Deep Learning in Medical Imaging
The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing g...
Uloženo v:
| Vydáno v: | Neurospine Ročník 16; číslo 4; s. 657 - 668 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Korea (South)
Korean Spinal Neurosurgery Society
01.12.2019
대한척추신경외과학회 |
| Témata: | |
| ISSN: | 2586-6583, 2586-6591 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing gradient problems for training deep networks. The advancement of computing power with graphics processing units and the availability of large data acquisition, deep neural network outperforms human or other ML capabilities in computer vision and speech recognition tasks. These potentials are recently applied to healthcare problems, including computer-aided detection/diagnosis, disease prediction, image segmentation, image generation, etc. In this review article, we will explain the history, development, and applications in medical imaging. |
|---|---|
| AbstractList | The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing gradient problems for training deep networks. The advancement of computing power with graphics processing units and the availability of large data acquisition, deep neural network outperforms human or other ML capabilities in computer vision and speech recognition tasks. These potentials are recently applied to healthcare problems, including computer-aided detection/diagnosis, disease prediction, image segmentation, image generation, etc. In this review article, we will explain the history, development, and applications in medical imaging The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing gradient problems for training deep networks. The advancement of computing power with graphics processing units and the availability of large data acquisition, deep neural network outperforms human or other ML capabilities in computer vision and speech recognition tasks. These potentials are recently applied to healthcare problems, including computer-aided detection/diagnosis, disease prediction, image segmentation, image generation, etc. In this review article, we will explain the history, development, and applications in medical imaging KCI Citation Count: 27 The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing gradient problems for training deep networks. The advancement of computing power with graphics processing units and the availability of large data acquisition, deep neural network outperforms human or other ML capabilities in computer vision and speech recognition tasks. These potentials are recently applied to healthcare problems, including computer-aided detection/diagnosis, disease prediction, image segmentation, image generation, etc. In this review article, we will explain the history, development, and applications in medical imaging.The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing gradient problems for training deep networks. The advancement of computing power with graphics processing units and the availability of large data acquisition, deep neural network outperforms human or other ML capabilities in computer vision and speech recognition tasks. These potentials are recently applied to healthcare problems, including computer-aided detection/diagnosis, disease prediction, image segmentation, image generation, etc. In this review article, we will explain the history, development, and applications in medical imaging. The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing gradient problems for training deep networks. The advancement of computing power with graphics processing units and the availability of large data acquisition, deep neural network outperforms human or other ML capabilities in computer vision and speech recognition tasks. These potentials are recently applied to healthcare problems, including computer-aided detection/diagnosis, disease prediction, image segmentation, image generation, etc. In this review article, we will explain the history, development, and applications in medical imaging. |
| Author | Jang, Ryoungwoo Cho, Yongwon Shin, Keewon Kim, Namkug Bae, Hyun-jin Kim, Mingyu Yun, Jihye |
| Author_xml | – sequence: 1 givenname: Mingyu surname: Kim fullname: Kim, Mingyu – sequence: 2 givenname: Jihye surname: Yun fullname: Yun, Jihye – sequence: 3 givenname: Yongwon surname: Cho fullname: Cho, Yongwon – sequence: 4 givenname: Keewon surname: Shin fullname: Shin, Keewon – sequence: 5 givenname: Ryoungwoo surname: Jang fullname: Jang, Ryoungwoo – sequence: 6 givenname: Hyun-jin surname: Bae fullname: Bae, Hyun-jin – sequence: 7 givenname: Namkug orcidid: 0000-0002-3438-2217 surname: Kim fullname: Kim, Namkug |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31905454$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002542239$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNp1kc1LXDEUxUOxVKuu3ZW3bBejL-_mc1MQq3VgSqHoOuTrjalvkmnyRvC_N_PhUAtdnXDzuyeHnI_oIKboETrD7TkmHaEXsZxjCQIkqyreoaOOCjZhVOKD_VnAITotJZiWEE4JAP6ADgHLlhJKjlDzzftlM_M6xxDnTYjND--C1UMzXeh5HZ2g970eij_d6TG6v7m-u7qdzH5-n15dziaWSBgn2gM3roPOMMItYbrrrcNeYgzSSg0cqLGOdL6rEYSoiO2FNYJQLkB4Acfoy9Y35l492qCSDhudJ_WY1eWvu6liBEtK1-x0y7qkf6tlDgudnzcLm0HKc6XzGOzgVQ_MGCoclrYn2oGRmNdUghvubJ1Vr69br-XKLLyzPo5ZD29M397E8FAzPSkmCW1bVg0-7wxy-rPyZVSLUKwfBh19WhXVAdSyOBNr9NPfb-0fea2jAhdbwOZUSvb9HsGt2nSuYlG7zquuv4L-s2HDqMeQ1mHD8N-9F17frcE |
| CitedBy_id | crossref_primary_10_3389_fbioe_2022_1019531 crossref_primary_10_1016_j_engappai_2023_106126 crossref_primary_10_1016_j_engstruct_2024_117530 crossref_primary_10_1109_ACCESS_2020_3033762 crossref_primary_10_3390_healthcare11091222 crossref_primary_10_1007_s12055_022_01448_6 crossref_primary_10_1016_j_compmedimag_2025_102630 crossref_primary_10_1016_j_ins_2023_119005 crossref_primary_10_1016_j_semss_2021_100878 crossref_primary_10_1016_j_ajoms_2022_12_002 crossref_primary_10_3233_NAI_240740 crossref_primary_10_3390_diagnostics12112569 crossref_primary_10_1016_j_compbiomed_2023_106998 crossref_primary_10_1016_j_nut_2021_111227 crossref_primary_10_3390_electronics12081786 crossref_primary_10_1002_widm_1410 crossref_primary_10_1016_j_optlaseng_2022_107471 crossref_primary_10_1088_1361_6560_ad94c7 crossref_primary_10_3390_s20113085 crossref_primary_10_3390_jcm13144042 crossref_primary_10_7717_peerj_cs_1033 crossref_primary_10_1016_j_ajoms_2024_04_009 crossref_primary_10_1109_ACCESS_2022_3163384 crossref_primary_10_3390_a17120550 crossref_primary_10_1016_j_compbiomed_2025_110501 crossref_primary_10_3171_2022_1_FOCUS21745 crossref_primary_10_1016_j_compag_2023_107802 crossref_primary_10_3390_electronics14122407 crossref_primary_10_1177_0271678X221083387 crossref_primary_10_1177_2192568220961353 crossref_primary_10_1016_j_bspc_2023_105078 crossref_primary_10_1038_s42256_023_00633_5 crossref_primary_10_1109_ACCESS_2023_3239212 crossref_primary_10_3390_chemosensors10100377 crossref_primary_10_1002_aisy_202300017 crossref_primary_10_3390_ijms232416070 crossref_primary_10_3171_2021_11_SPINE211136 crossref_primary_10_1016_j_imavis_2025_105601 crossref_primary_10_3390_app12031401 crossref_primary_10_4103_SIJM_SIJM_29_25 crossref_primary_10_1016_j_jnoncrysol_2023_122802 crossref_primary_10_1155_2023_9303688 crossref_primary_10_1007_s13246_023_01317_5 crossref_primary_10_1088_1361_6560_ac6d9c crossref_primary_10_3390_bioengineering10101155 crossref_primary_10_1080_02713683_2024_2303713 crossref_primary_10_1038_s41392_024_01953_7 crossref_primary_10_1016_j_cmpb_2025_109073 crossref_primary_10_3390_agronomy12010085 crossref_primary_10_3390_app14083419 crossref_primary_10_1016_j_ultras_2022_106744 crossref_primary_10_3389_fmed_2025_1502830 crossref_primary_10_3390_ijerph18062842 crossref_primary_10_3390_tomography11070078 crossref_primary_10_3390_cancers16244196 crossref_primary_10_3389_frai_2022_939967 crossref_primary_10_13005_bpj_3079 crossref_primary_10_3390_medicina58040504 crossref_primary_10_1016_j_postharvbio_2022_112154 crossref_primary_10_1038_s41598_022_20698_3 crossref_primary_10_7717_peerj_cs_806 crossref_primary_10_55969_paradigmplus_v4n1a1 crossref_primary_10_1165_rcmb_2023_0051MA crossref_primary_10_1088_1742_6596_2094_3_032008 crossref_primary_10_3389_fneur_2025_1581422 crossref_primary_10_1002_wmh3_70015 crossref_primary_10_1007_s10029_022_02621_x crossref_primary_10_1016_j_jnoncrysol_2022_121640 crossref_primary_10_1007_s00586_025_09179_z crossref_primary_10_3389_fcvm_2023_1101765 crossref_primary_10_1007_s10815_021_02228_8 crossref_primary_10_1097_COC_0000000000001036 crossref_primary_10_3390_app15095087 crossref_primary_10_1016_j_mimet_2025_107131 crossref_primary_10_1155_2024_3026500 crossref_primary_10_1371_journal_pone_0266147 crossref_primary_10_1007_s10278_024_01175_x crossref_primary_10_1109_TRPMS_2024_3439010 crossref_primary_10_3389_fonc_2024_1401095 crossref_primary_10_1016_j_patol_2024_04_003 crossref_primary_10_1038_s41598_021_89848_3 crossref_primary_10_3390_diagnostics12010072 crossref_primary_10_1016_j_ejrad_2022_110592 crossref_primary_10_1016_j_media_2025_103454 crossref_primary_10_1007_s00500_025_10516_z crossref_primary_10_3390_app142210524 crossref_primary_10_1111_jop_13042 crossref_primary_10_1016_j_imed_2021_03_003 crossref_primary_10_1038_s41746_025_01923_5 crossref_primary_10_3390_jcm12165246 crossref_primary_10_1155_2022_2456550 crossref_primary_10_1007_s11042_025_20635_2 crossref_primary_10_1371_journal_pone_0262736 crossref_primary_10_1109_JSTQE_2022_3228567 crossref_primary_10_1109_TGRS_2023_3328922 crossref_primary_10_3390_biom15030444 crossref_primary_10_1007_s00261_021_03254_x crossref_primary_10_1016_j_acra_2020_12_017 crossref_primary_10_1093_ibd_izae030 crossref_primary_10_1016_j_cmpbup_2021_100025 crossref_primary_10_1371_journal_pone_0272715 crossref_primary_10_1007_s00586_025_09167_3 crossref_primary_10_1109_ACCESS_2021_3089704 crossref_primary_10_1371_journal_pdig_0000391 crossref_primary_10_20538_1682_0363_2021_4_193_204 crossref_primary_10_1109_ACCESS_2024_3497346 crossref_primary_10_1007_s00330_021_08456_x crossref_primary_10_4103_jmp_JMP_22_21 crossref_primary_10_1016_j_imu_2024_101582 crossref_primary_10_1109_ACCESS_2023_3233969 crossref_primary_10_3390_brainsci13091255 crossref_primary_10_1055_a_2171_2674 crossref_primary_10_1259_dmfr_20200375 crossref_primary_10_3390_ijerph20075335 crossref_primary_10_1016_j_vrih_2024_08_005 crossref_primary_10_3390_app11125488 crossref_primary_10_1016_j_compbiomed_2024_108592 crossref_primary_10_1088_2057_1976_ad97c2 crossref_primary_10_1016_j_burns_2020_08_016 crossref_primary_10_1007_s10278_024_01341_1 crossref_primary_10_3390_jpm14030328 crossref_primary_10_1007_s00330_024_11105_8 crossref_primary_10_1093_ejo_cjae056 crossref_primary_10_1016_j_jhazmat_2023_132853 crossref_primary_10_1109_ACCESS_2021_3107163 crossref_primary_10_1109_ACCESS_2024_3485000 crossref_primary_10_1016_j_artmed_2022_102431 crossref_primary_10_3390_diagnostics10050330 crossref_primary_10_1016_j_procs_2025_04_464 crossref_primary_10_3389_fpls_2021_736334 crossref_primary_10_1016_j_medengphy_2024_104117 crossref_primary_10_1038_s41598_023_50885_9 crossref_primary_10_1021_acs_jpcb_4c08757 crossref_primary_10_3390_bioengineering11040406 crossref_primary_10_1109_ACCESS_2022_3215973 crossref_primary_10_3389_fneur_2021_666875 crossref_primary_10_1016_j_bspc_2024_106869 crossref_primary_10_1117_1_JMI_10_6_066003 crossref_primary_10_3389_fmolb_2020_00136 crossref_primary_10_1002_acm2_70066 crossref_primary_10_1016_j_ibmed_2025_100248 crossref_primary_10_1177_02841851231217995 crossref_primary_10_3390_bioengineering11060580 crossref_primary_10_3390_bioengineering12050533 crossref_primary_10_1002_jmri_28937 crossref_primary_10_3390_diagnostics12102478 crossref_primary_10_3390_forecast3010012 crossref_primary_10_1007_s00521_022_07099_3 crossref_primary_10_3390_diagnostics12102475 crossref_primary_10_1016_j_ajoms_2022_12_010 crossref_primary_10_1016_j_microc_2022_107613 crossref_primary_10_3390_su15075930 crossref_primary_10_1016_j_jcot_2022_102046 crossref_primary_10_1016_j_jdent_2024_105105 crossref_primary_10_3348_jksr_2020_0158 crossref_primary_10_1007_s11018_025_02406_5 crossref_primary_10_1007_s12652_021_03358_8 crossref_primary_10_1080_23311916_2023_2178367 crossref_primary_10_1007_s00117_024_01412_y crossref_primary_10_1007_s11128_024_04588_3 crossref_primary_10_1007_s11042_023_16197_w crossref_primary_10_3390_mi13081364 crossref_primary_10_1109_TMI_2025_3540546 |
| Cites_doi | 10.1109/CVPR.2016.265 10.1371/journal.pone.0207772 10.1007/s11042-017-5581-1 10.1109/CVPR.2018.00333 10.1038/ncomms5006 10.1109/CVPR.2016.91 10.1007/978-3-319-24574-4_1 10.1109/ICASSP.2018.8461430 10.1109/ACCESS.2017.2788044 10.1016/j.media.2018.07.001 10.1016/j.media.2019.01.010 10.1001/jamainternmed.2015.5231 10.1016/S1350-4533(03)00137-1 10.1145/3065386 10.1109/ICCV.2017.324 10.1007/978-3-319-46448-0_2 10.3390/electronics11010060 10.1109/TIP.2005.852470 10.1148/radiol.2017162326 10.1109/CVPR.2017.632 10.1109/CVPR.2018.00916 10.1038/s41598-019-42276-w 10.1038/s41591-018-0272-7 10.1145/383259.383295 10.1109/ISBI.2018.8363678 10.1145/1553374.1553380 10.1007/978-3-319-68127-6_2 10.1109/TMI.2016.2528821 10.1109/CVPR.2018.00858 10.1109/CVPR.2017.690 10.1109/ICAIBD.2018.8396171 10.1109/CVPR.2015.7298965 10.1109/CVPR.2016.90 10.1021/ci0341161 10.1056/NEJMp1500523 10.1109/ICCV.2019.00913 10.1038/nature21056 10.1109/ICCV.2015.169 10.1056/NEJMoa066099 10.1038/s41598-017-05848-2 10.1038/s41598-019-51832-3 10.1109/CVPR.2014.81 10.1109/IIPHDW.2018.8388338 10.1109/ICCV.2017.244 10.1109/TMI.2019.2901750 10.1038/s41591-018-0310-5 10.1109/3DV.2016.79 10.1016/j.neucom.2018.09.013 10.1007/978-3-030-11726-9_32 10.1002/mp.12155 10.1007/978-3-319-46723-8_55 10.1162/neco.2006.18.7.1527 10.1007/978-3-642-40763-5_31 10.1007/978-3-319-66179-7_65 10.1109/TPAMI.2016.2577031 10.1007/978-3-319-46723-8_28 10.1007/978-3-319-24574-4_28 10.1186/s40537-019-0197-0 10.1186/s13550-017-0260-9 10.1007/978-3-319-46723-8_49 10.1371/journal.pone.0196846 10.1007/978-3-030-33843-5_9 10.1016/j.neuroimage.2018.03.045 10.1145/1390156.1390294 10.1038/s41598-017-10649-8 10.1016/j.procs.2015.08.057 10.1109/TMI.2016.2538465 10.1016/j.cviu.2019.04.007 10.1109/TMI.2019.2927182 10.1001/jama.2016.17216 10.1007/978-3-319-59050-9_12 10.1186/s12938-018-0544-y |
| ContentType | Journal Article |
| Copyright | Copyright © 2019 by the Korean Spinal Neurosurgery Society 2019 |
| Copyright_xml | – notice: Copyright © 2019 by the Korean Spinal Neurosurgery Society 2019 |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA ACYCR |
| DOI | 10.14245/ns.1938396.198 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals Korean Citation Index |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2586-6591 |
| EndPage | 668 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_6419558 oai_doaj_org_article_f36bb58d19cf4ad3b917e9187b7dc9cf PMC6945006 31905454 10_14245_ns_1938396_198 |
| Genre | Journal Article |
| GroupedDBID | AAYXX ABDBF ADBBV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION GROUPED_DOAJ HYE PGMZT RPM M~E NPM 7X8 5PM ACYCR |
| ID | FETCH-LOGICAL-c493t-ae37bd232b647c46a2fcd1e91139c9a3735bcd42e2433887c4cf8cb8457838e83 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 201 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000504871100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2586-6583 |
| IngestDate | Sun Mar 09 07:55:12 EDT 2025 Fri Oct 03 12:36:47 EDT 2025 Thu Aug 21 14:23:03 EDT 2025 Sun Nov 09 11:51:05 EST 2025 Thu Jan 02 22:32:29 EST 2025 Sat Nov 29 03:16:08 EST 2025 Tue Nov 18 20:41:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Deep learning Radiology Precision medicine Artificial intelligence Machine learning |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c493t-ae37bd232b647c46a2fcd1e91139c9a3735bcd42e2433887c4cf8cb8457838e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 https://doi.org/10.14245/ns.1938396.198 |
| ORCID | 0000-0002-3438-2217 |
| OpenAccessLink | https://doaj.org/article/f36bb58d19cf4ad3b917e9187b7dc9cf |
| PMID | 31905454 |
| PQID | 2334247686 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_6419558 doaj_primary_oai_doaj_org_article_f36bb58d19cf4ad3b917e9187b7dc9cf pubmedcentral_primary_oai_pubmedcentral_nih_gov_6945006 proquest_miscellaneous_2334247686 pubmed_primary_31905454 crossref_primary_10_14245_ns_1938396_198 crossref_citationtrail_10_14245_ns_1938396_198 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-01 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Korea (South) |
| PublicationPlace_xml | – name: Korea (South) |
| PublicationTitle | Neurospine |
| PublicationTitleAlternate | Neurospine |
| PublicationYear | 2019 |
| Publisher | Korean Spinal Neurosurgery Society 대한척추신경외과학회 |
| Publisher_xml | – name: Korean Spinal Neurosurgery Society – name: 대한척추신경외과학회 |
| References | ref13 ref57 ref56 ref15 ref59 ref53 ref52 ref55 ref10 ref54 Batson (ref84) Amari (ref14) 2003 ref17 Drucker (ref12) 1997 ref16 ref19 Goodfellow (ref58) 2014 ref18 ref93 ref92 ref91 ref90 ref46 ref45 ref89 Li (ref79) 2017 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 Oktay (ref47) Hao (ref34) 2006 ref49 Murphy (ref1) 2012 ref8 ref7 ref3 ref6 ref5 ref82 ref40 ref35 ref78 ref37 ref36 ref31 Anirudh (ref51) 2016 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref39 ref38 Kohl (ref50) 2018 Yoo (ref80) Mirsky (ref60) Radford (ref73) ref70 ref72 Lee (ref63) 2019 ref24 Le (ref48) ref68 Jain (ref81) 2009 ref23 ref67 ref26 Engelhardt (ref71) 2018 ref25 Andreini (ref69) Rajpurkar (ref4) ref20 ref22 ref66 ref21 ref65 Altman (ref9) 1992 Bi (ref64) 2017 Vincent (ref83) 2010 ref28 ref27 ref29 ref62 ref61 Schneider (ref11) 2010 32615703 - Neurospine. 2020 Jun;17(2):471-472 |
| References_xml | – volume-title: Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning ident: ref4 – ident: ref77 doi: 10.1109/CVPR.2016.265 – ident: ref10 doi: 10.1371/journal.pone.0207772 – ident: ref49 doi: 10.1007/s11042-017-5581-1 – ident: ref89 doi: 10.1109/CVPR.2018.00333 – ident: ref93 doi: 10.1038/ncomms5006 – ident: ref29 doi: 10.1109/CVPR.2016.91 – ident: ref38 doi: 10.1007/978-3-319-24574-4_1 – volume-title: Multitask classification and segmentation for cancer diagnosis in mammography ident: ref48 – start-page: 2672 volume-title: Generative adversarial nets year: 2014 ident: ref58 – ident: ref56 doi: 10.1109/ICASSP.2018.8461430 – ident: ref54 doi: 10.1109/ACCESS.2017.2788044 – volume-title: Unsupervised representation learning with deep convolutional generative adversarial networks ident: ref73 – start-page: 978532 volume-title: Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data year: 2016 ident: ref51 – ident: ref68 doi: 10.1016/j.media.2018.07.001 – ident: ref75 doi: 10.1016/j.media.2019.01.010 – volume-title: Attention u-net: Learning where to look for the pancreas ident: ref47 – ident: ref7 doi: 10.1001/jamainternmed.2015.5231 – ident: ref36 doi: 10.1016/S1350-4533(03)00137-1 – start-page: 769 volume-title: Natural image denoising with convolutional networks year: 2009 ident: ref81 – ident: ref15 doi: 10.1145/3065386 – ident: ref32 doi: 10.1109/ICCV.2017.324 – ident: ref31 doi: 10.1007/978-3-319-46448-0_2 – volume-title: A two stage GAN for high resolution retinal image generation and segmentation ident: ref69 doi: 10.3390/electronics11010060 – ident: ref37 doi: 10.1109/TIP.2005.852470 – start-page: 776 volume-title: Linear regression analysis: part 14 of a series on evaluation of scientific publications year: 2010 ident: ref11 – ident: ref18 doi: 10.1148/radiol.2017162326 – ident: ref86 doi: 10.1109/CVPR.2017.632 – ident: ref88 doi: 10.1109/CVPR.2018.00916 – year: 2006 ident: ref34 – start-page: 2487 volume-title: CollaGAN: Collaborative GAN for missing image data imputation year: 2019 ident: ref63 – ident: ref23 doi: 10.1038/s41598-019-42276-w – ident: ref55 doi: 10.1038/s41591-018-0272-7 – start-page: 43 year: 2017 ident: ref64 – ident: ref76 doi: 10.1145/383259.383295 – ident: ref61 doi: 10.1109/ISBI.2018.8363678 – start-page: 175 volume-title: An introduction to kernel and nearest-neighbor nonparametric regression year: 1992 ident: ref9 – start-page: 747 volume-title: Improving surgical training phantoms by hyperrealism: deep unpaired image-to-image translation from real surgeries year: 2018 ident: ref71 – ident: ref21 doi: 10.1145/1553374.1553380 – ident: ref91 doi: 10.1007/978-3-319-68127-6_2 – ident: ref39 doi: 10.1109/TMI.2016.2528821 – ident: ref78 doi: 10.1109/CVPR.2018.00858 – ident: ref30 doi: 10.1109/CVPR.2017.690 – ident: ref70 doi: 10.1109/ICAIBD.2018.8396171 – ident: ref40 doi: 10.1109/CVPR.2015.7298965 – ident: ref2 doi: 10.1109/CVPR.2016.90 – ident: ref13 doi: 10.1021/ci0341161 – ident: ref92 doi: 10.1056/NEJMp1500523 – volume-title: Photorealistic style transfer via wavelet transforms ident: ref80 doi: 10.1109/ICCV.2019.00913 – ident: ref20 doi: 10.1038/nature21056 – ident: ref27 doi: 10.1109/ICCV.2015.169 – ident: ref6 doi: 10.1056/NEJMoa066099 – ident: ref25 doi: 10.1038/s41598-017-05848-2 – ident: ref22 doi: 10.1038/s41598-019-51832-3 – ident: ref26 doi: 10.1109/CVPR.2014.81 – ident: ref17 doi: 10.1109/IIPHDW.2018.8388338 – ident: ref87 doi: 10.1109/ICCV.2017.244 – ident: ref62 doi: 10.1109/TMI.2019.2901750 – ident: ref8 doi: 10.1038/s41591-018-0310-5 – start-page: 6965 volume-title: A probabilistic unet for segmentation of ambiguous images year: 2018 ident: ref50 – year: 2012 ident: ref1 – ident: ref45 doi: 10.1109/3DV.2016.79 – ident: ref57 doi: 10.1016/j.neucom.2018.09.013 – ident: ref46 doi: 10.1007/978-3-030-11726-9_32 – ident: ref85 doi: 10.1002/mp.12155 – start-page: 155 volume-title: Support vector regression machines year: 1997 ident: ref12 – ident: ref42 doi: 10.1007/978-3-319-46723-8_55 – ident: ref3 doi: 10.1162/neco.2006.18.7.1527 – start-page: 3371 volume-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion year: 2010 ident: ref83 – volume-title: Noise2self: Blind denoising by self-supervision ident: ref84 – ident: ref43 doi: 10.1007/978-3-642-40763-5_31 – volume-title: CT-GAN: malicious tampering of 3D medical imagery using deep learning ident: ref60 – year: 2003 ident: ref14 – ident: ref53 doi: 10.1007/978-3-319-66179-7_65 – ident: ref28 doi: 10.1109/TPAMI.2016.2577031 – ident: ref52 doi: 10.1007/978-3-319-46723-8_28 – ident: ref41 doi: 10.1007/978-3-319-24574-4_28 – ident: ref72 doi: 10.1186/s40537-019-0197-0 – ident: ref16 doi: 10.1186/s13550-017-0260-9 – ident: ref44 doi: 10.1007/978-3-319-46723-8_49 – ident: ref66 doi: 10.1371/journal.pone.0196846 – ident: ref90 doi: 10.1007/978-3-030-33843-5_9 – ident: ref65 doi: 10.1016/j.neuroimage.2018.03.045 – ident: ref82 doi: 10.1145/1390156.1390294 – ident: ref24 doi: 10.1038/s41598-017-10649-8 – ident: ref33 doi: 10.1016/j.procs.2015.08.057 – ident: ref35 doi: 10.1109/TMI.2016.2538465 – ident: ref59 doi: 10.1016/j.cviu.2019.04.007 – start-page: 386 volume-title: Universal style transfer via feature transforms year: 2017 ident: ref79 – ident: ref67 doi: 10.1109/TMI.2019.2927182 – ident: ref19 doi: 10.1001/jama.2016.17216 – ident: ref74 doi: 10.1007/978-3-319-59050-9_12 – ident: ref5 doi: 10.1186/s12938-018-0544-y – reference: 32615703 - Neurospine. 2020 Jun;17(2):471-472 |
| SSID | ssib044754331 ssj0002002413 |
| Score | 2.5309181 |
| SecondaryResourceType | review_article |
| Snippet | The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with... |
| SourceID | nrf doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 657 |
| SubjectTerms | artificial intelligence deep learning machine learning precision medicine radiology Review 신경외과학 |
| Title | Deep Learning in Medical Imaging |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31905454 https://www.proquest.com/docview/2334247686 https://pubmed.ncbi.nlm.nih.gov/PMC6945006 https://doaj.org/article/f36bb58d19cf4ad3b917e9187b7dc9cf https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002542239 |
| Volume | 16 |
| WOSCitedRecordID | wos000504871100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Neurospine, 2019, 16(4), , pp.657-668 |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2586-6591 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002002413 issn: 2586-6583 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2586-6591 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044754331 issn: 2586-6583 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VqgcuCESB8KhC1QOXUBK_xkegreiBqgeQ9mbZY6esCtlqd8uxv73jJF3toiIuXGIpsRV7xvZ8E0--ATj4YNpgg1CVkCJVknysAgOLCpEwEhs0haFPNmHOznAysedrqb5yTNhADzwI7rAVOgSFsbbUSh9FYP8i2RpNMJH4Xt59GfWsOVM8kzKLXf4VaPW1JYciyD5XcqNQV2x2xcjzk0_-Dlm_DGQYK2guccNE9Uz-bHi6eXsfCP0zlnLNOJ08hkcjqiw_DqN5AlupewrlUUpX5UigelFOu3I8lSlPf_W5iXbh-8nxt89fqjEhQkXSimXlkzAhMgYKWhqS2jctxZqlwTCOrBdGqEBRNqnhwfPuQZJapICSl6XAhOIZbHezLr2AsvY66sajSFkA1NgoNdVt8qgChiYU8P5OBo5GtvCctOKny15DbuO6hRuFxiUW8G7V4Gogyvh71U9ZqKtqmeG6v8F6d6Pe3b_0XsA-q8Rd0rRvn8uLmbucO_YDTp2WtVWK3_T2TmOOl00-C_Fdml0vXCME94x9LV3A80GDq_7wrsRAVskCzIZuNzq8-aSb_uipubWVivexl_9jhK_gIaMzO8TOvIbt5fw6vYEd-r2cLuZ78MBMcK-f9Xz9enN8C7jeAlg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+in+Medical+Imaging&rft.jtitle=Neurospine&rft.au=Kim%2C+Mingyu&rft.au=Yun%2C+Jihye&rft.au=Cho%2C+Yongwon&rft.au=Shin%2C+Keewon&rft.date=2019-12-01&rft.issn=2586-6583&rft.volume=16&rft.issue=4&rft.spage=657&rft_id=info:doi/10.14245%2Fns.1938396.198&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2586-6583&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2586-6583&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2586-6583&client=summon |