Namdinator – automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps

Model building into experimental maps is a key element of structural biology, but can be both time consuming and error prone for low-resolution maps. Here we present Namdinator , an easy-to-use tool that enables the user to run a molecular dynamics flexible fitting simulation followed by real-space...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IUCrJ Ročník 6; číslo 4; s. 526 - 531
Hlavní autori: Kidmose, Rune Thomas, Juhl, Jonathan, Nissen, Poul, Boesen, Thomas, Karlsen, Jesper Lykkegaard, Pedersen, Bjørn Panyella
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England International Union of Crystallography 01.07.2019
Predmet:
ISSN:2052-2525, 2052-2525
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Model building into experimental maps is a key element of structural biology, but can be both time consuming and error prone for low-resolution maps. Here we present Namdinator , an easy-to-use tool that enables the user to run a molecular dynamics flexible fitting simulation followed by real-space refinement in an automated manner through a pipeline system. Namdinator will modify an atomic model to fit within cryo-EM or crystallography density maps, and can be used advantageously for both the initial fitting of models, and for a geometrical optimization step to correct outliers, clashes and other model problems. We have benchmarked Namdinator against 39 deposited cryo-EM models and maps, and observe model improvements in 34 of these cases (87%). Clashes between atoms were reduced, and the model-to-map fit and overall model geometry were improved, in several cases substantially. We show that Namdinator is able to model large-scale conformational changes compared to the starting model. Namdinator is a fast and easy tool for structural model builders at all skill levels. Namdinator is available as a web service (https://namdinator.au.dk), or it can be run locally as a command-line tool.
AbstractList A pipeline tool called Namdinator is presented that enables the user to run a molecular dynamics flexible fitting (MDFF) simulation in a fully automated manner, online or locally. This provides a fast and easy way to create suitable initial models for both cryo-EM and crystallography, and help fix errors in the final steps of model building. Model building into experimental maps is a key element of structural biology, but can be both time consuming and error prone for low-resolution maps. Here we present Namdinator, an easy-to-use tool that enables the user to run a molecular dynamics flexible fitting simulation followed by real-space refinement in an automated manner through a pipeline system. Namdinator will modify an atomic model to fit within cryo-EM or crystallography density maps, and can be used advantageously for both the initial fitting of models, and for a geometrical optimization step to correct outliers, clashes and other model problems. We have benchmarked Namdinator against 39 deposited cryo-EM models and maps, and observe model improvements in 34 of these cases (87%). Clashes between atoms were reduced, and the model-to-map fit and overall model geometry were improved, in several cases substantially. We show that Namdinator is able to model large-scale conformational changes compared to the starting model. Namdinator is a fast and easy tool for structural model builders at all skill levels. Namdinator is available as a web service (https://namdinator.au.dk), or it can be run locally as a command-line tool.
Model building into experimental maps is a key element of structural biology, but can be both time consuming and error prone for low-resolution maps. Here we present Namdinator, an easy-to-use tool that enables the user to run a molecular dynamics flexible fitting simulation followed by real-space refinement in an automated manner through a pipeline system. Namdinator will modify an atomic model to fit within cryo-EM or crystallography density maps, and can be used advantageously for both the initial fitting of models, and for a geometrical optimization step to correct outliers, clashes and other model problems. We have benchmarked Namdinator against 39 deposited cryo-EM models and maps, and observe model improvements in 34 of these cases (87%). Clashes between atoms were reduced, and the model-to-map fit and overall model geometry were improved, in several cases substantially. We show that Namdinator is able to model large-scale conformational changes compared to the starting model. Namdinator is a fast and easy tool for structural model builders at all skill levels. Namdinator is available as a web service (https://namdinator.au.dk), or it can be run locally as a command-line tool.Model building into experimental maps is a key element of structural biology, but can be both time consuming and error prone for low-resolution maps. Here we present Namdinator, an easy-to-use tool that enables the user to run a molecular dynamics flexible fitting simulation followed by real-space refinement in an automated manner through a pipeline system. Namdinator will modify an atomic model to fit within cryo-EM or crystallography density maps, and can be used advantageously for both the initial fitting of models, and for a geometrical optimization step to correct outliers, clashes and other model problems. We have benchmarked Namdinator against 39 deposited cryo-EM models and maps, and observe model improvements in 34 of these cases (87%). Clashes between atoms were reduced, and the model-to-map fit and overall model geometry were improved, in several cases substantially. We show that Namdinator is able to model large-scale conformational changes compared to the starting model. Namdinator is a fast and easy tool for structural model builders at all skill levels. Namdinator is available as a web service (https://namdinator.au.dk), or it can be run locally as a command-line tool.
Model building into experimental maps is a key element of structural biology, but can be both time consuming and error prone for low-resolution maps. Here we present Namdinator, an easy-to-use tool that enables the user to run a molecular dynamics flexible fitting simulation followed by real-space refinement in an automated manner through a pipeline system. Namdinator will modify an atomic model to fit within cryo-EM or crystallography density maps, and can be used advantageously for both the initial fitting of models, and for a geometrical optimization step to correct outliers, clashes and other model problems. We have benchmarked Namdinator against 39 deposited cryo-EM models and maps, and observe model improvements in 34 of these cases (87%). Clashes between atoms were reduced, and the model-to-map fit and overall model geometry were improved, in several cases substantially. We show that Namdinator is able to model large-scale conformational changes compared to the starting model. Namdinator is a fast and easy tool for structural model builders at all skill levels. Namdinator is available as a web service (https://namdinator.au.dk), or it can be run locally as a command-line tool.
Model building into experimental maps is a key element of structural biology, but can be both time consuming and error prone for low-resolution maps. Here we present , an easy-to-use tool that enables the user to run a molecular dynamics flexible fitting simulation followed by real-space refinement in an automated manner through a pipeline system. will modify an atomic model to fit within cryo-EM or crystallography density maps, and can be used advantageously for both the initial fitting of models, and for a geometrical optimization step to correct outliers, clashes and other model problems. We have benchmarked against 39 deposited cryo-EM models and maps, and observe model improvements in 34 of these cases (87%). Clashes between atoms were reduced, and the model-to-map fit and overall model geometry were improved, in several cases substantially. We show that is able to model large-scale conformational changes compared to the starting model. is a fast and easy tool for structural model builders at all skill levels. is available as a web service (https://namdinator.au.dk), or it can be run locally as a command-line tool.
Model building into experimental maps is a key element of structural biology, but can be both time consuming and error prone for low-resolution maps. Here we present Namdinator , an easy-to-use tool that enables the user to run a molecular dynamics flexible fitting simulation followed by real-space refinement in an automated manner through a pipeline system. Namdinator will modify an atomic model to fit within cryo-EM or crystallography density maps, and can be used advantageously for both the initial fitting of models, and for a geometrical optimization step to correct outliers, clashes and other model problems. We have benchmarked Namdinator against 39 deposited cryo-EM models and maps, and observe model improvements in 34 of these cases (87%). Clashes between atoms were reduced, and the model-to-map fit and overall model geometry were improved, in several cases substantially. We show that Namdinator is able to model large-scale conformational changes compared to the starting model. Namdinator is a fast and easy tool for structural model builders at all skill levels. Namdinator is available as a web service (https://namdinator.au.dk), or it can be run locally as a command-line tool.
Author Karlsen, Jesper Lykkegaard
Juhl, Jonathan
Nissen, Poul
Boesen, Thomas
Pedersen, Bjørn Panyella
Kidmose, Rune Thomas
Author_xml – sequence: 1
  givenname: Rune Thomas
  orcidid: 0000-0001-9699-2494
  surname: Kidmose
  fullname: Kidmose, Rune Thomas
– sequence: 2
  givenname: Jonathan
  orcidid: 0000-0001-5076-0321
  surname: Juhl
  fullname: Juhl, Jonathan
– sequence: 3
  givenname: Poul
  orcidid: 0000-0003-0948-6628
  surname: Nissen
  fullname: Nissen, Poul
– sequence: 4
  givenname: Thomas
  orcidid: 0000-0002-5633-6844
  surname: Boesen
  fullname: Boesen, Thomas
– sequence: 5
  givenname: Jesper Lykkegaard
  orcidid: 0000-0002-3146-2414
  surname: Karlsen
  fullname: Karlsen, Jesper Lykkegaard
– sequence: 6
  givenname: Bjørn Panyella
  orcidid: 0000-0001-7860-7230
  surname: Pedersen
  fullname: Pedersen, Bjørn Panyella
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31316797$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9u1DAQxi1URMvSB-CCLHHhEvCfOI4vSKgqUKnAAThHE9vZeuXEi-2g7o0Db8Ab8iQ43VK1ReLk0fj3fZ4Zz2N0MIXJIvSUkpeUEvnqMyOCMcEEVYTIhqoH6GhJVUvu4FZ8iI5T2hBCKGVC1vQROuSU00YqeYR-foTRuAlyiPj3j18Y5hxGyE7jMXirZw8Rm90Eo9MJD95eut5bPLic3bTGYcApx1nnOYIvCmN9wm7KAeu4C9XpBwyTWeKUwfuwjrC92GF7ubXRjXbKiwi26Ql6OIBP9vj6XKGvb0-_nLyvzj-9Ozt5c17pWvFcgahbrUHaVjHOyGCZ4H0t6tpazkzTMz1AS8BQTqCWUmpeA221JVIKM4DlK3S29zUBNt221ABx1wVw3VUixHUHsfTubdcw01MpiCBM1AJIL5XSTQNcGC14eXiFXu-9tnM_WqNLN2UGd0zv3kzuoluH713TkLa5MnhxbRDDt9mm3I0uaes9TDbMqSt_qxSlrWgK-vweuglznMqoClUr1XIh20I9u13RTSl_P7sAdA_oGFKKdrhBKOmWner-2amikfc02uWyH2Fpyvn_KP8AU1HR0A
CitedBy_id crossref_primary_10_1371_journal_ppat_1010583
crossref_primary_10_1016_j_str_2020_12_008
crossref_primary_10_1038_s41467_025_63451_w
crossref_primary_10_1038_s41586_020_2772_0
crossref_primary_10_1002_wcms_1542
crossref_primary_10_1016_j_molcel_2022_04_027
crossref_primary_10_1042_BST20210674
crossref_primary_10_1016_j_celrep_2025_116061
crossref_primary_10_1038_s41594_022_00912_6
crossref_primary_10_1073_pnas_2312276120
crossref_primary_10_1371_journal_pcbi_1013367
crossref_primary_10_1038_s41467_024_47174_y
crossref_primary_10_7554_eLife_92307
crossref_primary_10_1038_s41586_025_08896_1
crossref_primary_10_1038_s41594_025_01543_3
crossref_primary_10_1126_science_abk0154
crossref_primary_10_1038_s44298_025_00112_1
crossref_primary_10_1038_s41586_024_07601_y
crossref_primary_10_7554_eLife_86784
crossref_primary_10_1038_s41586_024_07814_1
crossref_primary_10_1038_s41586_019_1344_7
crossref_primary_10_1038_s41467_022_31068_y
crossref_primary_10_15252_embj_2022112351
crossref_primary_10_1016_j_str_2022_12_014
crossref_primary_10_7554_eLife_84427_3
crossref_primary_10_1038_s41422_023_00778_3
crossref_primary_10_7554_eLife_52983
crossref_primary_10_1038_s41586_024_08337_5
crossref_primary_10_1371_journal_pone_0291131
crossref_primary_10_1016_j_cell_2024_01_005
crossref_primary_10_1038_s41467_024_48312_2
crossref_primary_10_1038_s41594_022_00799_3
crossref_primary_10_1038_s41594_024_01261_2
crossref_primary_10_1038_s41477_025_02056_z
crossref_primary_10_1016_j_neuron_2021_02_009
crossref_primary_10_1126_science_abg3074
crossref_primary_10_3389_fimmu_2023_1111385
crossref_primary_10_1038_s41594_020_00517_x
crossref_primary_10_1093_nar_gkae1111
crossref_primary_10_1016_j_molcel_2021_06_019
crossref_primary_10_1073_pnas_2115849118
crossref_primary_10_1016_j_cell_2023_09_007
crossref_primary_10_1016_j_isci_2025_113314
crossref_primary_10_1038_s41467_022_33174_3
crossref_primary_10_1038_s41594_019_0364_1
crossref_primary_10_1371_journal_pgen_1011749
crossref_primary_10_15252_embj_2018100825
crossref_primary_10_7554_eLife_80901
crossref_primary_10_7554_eLife_92307_3
crossref_primary_10_1038_s41586_023_06599_z
crossref_primary_10_1038_s41467_021_27881_6
crossref_primary_10_1093_nar_gkac625
crossref_primary_10_1038_s44318_024_00081_w
crossref_primary_10_1038_s41589_023_01326_1
crossref_primary_10_1016_j_cell_2024_06_041
crossref_primary_10_1038_s41467_020_19456_8
crossref_primary_10_1016_j_jsb_2020_107546
crossref_primary_10_1016_j_str_2023_05_013
crossref_primary_10_1038_s41467_024_51754_3
crossref_primary_10_1073_pnas_2419732121
crossref_primary_10_1038_s41467_020_20321_x
crossref_primary_10_15252_embj_2021110411
crossref_primary_10_1093_nar_gkaa456
crossref_primary_10_1016_j_jbc_2025_110686
crossref_primary_10_15252_embj_2022111857
crossref_primary_10_1038_s41422_023_00869_1
crossref_primary_10_1016_j_molcel_2022_03_007
crossref_primary_10_1038_s41594_021_00698_z
crossref_primary_10_1038_s41467_022_28079_0
crossref_primary_10_1038_s41586_020_2665_2
crossref_primary_10_1016_j_cell_2021_05_012
crossref_primary_10_1038_s41467_024_48251_y
crossref_primary_10_1038_s41467_020_19482_6
crossref_primary_10_1126_sciadv_adv7296
crossref_primary_10_1038_s41467_024_53773_6
crossref_primary_10_1016_j_molcel_2022_08_012
crossref_primary_10_1038_s41467_024_46864_x
crossref_primary_10_1093_nar_gkaa429
crossref_primary_10_1371_journal_ppat_1011174
crossref_primary_10_1038_s41467_020_19785_8
crossref_primary_10_7554_eLife_84617
crossref_primary_10_1016_j_cub_2023_11_057
crossref_primary_10_1126_science_abe9403
crossref_primary_10_1128_jvi_01376_24
crossref_primary_10_1073_pnas_2220542120
crossref_primary_10_1186_s12951_025_03243_y
crossref_primary_10_1073_pnas_2100198118
crossref_primary_10_1002_pro_5073
crossref_primary_10_1016_j_jmb_2022_167458
crossref_primary_10_1038_s41594_022_00729_3
crossref_primary_10_1038_s41477_021_00992_0
crossref_primary_10_1038_s41586_024_07813_2
crossref_primary_10_1038_s41594_023_01205_2
crossref_primary_10_7554_eLife_89755
crossref_primary_10_1016_j_str_2023_09_009
crossref_primary_10_1038_s41586_021_03650_9
crossref_primary_10_1038_s41467_020_19847_x
crossref_primary_10_1016_j_devcel_2020_04_019
crossref_primary_10_1038_s42003_021_02222_x
crossref_primary_10_1038_s41586_025_08773_x
crossref_primary_10_1038_s41586_022_04829_4
crossref_primary_10_1038_s41594_020_0478_5
crossref_primary_10_1016_j_seta_2023_103370
crossref_primary_10_1038_s41594_024_01243_4
crossref_primary_10_1038_s41467_020_18874_y
crossref_primary_10_1038_s41586_020_2087_1
crossref_primary_10_1038_s41586_022_04883_y
crossref_primary_10_3390_ijms241914785
crossref_primary_10_1016_j_molcel_2020_06_032
crossref_primary_10_1016_j_molcel_2020_09_008
crossref_primary_10_1038_s41467_022_34997_w
crossref_primary_10_1038_s41467_024_45242_x
crossref_primary_10_1038_s41467_022_30673_1
crossref_primary_10_1038_s41467_023_36590_1
crossref_primary_10_1038_s41467_024_55171_4
crossref_primary_10_1038_s41586_021_03555_7
crossref_primary_10_1016_j_molcel_2021_07_005
crossref_primary_10_1038_s41467_022_31748_9
crossref_primary_10_1126_science_adl1356
crossref_primary_10_1038_s41594_022_00905_5
crossref_primary_10_1038_s41586_023_06691_4
crossref_primary_10_1016_j_str_2020_09_001
crossref_primary_10_1038_s41594_019_0359_y
crossref_primary_10_1038_s41586_024_07287_2
crossref_primary_10_1038_s41467_025_56118_z
crossref_primary_10_1073_pnas_2417370122
crossref_primary_10_7554_eLife_74175
crossref_primary_10_1038_s41596_022_00757_9
crossref_primary_10_1038_s41563_025_02295_7
crossref_primary_10_1093_nar_gkaf119
crossref_primary_10_1038_s41594_023_01010_x
crossref_primary_10_1038_s41467_022_33228_6
crossref_primary_10_1038_s41586_021_03906_4
crossref_primary_10_1038_s41467_024_48759_3
crossref_primary_10_7554_eLife_86784_3
crossref_primary_10_1038_s41586_024_07347_7
crossref_primary_10_1038_s41467_025_56796_9
crossref_primary_10_1073_pnas_2315018121
crossref_primary_10_1038_s41477_025_01984_0
crossref_primary_10_1016_j_cell_2024_02_013
crossref_primary_10_1038_s41467_025_59133_2
crossref_primary_10_1016_j_molcel_2024_06_013
crossref_primary_10_1038_s41586_022_05255_2
crossref_primary_10_1016_j_cell_2022_11_014
crossref_primary_10_1038_s44319_025_00392_x
crossref_primary_10_1016_j_jbc_2022_102357
crossref_primary_10_1016_j_ijbiomac_2020_01_282
crossref_primary_10_1016_j_str_2023_08_014
crossref_primary_10_7554_eLife_84427
crossref_primary_10_1016_j_molcel_2023_05_034
crossref_primary_10_1073_pnas_2502425122
crossref_primary_10_1038_s41467_025_60232_3
crossref_primary_10_1126_science_abe8526
crossref_primary_10_1038_s41564_019_0530_6
crossref_primary_10_1038_s41467_020_20735_7
crossref_primary_10_1016_j_jsb_2023_107995
crossref_primary_10_1038_s41586_019_1896_6
crossref_primary_10_1038_s41467_023_40483_8
crossref_primary_10_1038_s41467_023_40422_7
crossref_primary_10_1016_j_cell_2019_08_038
crossref_primary_10_1126_science_abq2844
crossref_primary_10_1038_s41467_022_32004_w
crossref_primary_10_1038_s41564_022_01235_4
crossref_primary_10_1038_s41467_024_55772_z
crossref_primary_10_1038_s41467_020_15517_0
crossref_primary_10_1038_s41467_022_33504_5
crossref_primary_10_7554_eLife_81977
crossref_primary_10_1021_acsinfecdis_5c00368
crossref_primary_10_1126_science_ady0241
crossref_primary_10_1093_nar_gkac1232
crossref_primary_10_1073_pnas_2315575121
crossref_primary_10_1038_s41586_020_2696_8
crossref_primary_10_1038_s41594_020_0468_7
crossref_primary_10_26508_lsa_202201796
crossref_primary_10_1038_s41586_023_06746_6
crossref_primary_10_7554_eLife_89755_4
crossref_primary_10_3390_molecules25010082
crossref_primary_10_1038_s41586_023_06140_2
crossref_primary_10_1038_s41467_023_36604_y
crossref_primary_10_1038_s41467_025_57729_2
crossref_primary_10_1073_pnas_2110936119
crossref_primary_10_1038_s41467_025_58410_4
crossref_primary_10_1038_s41586_022_04470_1
crossref_primary_10_1128_jvi_00929_23
crossref_primary_10_1038_s41467_022_31564_1
crossref_primary_10_15252_embj_2020106807
crossref_primary_10_1038_s41467_022_32690_6
crossref_primary_10_1107_S205225252401217X
crossref_primary_10_1038_s41586_020_2088_0
crossref_primary_10_1038_s41467_022_30402_8
crossref_primary_10_1016_j_molcel_2024_01_023
crossref_primary_10_7554_eLife_87167
crossref_primary_10_1038_s41467_022_33698_8
crossref_primary_10_1016_j_molcel_2020_07_013
crossref_primary_10_1038_s41586_023_05723_3
crossref_primary_10_1038_s42003_024_06437_6
crossref_primary_10_1016_j_jbc_2022_102553
crossref_primary_10_1038_s41594_024_01218_5
crossref_primary_10_1038_s41467_020_17791_4
crossref_primary_10_1038_s41467_024_47506_y
crossref_primary_10_1038_s41594_023_00992_y
crossref_primary_10_1016_j_molcel_2021_05_032
crossref_primary_10_15252_embj_2022112440
crossref_primary_10_1016_j_jmb_2024_168747
crossref_primary_10_1038_s41467_020_18243_9
crossref_primary_10_26508_lsa_202000858
crossref_primary_10_1016_j_cell_2024_08_044
crossref_primary_10_1038_s41467_020_14735_w
crossref_primary_10_1111_jnc_16179
crossref_primary_10_1016_j_molcel_2020_07_008
crossref_primary_10_1038_s41589_025_01981_6
crossref_primary_10_7554_eLife_87167_3
crossref_primary_10_1038_s41467_024_49693_0
crossref_primary_10_1038_s41586_023_06690_5
crossref_primary_10_15252_embr_202153597
crossref_primary_10_1126_science_adn9560
crossref_primary_10_1038_s41594_023_01190_6
crossref_primary_10_1038_s41594_025_01665_8
Cites_doi 10.1016/0263-7855(96)00018-5
10.1107/S2052252519000277
10.1016/0022-2836(92)90582-5
10.1126/science.1251652
10.1016/j.cell.2015.12.055
10.1107/S2059798318009324
10.1016/S0969-2126(96)00018-4
10.1016/j.str.2012.08.007
10.1002/jcc.20289
10.1002/jcc.23354
10.1021/jp061976m
10.1038/nature24046
10.1006/jmbi.2002.5438
10.1107/S0907444909052925
10.1021/acs.jctc.7b00125
10.1016/j.str.2017.07.012
10.1039/C4FD00005F
10.1021/ct200563j
10.1016/j.ymeth.2009.04.005
10.1002/jcc.20084
10.1038/nature24627
10.1016/j.str.2008.03.005
ContentType Journal Article
Copyright 2019. This article is published under https://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Rune Thomas Kidmose et al. 2019 2019
Copyright_xml – notice: 2019. This article is published under https://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Rune Thomas Kidmose et al. 2019 2019
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
EHMNL
HCIFZ
JG9
KB.
L7M
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1107/S2052252519007619
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
UK & Ireland Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
UK & Ireland Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Namdinator
EISSN 2052-2525
EndPage 531
ExternalDocumentID oai_doaj_org_article_62db1750502545a0b799c66a35dc5325
PMC6608625
31316797
10_1107_S2052252519007619
Genre Journal Article
GrantInformation_xml – fundername: Aarhus Institute of Advanced Studies, Aarhus Universitet
– fundername: H2020 European Research Council
  grantid: 637372
– fundername: Natur og Univers, Det Frie Forskningsråd
  grantid: DFF-4002-00052
GroupedDBID 5VS
8FE
8FG
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
D1I
EBS
EHMNL
EJD
GROUPED_DOAJ
H13
HCIFZ
HYE
IAO
ITC
KB.
KQ8
M48
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RCJ
ROL
RPM
ZBA
3V.
NPM
7SR
7U5
8BQ
8FD
AZQEC
DWQXO
JG9
L7M
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c493t-a548cca7e892320fe253b4544ee32d6b2cfa80ad130a4777c34a18ce0775dfae3
IEDL.DBID KB.
ISICitedReferencesCount 245
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473692700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2052-2525
IngestDate Tue Oct 14 18:58:03 EDT 2025
Tue Nov 04 02:01:32 EST 2025
Sun Nov 09 10:24:14 EST 2025
Fri Jul 25 11:59:38 EDT 2025
Thu Jan 02 23:04:08 EST 2025
Sat Nov 29 01:43:45 EST 2025
Tue Nov 18 21:47:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords crystallography
MDFF
automation
web services
molecular dynamics flexible fitting
flexible fitting
molecular dynamics
cryo-EM
model-fitting
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-a548cca7e892320fe253b4544ee32d6b2cfa80ad130a4777c34a18ce0775dfae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5633-6844
0000-0001-7860-7230
0000-0003-0948-6628
0000-0001-9699-2494
0000-0001-5076-0321
0000-0002-3146-2414
OpenAccessLink https://www.proquest.com/docview/2249983578?pq-origsite=%requestingapplication%
PMID 31316797
PQID 2249983578
PQPubID 2035043
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_62db1750502545a0b799c66a35dc5325
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6608625
proquest_miscellaneous_2259911856
proquest_journals_2249983578
pubmed_primary_31316797
crossref_primary_10_1107_S2052252519007619
crossref_citationtrail_10_1107_S2052252519007619
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chester
PublicationTitle IUCrJ
PublicationTitleAlternate IUCrJ
PublicationYear 2019
Publisher International Union of Crystallography
Publisher_xml – name: International Union of Crystallography
References Pettersen (eh5002_bb16) 2004; 25
Müller (eh5002_bb14) 1996; 4
Müller (eh5002_bb15) 1992; 224
Kühlbrandt (eh5002_bb11) 2014; 343
Humphrey (eh5002_bb10) 1996; 14
Subramaniam (eh5002_bb20) 2019; 6
Stone (eh5002_bb19) 2014; 169
Alford (eh5002_bb4) 2017; 13
Trabuco (eh5002_bb23) 2009; 49
Afonine (eh5002_bb2) 2013; 4
Vashisth (eh5002_bb24) 2012; 20
Matthies (eh5002_bb13) 2016; 164
eh5002_bb18
eh5002_bb8
Phillips (eh5002_bb17) 2005; 26
Tanner (eh5002_bb21) 2011; 7
Blees (eh5002_bb5) 2017; 551
Trabuco (eh5002_bb22) 2008; 16
Adams (eh5002_bb1) 2010; 66
Lou (eh5002_bb12) 2006; 110
Farnung (eh5002_bb7) 2017; 550
Wlodawer (eh5002_bb25) 2017; 25
Huang (eh5002_bb9) 2013; 34
Chacón (eh5002_bb6) 2002; 317
Afonine (eh5002_bb3) 2018; 74
References_xml – volume: 14
  start-page: 33
  year: 1996
  ident: eh5002_bb10
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 6
  start-page: 1
  year: 2019
  ident: eh5002_bb20
  publication-title: IUCrJ
  doi: 10.1107/S2052252519000277
– volume: 224
  start-page: 159
  year: 1992
  ident: eh5002_bb15
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(92)90582-5
– ident: eh5002_bb8
– volume: 343
  start-page: 1443
  year: 2014
  ident: eh5002_bb11
  publication-title: Science
  doi: 10.1126/science.1251652
– volume: 164
  start-page: 747
  year: 2016
  ident: eh5002_bb13
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.055
– volume: 74
  start-page: 814
  year: 2018
  ident: eh5002_bb3
  publication-title: Acta Cryst. D
  doi: 10.1107/S2059798318009324
– volume: 4
  start-page: 147
  year: 1996
  ident: eh5002_bb14
  publication-title: Structure
  doi: 10.1016/S0969-2126(96)00018-4
– volume: 20
  start-page: 1453
  year: 2012
  ident: eh5002_bb24
  publication-title: Structure
  doi: 10.1016/j.str.2012.08.007
– volume: 26
  start-page: 1781
  year: 2005
  ident: eh5002_bb17
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20289
– volume: 34
  start-page: 2135
  year: 2013
  ident: eh5002_bb9
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23354
– volume: 110
  start-page: 12796
  year: 2006
  ident: eh5002_bb12
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp061976m
– volume: 550
  start-page: 539
  year: 2017
  ident: eh5002_bb7
  publication-title: Nature
  doi: 10.1038/nature24046
– volume: 317
  start-page: 375
  year: 2002
  ident: eh5002_bb6
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2002.5438
– volume: 66
  start-page: 213
  year: 2010
  ident: eh5002_bb1
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444909052925
– volume: 13
  start-page: 3031
  year: 2017
  ident: eh5002_bb4
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00125
– volume: 25
  start-page: 1589
  year: 2017
  ident: eh5002_bb25
  publication-title: Structure
  doi: 10.1016/j.str.2017.07.012
– volume: 169
  start-page: 265
  year: 2014
  ident: eh5002_bb19
  publication-title: Faraday Discuss.
  doi: 10.1039/C4FD00005F
– volume: 4
  start-page: 43
  year: 2013
  ident: eh5002_bb2
  publication-title: Comput. Crystallogr. Newsl.
– volume: 7
  start-page: 3635
  year: 2011
  ident: eh5002_bb21
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200563j
– volume: 49
  start-page: 174
  year: 2009
  ident: eh5002_bb23
  publication-title: Methods
  doi: 10.1016/j.ymeth.2009.04.005
– volume: 25
  start-page: 1605
  year: 2004
  ident: eh5002_bb16
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– ident: eh5002_bb18
– volume: 551
  start-page: 525
  year: 2017
  ident: eh5002_bb5
  publication-title: Nature
  doi: 10.1038/nature24627
– volume: 16
  start-page: 673
  year: 2008
  ident: eh5002_bb22
  publication-title: Structure
  doi: 10.1016/j.str.2008.03.005
SSID ssj0001125741
Score 2.5809808
Snippet Model building into experimental maps is a key element of structural biology, but can be both time consuming and error prone for low-resolution maps. Here we...
A pipeline tool called Namdinator is presented that enables the user to run a molecular dynamics flexible fitting (MDFF) simulation in a fully automated...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 526
SubjectTerms Automation
Computer simulation
cryo-EM
Crystallography
flexible fitting
MDFF
model-fitting
Molecular dynamics
molecular dynamics flexible fitting
Optimization
Outliers (statistics)
Research Letters
Web services
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5k8aAH8W10lRY8CWE7_UyOKrt4cRBU2FuofgQHZpJlM7vgzcP-g_2H_hKruzNDRkUv3kJ3Bzpd1amv0pXvI-QVeNfUrraldcaXGK-hrKX1ZVVpV7vKAIQsNmEWi_r0tPk4k_qKNWGZHjgv3JHm3mKIYyr-tq2AWdM0TmsQyjsleGIvRdQzS6bS1xWM2ybJVnKmeMkVV9ORJqY7R59iY2zDaJjy-L2glLj7_wQ4f62bnAWik7vkzoQg6Zs883vkRujvk9szXsEH5GoBa4xJMZ-mP75fU7jYDImala63arjUZyn6kXaREtOuAu2WqQaaDh3NrLKRkYMmqZyRLvvNQN35t6E8_kCh9_EageVqS3lN51IBdA1n40Py5eT487v35SS3UDrZiE0JmLygPU2oEfRx1gWuhJVKyhAE99py10HNwGPUA2mMcUJCVbsQSfR8B0E8Igf90IcnhKpKSMfwXSFYkJoz24gOZBXQeFJ57grCtuvduomLPEpirNqUkzDT_maigrze3XKWiTj-NvhtNOJuYOTQTg3oWe3kWe2_PKsgh1sXaKeNPbaIeDBBjRRBBXm568YtGc9ZoA_DRRyjEHUjENIFeZw9ZjcTUUXqgcYUxOz50t5U93v65ddE-611TD_V0__xbM_ILUR-Ta47PiQH6FXhObnpLjfL8fxF2ks_AScaIVU
  priority: 102
  providerName: Directory of Open Access Journals
Title Namdinator – automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps
URI https://www.ncbi.nlm.nih.gov/pubmed/31316797
https://www.proquest.com/docview/2249983578
https://www.proquest.com/docview/2259911856
https://pubmed.ncbi.nlm.nih.gov/PMC6608625
https://doaj.org/article/62db1750502545a0b799c66a35dc5325
Volume 6
WOSCitedRecordID wos000473692700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: KB.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: UK & Ireland Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: EHMNL
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/ukireland
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuxzYA-9HYKmMxAkprBPbcXJCFHUFQltVPKRyihzbgUpt0m26SNw48A_4h_wSxk7SbQHthVvkONJIHs98Y0--D-CpMjpLdVqEhZYmxHytwpQXJoyiRKc6kkrZVmxCjsfpdJpNugO3pmur7GOiD9Sm1u6M_BhTDVYGjpvlxfIsdKpR7na1k9DYgwPHkuCkG94On1-csWD2xozZXWZioXP8PqYIOIT7XZP6Cn4nHXnW_n9BzT87JrdS0MmN_zX-JlzvwCd52XrLLbhiq9twuEVJeAd-jNUC05krxcmv7z-JOl_XntWVLHohXWJaFfuGlI5Ns5hbUs58-zSpS9IS0joyD-JVdhoyq9Y10atvdTg6Jaoy7hkx6bxnyybbKgNkoZbNXfh4Mvrw6nXYKTWEmmdsHSqse9AVpE0RL8a0tLFgBRecW8tikxSxLlVKlcGEqbiUUjOuolRbx79nSmXZPdiv6so-ACIixjXFMMOo5UlMi4yVike2wMAhTKwDoP2C5bqjMXdqGvPclzNU5n-tcQDPNp8sWw6PyyYPnRdsJjr6bT9Qrz7n3W7Ok9gUiLuocFwCQlE0LtNJopgwWrBYBHDU-0HexYQmv3CCAJ5sXuNudlc0qrL1uZsjELAjhkoCuN-63MYSFjnWgkwGIHecccfU3TfV7ItnDE8SV7mKh5eb9QiuIRzM2mbkI9hHf7GP4ar-up41qwHsyWk6gIPhaDx5N_BnFwO_3XBs8uZ08uk3g7k0NA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKRKw4P0wFBgk2CBZHc94_FggxKNVozZRJIpUVu54ZgyWEjvEKSg7FvwB_8FH8SXc8SNNAHXXBbsonkRX9pl7z50ZnwPwVGoVRypK3VSF2sV6Ld3IT7XreYGKlBdKaRqziXA4jI6O4tEG_OzehbHHKrucWCdqXSq7Rr6NpQY7A6vN8nL62bWuUXZ3tbPQaGCxbxZfsWWrXvTf4vN9xtjuzuGbPbd1FXCVH_O5K5GjY9ihiZDbMJoZJnjqC983hjMdpExlMqJSY3KXfhiGivvSi5SxWnE6k4bj_16ATR_BHvVgc9QfjD6cruogX8Aa3W6fYmu1_Y5RpDjCviBK6zWDtQJY-wT8i9z-eUZzpejtXvvfbtd1uNrSa_KqmQ83YMMUN-HKiujiLfg-lBMs2Haxgfz69oPIk3lZ69aSSWcVTPSikJNcVSSzeqHp2JAsrw-IkzIjjeSulSshtY9QRfJiXhI1W5TuzoDIQtvPyLrHnR44WfVRIBM5rW7D-3O5DXegV5SFuQdEeNxXFBMpp8YPGE1jnknfMymmRqGZcoB2AElUK9Ru_ULGSd2w0TD5C1MOPF_-ZNqolJw1-LVF3XKgFRivvyhnH5M2XyUB0ykySyqsWoKQFIOLVRBILrQSnAkHtjrcJW3Wq5JT0DnwZHkZ85XdhJKFKU_sGIEtCbLEwIG7DcSXkXDP6jLEoQPhGvjXQl2_UuSfak30ILC9ubh_dliP4dLe4eAgOegP9x_AZSS_cXP0egt6iB3zEC6qL_O8mj1qJzaB4_OeHL8BTG-OXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Namdinator+%E2%80%93+automatic+molecular+dynamics+flexible+fitting+of+structural+models+into+cryo-EM+and+crystallography+experimental+maps&rft.jtitle=IUCrJ&rft.au=Kidmose%2C+Rune+Thomas&rft.au=Juhl%2C+Jonathan&rft.au=Nissen%2C+Poul&rft.au=Boesen%2C+Thomas&rft.date=2019-07-01&rft.issn=2052-2525&rft.eissn=2052-2525&rft.volume=6&rft.issue=4&rft.spage=526&rft.epage=531&rft_id=info:doi/10.1107%2FS2052252519007619&rft.externalDBID=n%2Fa&rft.externalDocID=10_1107_S2052252519007619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-2525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-2525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-2525&client=summon