3390_diagnostics10050330
crossref_primary_10_1016_j_procs_2025_04_464
crossref_primary_10_3389_fpls_2021_736334
crossref_primary_10_1016_j_medengphy_2024_104117
crossref_primary_10_1038_s41598_023_50885_9
crossref_primary_10_1021_acs_jpcb_4c08757
crossref_primary_10_3390_bioengineering11040406
crossref_primary_10_1109_ACCESS_2022_3215973
crossref_primary_10_3389_fneur_2021_666875
crossref_primary_10_1016_j_bspc_2024_106869
crossref_primary_10_1117_1_JMI_10_6_066003
crossref_primary_10_3389_fmolb_2020_00136
crossref_primary_10_1002_acm2_70066
crossref_primary_10_1016_j_ibmed_2025_100248
crossref_primary_10_1177_02841851231217995
crossref_primary_10_3390_bioengineering11060580
crossref_primary_10_3390_bioengineering12050533
crossref_primary_10_1002_jmri_28937
crossref_primary_10_3390_diagnostics12102478
crossref_primary_10_3390_forecast3010012
crossref_primary_10_1007_s00521_022_07099_3
crossref_primary_10_3390_diagnostics12102475
crossref_primary_10_1016_j_ajoms_2022_12_010
crossref_primary_10_1016_j_microc_2022_107613
crossref_primary_10_3390_su15075930
crossref_primary_10_1016_j_jcot_2022_102046
crossref_primary_10_1016_j_jdent_2024_105105
crossref_primary_10_3348_jksr_2020_0158
crossref_primary_10_1007_s11018_025_02406_5
crossref_primary_10_1007_s12652_021_03358_8
crossref_primary_10_1080_23311916_2023_2178367
crossref_primary_10_1007_s00117_024_01412_y
crossref_primary_10_1007_s11128_024_04588_3
crossref_primary_10_1007_s11042_023_16197_w
crossref_primary_10_3390_mi13081364
crossref_primary_10_1109_TMI_2025_3540546
Cites_doi 10.1109/CVPR.2016.265
10.1371/journal.pone.0207772
10.1007/s11042-017-5581-1
10.1109/CVPR.2018.00333
10.1038/ncomms5006
10.1109/CVPR.2016.91
10.1007/978-3-319-24574-4_1
10.1109/ICASSP.2018.8461430
10.1109/ACCESS.2017.2788044
10.1016/j.media.2018.07.001
10.1016/j.media.2019.01.010
10.1001/jamainternmed.2015.5231
10.1016/S1350-4533(03)00137-1
10.1145/3065386
10.1109/ICCV.2017.324
10.1007/978-3-319-46448-0_2
10.3390/electronics11010060
10.1109/TIP.2005.852470
10.1148/radiol.2017162326
10.1109/CVPR.2017.632
10.1109/CVPR.2018.00916
10.1038/s41598-019-42276-w
10.1038/s41591-018-0272-7
10.1145/383259.383295
10.1109/ISBI.2018.8363678
10.1145/1553374.1553380
10.1007/978-3-319-68127-6_2
10.1109/TMI.2016.2528821
10.1109/CVPR.2018.00858
10.1109/CVPR.2017.690
10.1109/ICAIBD.2018.8396171
10.1109/CVPR.2015.7298965
10.1109/CVPR.2016.90
10.1021/ci0341161
10.1056/NEJMp1500523
10.1109/ICCV.2019.00913
10.1038/nature21056
10.1109/ICCV.2015.169
10.1056/NEJMoa066099
10.1038/s41598-017-05848-2
10.1038/s41598-019-51832-3
10.1109/CVPR.2014.81
10.1109/IIPHDW.2018.8388338
10.1109/ICCV.2017.244
10.1109/TMI.2019.2901750
10.1038/s41591-018-0310-5
10.1109/3DV.2016.79
10.1016/j.neucom.2018.09.013
10.1007/978-3-030-11726-9_32
10.1002/mp.12155
10.1007/978-3-319-46723-8_55
10.1162/neco.2006.18.7.1527
10.1007/978-3-642-40763-5_31
10.1007/978-3-319-66179-7_65
10.1109/TPAMI.2016.2577031
10.1007/978-3-319-46723-8_28
10.1007/978-3-319-24574-4_28
10.1186/s40537-019-0197-0
10.1186/s13550-017-0260-9
10.1007/978-3-319-46723-8_49
10.1371/journal.pone.0196846
10.1007/978-3-030-33843-5_9
10.1016/j.neuroimage.2018.03.045
10.1145/1390156.1390294
10.1038/s41598-017-10649-8
10.1016/j.procs.2015.08.057
10.1109/TMI.2016.2538465
10.1016/j.cviu.2019.04.007
10.1109/TMI.2019.2927182
10.1001/jama.2016.17216
10.1007/978-3-319-59050-9_12
10.1186/s12938-018-0544-y
ContentType Journal Article
Copyright Copyright © 2019 by the Korean Spinal Neurosurgery Society 2019
Copyright_xml – notice: Copyright © 2019 by the Korean Spinal Neurosurgery Society 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
ACYCR
DOI 10.14245/ns.1938396.198
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2586-6591
EndPage 668
ExternalDocumentID oai_kci_go_kr_ARTI_6419558
oai_doaj_org_article_f36bb58d19cf4ad3b917e9187b7dc9cf
PMC6945006
31905454
10_14245_ns_1938396_198
Genre Journal Article
GroupedDBID AAYXX
ABDBF
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
GROUPED_DOAJ
HYE
PGMZT
RPM
M~E
NPM
7X8
5PM
ACYCR
ID FETCH-LOGICAL-c493t-ae37bd232b647c46a2fcd1e91139c9a3735bcd42e2433887c4cf8cb8457838e83
IEDL.DBID DOA
ISICitedReferencesCount 201
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000504871100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2586-6583
IngestDate Sun Mar 09 07:55:12 EDT 2025
Fri Oct 03 12:36:47 EDT 2025
Thu Aug 21 14:23:03 EDT 2025
Sun Nov 09 11:51:05 EST 2025
Thu Jan 02 22:32:29 EST 2025
Sat Nov 29 03:16:08 EST 2025
Tue Nov 18 20:41:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Radiology
Precision medicine
Artificial intelligence
Machine learning
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-ae37bd232b647c46a2fcd1e91139c9a3735bcd42e2433887c4cf8cb8457838e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
https://doi.org/10.14245/ns.1938396.198
ORCID 0000-0002-3438-2217
OpenAccessLink https://doaj.org/article/f36bb58d19cf4ad3b917e9187b7dc9cf
PMID 31905454
PQID 2334247686
PQPubID 23479
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_6419558
doaj_primary_oai_doaj_org_article_f36bb58d19cf4ad3b917e9187b7dc9cf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6945006
proquest_miscellaneous_2334247686
pubmed_primary_31905454
crossref_primary_10_14245_ns_1938396_198
crossref_citationtrail_10_14245_ns_1938396_198
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
PublicationTitle Neurospine
PublicationTitleAlternate Neurospine
PublicationYear 2019
Publisher Korean Spinal Neurosurgery Society
대한척추신경외과학회
Publisher_xml – name: Korean Spinal Neurosurgery Society
– name: 대한척추신경외과학회
References ref13
ref57
ref56
ref15
ref59
ref53
ref52
ref55
ref10
ref54
Batson (ref84)
Amari (ref14) 2003
ref17
Drucker (ref12) 1997
ref16
ref19
Goodfellow (ref58) 2014
ref18
ref93
ref92
ref91
ref90
ref46
ref45
ref89
Li (ref79) 2017
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
Oktay (ref47)
Hao (ref34) 2006
ref49
Murphy (ref1) 2012
ref8
ref7
ref3
ref6
ref5
ref82
ref40
ref35
ref78
ref37
ref36
ref31
Anirudh (ref51) 2016
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref39
ref38
Kohl (ref50) 2018
Yoo (ref80)
Mirsky (ref60)
Radford (ref73)
ref70
ref72
Lee (ref63) 2019
ref24
Le (ref48)
ref68
Jain (ref81) 2009
ref23
ref67
ref26
Engelhardt (ref71) 2018
ref25
Andreini (ref69)
Rajpurkar (ref4)
ref20
ref22
ref66
ref21
ref65
Altman (ref9) 1992
Bi (ref64) 2017
Vincent (ref83) 2010
ref28
ref27
ref29
ref62
ref61
Schneider (ref11) 2010
32615703 - Neurospine. 2020 Jun;17(2):471-472
References_xml – volume-title: Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning
  ident: ref4
– ident: ref77
  doi: 10.1109/CVPR.2016.265
– ident: ref10
  doi: 10.1371/journal.pone.0207772
– ident: ref49
  doi: 10.1007/s11042-017-5581-1
– ident: ref89
  doi: 10.1109/CVPR.2018.00333
– ident: ref93
  doi: 10.1038/ncomms5006
– ident: ref29
  doi: 10.1109/CVPR.2016.91
– ident: ref38
  doi: 10.1007/978-3-319-24574-4_1
– volume-title: Multitask classification and segmentation for cancer diagnosis in mammography
  ident: ref48
– start-page: 2672
  volume-title: Generative adversarial nets
  year: 2014
  ident: ref58
– ident: ref56
  doi: 10.1109/ICASSP.2018.8461430
– ident: ref54
  doi: 10.1109/ACCESS.2017.2788044
– volume-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  ident: ref73
– start-page: 978532
  volume-title: Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data
  year: 2016
  ident: ref51
– ident: ref68
  doi: 10.1016/j.media.2018.07.001
– ident: ref75
  doi: 10.1016/j.media.2019.01.010
– volume-title: Attention u-net: Learning where to look for the pancreas
  ident: ref47
– ident: ref7
  doi: 10.1001/jamainternmed.2015.5231
– ident: ref36
  doi: 10.1016/S1350-4533(03)00137-1
– start-page: 769
  volume-title: Natural image denoising with convolutional networks
  year: 2009
  ident: ref81
– ident: ref15
  doi: 10.1145/3065386
– ident: ref32
  doi: 10.1109/ICCV.2017.324
– ident: ref31
  doi: 10.1007/978-3-319-46448-0_2
– volume-title: A two stage GAN for high resolution retinal image generation and segmentation
  ident: ref69
  doi: 10.3390/electronics11010060
– ident: ref37
  doi: 10.1109/TIP.2005.852470
– start-page: 776
  volume-title: Linear regression analysis: part 14 of a series on evaluation of scientific publications
  year: 2010
  ident: ref11
– ident: ref18
  doi: 10.1148/radiol.2017162326
– ident: ref86
  doi: 10.1109/CVPR.2017.632
– ident: ref88
  doi: 10.1109/CVPR.2018.00916
– year: 2006
  ident: ref34
– start-page: 2487
  volume-title: CollaGAN: Collaborative GAN for missing image data imputation
  year: 2019
  ident: ref63
– ident: ref23
  doi: 10.1038/s41598-019-42276-w
– ident: ref55
  doi: 10.1038/s41591-018-0272-7
– start-page: 43
  year: 2017
  ident: ref64
– ident: ref76
  doi: 10.1145/383259.383295
– ident: ref61
  doi: 10.1109/ISBI.2018.8363678
– start-page: 175
  volume-title: An introduction to kernel and nearest-neighbor nonparametric regression
  year: 1992
  ident: ref9
– start-page: 747
  volume-title: Improving surgical training phantoms by hyperrealism: deep unpaired image-to-image translation from real surgeries
  year: 2018
  ident: ref71
– ident: ref21
  doi: 10.1145/1553374.1553380
– ident: ref91
  doi: 10.1007/978-3-319-68127-6_2
– ident: ref39
  doi: 10.1109/TMI.2016.2528821
– ident: ref78
  doi: 10.1109/CVPR.2018.00858
– ident: ref30
  doi: 10.1109/CVPR.2017.690
– ident: ref70
  doi: 10.1109/ICAIBD.2018.8396171
– ident: ref40
  doi: 10.1109/CVPR.2015.7298965
– ident: ref2
  doi: 10.1109/CVPR.2016.90
– ident: ref13
  doi: 10.1021/ci0341161
– ident: ref92
  doi: 10.1056/NEJMp1500523
– volume-title: Photorealistic style transfer via wavelet transforms
  ident: ref80
  doi: 10.1109/ICCV.2019.00913
– ident: ref20
  doi: 10.1038/nature21056
– ident: ref27
  doi: 10.1109/ICCV.2015.169
– ident: ref6
  doi: 10.1056/NEJMoa066099
– ident: ref25
  doi: 10.1038/s41598-017-05848-2
– ident: ref22
  doi: 10.1038/s41598-019-51832-3
– ident: ref26
  doi: 10.1109/CVPR.2014.81
– ident: ref17
  doi: 10.1109/IIPHDW.2018.8388338
– ident: ref87
  doi: 10.1109/ICCV.2017.244
– ident: ref62
  doi: 10.1109/TMI.2019.2901750
– ident: ref8
  doi: 10.1038/s41591-018-0310-5
– start-page: 6965
  volume-title: A probabilistic unet for segmentation of ambiguous images
  year: 2018
  ident: ref50
– year: 2012
  ident: ref1
– ident: ref45
  doi: 10.1109/3DV.2016.79
– ident: ref57
  doi: 10.1016/j.neucom.2018.09.013
– ident: ref46
  doi: 10.1007/978-3-030-11726-9_32
– ident: ref85
  doi: 10.1002/mp.12155
– start-page: 155
  volume-title: Support vector regression machines
  year: 1997
  ident: ref12
– ident: ref42
  doi: 10.1007/978-3-319-46723-8_55
– ident: ref3
  doi: 10.1162/neco.2006.18.7.1527
– start-page: 3371
  volume-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  year: 2010
  ident: ref83
– volume-title: Noise2self: Blind denoising by self-supervision
  ident: ref84
– ident: ref43
  doi: 10.1007/978-3-642-40763-5_31
– volume-title: CT-GAN: malicious tampering of 3D medical imagery using deep learning
  ident: ref60
– year: 2003
  ident: ref14
– ident: ref53
  doi: 10.1007/978-3-319-66179-7_65
– ident: ref28
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref52
  doi: 10.1007/978-3-319-46723-8_28
– ident: ref41
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref72
  doi: 10.1186/s40537-019-0197-0
– ident: ref16
  doi: 10.1186/s13550-017-0260-9
– ident: ref44
  doi: 10.1007/978-3-319-46723-8_49
– ident: ref66
  doi: 10.1371/journal.pone.0196846
– ident: ref90
  doi: 10.1007/978-3-030-33843-5_9
– ident: ref65
  doi: 10.1016/j.neuroimage.2018.03.045
– ident: ref82
  doi: 10.1145/1390156.1390294
– ident: ref24
  doi: 10.1038/s41598-017-10649-8
– ident: ref33
  doi: 10.1016/j.procs.2015.08.057
– ident: ref35
  doi: 10.1109/TMI.2016.2538465
– ident: ref59
  doi: 10.1016/j.cviu.2019.04.007
– start-page: 386
  volume-title: Universal style transfer via feature transforms
  year: 2017
  ident: ref79
– ident: ref67
  doi: 10.1109/TMI.2019.2927182
– ident: ref19
  doi: 10.1001/jama.2016.17216
– ident: ref74
  doi: 10.1007/978-3-319-59050-9_12
– ident: ref5
  doi: 10.1186/s12938-018-0544-y
– reference: 32615703 - Neurospine. 2020 Jun;17(2):471-472
SSID ssib044754331
ssj0002002413
Score 2.5309181
SecondaryResourceType review_article
Snippet The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with...
SourceID nrf
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 657
SubjectTerms artificial intelligence
deep learning
machine learning
precision medicine
radiology
Review
신경외과학
Title Deep Learning in Medical Imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/31905454
https://www.proquest.com/docview/2334247686
https://pubmed.ncbi.nlm.nih.gov/PMC6945006
https://doaj.org/article/f36bb58d19cf4ad3b917e9187b7dc9cf
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002542239
Volume 16
WOSCitedRecordID wos000504871100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Neurospine, 2019, 16(4), , pp.657-668
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2586-6591
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002002413
  issn: 2586-6583
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2586-6591
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044754331
  issn: 2586-6583
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VqgcuCESB8KhC1QOXUBK_xkegreiBqgeQ9mbZY6esCtlqd8uxv73jJF3toiIuXGIpsRV7xvZ8E0--ATj4YNpgg1CVkCJVknysAgOLCpEwEhs0haFPNmHOznAysedrqb5yTNhADzwI7rAVOgSFsbbUSh9FYP8i2RpNMJH4Xt59GfWsOVM8kzKLXf4VaPW1JYciyD5XcqNQV2x2xcjzk0_-Dlm_DGQYK2guccNE9Uz-bHi6eXsfCP0zlnLNOJ08hkcjqiw_DqN5AlupewrlUUpX5UigelFOu3I8lSlPf_W5iXbh-8nxt89fqjEhQkXSimXlkzAhMgYKWhqS2jctxZqlwTCOrBdGqEBRNqnhwfPuQZJapICSl6XAhOIZbHezLr2AsvY66sajSFkA1NgoNdVt8qgChiYU8P5OBo5GtvCctOKny15DbuO6hRuFxiUW8G7V4Gogyvh71U9ZqKtqmeG6v8F6d6Pe3b_0XsA-q8Rd0rRvn8uLmbucO_YDTp2WtVWK3_T2TmOOl00-C_Fdml0vXCME94x9LV3A80GDq_7wrsRAVskCzIZuNzq8-aSb_uipubWVivexl_9jhK_gIaMzO8TOvIbt5fw6vYEd-r2cLuZ78MBMcK-f9Xz9enN8C7jeAlg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+in+Medical+Imaging&rft.jtitle=Neurospine&rft.au=Kim%2C+Mingyu&rft.au=Yun%2C+Jihye&rft.au=Cho%2C+Yongwon&rft.au=Shin%2C+Keewon&rft.date=2019-12-01&rft.issn=2586-6583&rft.volume=16&rft.issue=4&rft.spage=657&rft_id=info:doi/10.14245%2Fns.1938396.198&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2586-6583&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2586-6583&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2586-6583&client=summon