Multi-modality medical image fusion using hybridization of binary crow search optimization
In clinical applications, single modality images do not provide sufficient diagnostic information. Therefore, it is necessary to combine the advantages or complementarities of different modalities of images. In this paper, we propose an efficient medical image fusion system based on discrete wavelet...
Saved in:
| Published in: | Health care management science Vol. 23; no. 4; pp. 661 - 669 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.12.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1386-9620, 1572-9389, 1572-9389 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In clinical applications, single modality images do not provide sufficient diagnostic information. Therefore, it is necessary to combine the advantages or complementarities of different modalities of images. In this paper, we propose an efficient medical image fusion system based on discrete wavelet transform and binary crow search optimization (BCSO) algorithm. Here, we consider two different patterns of images as the input of the system and the output is the fused image. In this approach, at first, to enhance the image, we apply a median filter which is used to remove the noise present in the input image. Then, we apply a discrete wavelet transform on both the input modalities. Then, the approximation coefficients of modality 1 and detailed coefficients of modality 2 are combined. Similarly, approximation coefficients of modality 2 and detailed coefficients of modality 1 are combined. Finally, we fuse the two modality information using novel fusion rule. The fusion rule parameters are optimally selected using binary crow search optimization (BCSO) algorithm. To evaluate the performance of the proposed method, we used different quality metrics such as structural similarity index measure (SSIM), Fusion Factor (FF), and entropy. The presented model shows superior results with 6.63 of entropy, 0.849 of SSIM and 5.9 of FF. |
|---|---|
| AbstractList | In clinical applications, single modality images do not provide sufficient diagnostic information. Therefore, it is necessary to combine the advantages or complementarities of different modalities of images. In this paper, we propose an efficient medical image fusion system based on discrete wavelet transform and binary crow search optimization (BCSO) algorithm. Here, we consider two different patterns of images as the input of the system and the output is the fused image. In this approach, at first, to enhance the image, we apply a median filter which is used to remove the noise present in the input image. Then, we apply a discrete wavelet transform on both the input modalities. Then, the approximation coefficients of modality 1 and detailed coefficients of modality 2 are combined. Similarly, approximation coefficients of modality 2 and detailed coefficients of modality 1 are combined. Finally, we fuse the two modality information using novel fusion rule. The fusion rule parameters are optimally selected using binary crow search optimization (BCSO) algorithm. To evaluate the performance of the proposed method, we used different quality metrics such as structural similarity index measure (SSIM), Fusion Factor (FF), and entropy. The presented model shows superior results with 6.63 of entropy, 0.849 of SSIM and 5.9 of FF.In clinical applications, single modality images do not provide sufficient diagnostic information. Therefore, it is necessary to combine the advantages or complementarities of different modalities of images. In this paper, we propose an efficient medical image fusion system based on discrete wavelet transform and binary crow search optimization (BCSO) algorithm. Here, we consider two different patterns of images as the input of the system and the output is the fused image. In this approach, at first, to enhance the image, we apply a median filter which is used to remove the noise present in the input image. Then, we apply a discrete wavelet transform on both the input modalities. Then, the approximation coefficients of modality 1 and detailed coefficients of modality 2 are combined. Similarly, approximation coefficients of modality 2 and detailed coefficients of modality 1 are combined. Finally, we fuse the two modality information using novel fusion rule. The fusion rule parameters are optimally selected using binary crow search optimization (BCSO) algorithm. To evaluate the performance of the proposed method, we used different quality metrics such as structural similarity index measure (SSIM), Fusion Factor (FF), and entropy. The presented model shows superior results with 6.63 of entropy, 0.849 of SSIM and 5.9 of FF. In clinical applications, single modality images do not provide sufficient diagnostic information. Therefore, it is necessary to combine the advantages or complementarities of different modalities of images. In this paper, we propose an efficient medical image fusion system based on discrete wavelet transform and binary crow search optimization (BCSO) algorithm. Here, we consider two different patterns of images as the input of the system and the output is the fused image. In this approach, at first, to enhance the image, we apply a median filter which is used to remove the noise present in the input image. Then, we apply a discrete wavelet transform on both the input modalities. Then, the approximation coefficients of modality 1 and detailed coefficients of modality 2 are combined. Similarly, approximation coefficients of modality 2 and detailed coefficients of modality 1 are combined. Finally, we fuse the two modality information using novel fusion rule. The fusion rule parameters are optimally selected using binary crow search optimization (BCSO) algorithm. To evaluate the performance of the proposed method, we used different quality metrics such as structural similarity index measure (SSIM), Fusion Factor (FF), and entropy. The presented model shows superior results with 6.63 of entropy, 0.849 of SSIM and 5.9 of FF. |
| Author | Pothiraj, Sivakumar Parvathy, Velmurugan Subbiah |
| Author_xml | – sequence: 1 givenname: Velmurugan Subbiah orcidid: 0000-0002-3314-1454 surname: Parvathy fullname: Parvathy, Velmurugan Subbiah email: sp.suthan@gmail.com organization: Department of Electronics and Communication Engineering, Kalasalingam Academy of Research and Education – sequence: 2 givenname: Sivakumar surname: Pothiraj fullname: Pothiraj, Sivakumar organization: Department of Electronics and Communication Engineering, Kalasalingam Academy of Research and Education |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31292844$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kTtP5DAUhS3EamGG_QMUyBINTXbt61dcIsRLAtFAQ2M5iTMYJfFgJ0LDr8fDzO5KFFPYvrK-c-_VOTO0P4TBIXRMyW9KiPqTKFGgC0Lz0VxDAXvokAoFhWal3s81K2WhJZADNEvplRAiiKQ_0QGjoKHk_BA930_d6Is-NLbz4wr3rvG17bDv7cLhdko-DDjfwwK_rKroG_9hx_VfaHHlBxtXuI7hHSdnY_2Cw3L0_RY5Qj9a2yX3a_vO0dPV5ePFTXH3cH17cX5X1FyzsVCWq1rxpuVCKAYNU7ISQLRthGUMHHeypFIoTqpaUCZEK52kDW00aCEdsDk62_RdxvA2uTSa3qfadZ0dXJiSARCSEimzeI5Ov6GvYYpD3s6sIakUCNhJgeCaUACZqZMtNVXZNbOM2bO4Mn-9zQBsgGxQStG1_xBKzDpAswnQ5ADNV4BmPbv8Jqr9-GXnGK3vdkvZRprynGHh4v-1d6g-AfDDrTw |
| CitedBy_id | crossref_primary_10_1002_cpe_7443 crossref_primary_10_1007_s10489_021_02282_w crossref_primary_10_1155_2021_2834873 crossref_primary_10_1007_s11042_020_10439_x crossref_primary_10_1016_j_bspc_2024_106787 crossref_primary_10_1142_S0219467825500391 crossref_primary_10_1007_s11042_024_19034_w crossref_primary_10_1007_s11042_023_16334_5 crossref_primary_10_1038_s41598_024_69997_x crossref_primary_10_1109_ACCESS_2020_2993493 crossref_primary_10_1016_j_bspc_2023_105879 crossref_primary_10_1007_s00521_021_06577_4 crossref_primary_10_1007_s12652_020_02444_7 crossref_primary_10_1007_s00521_021_06107_2 crossref_primary_10_1007_s11042_022_13691_5 |
| Cites_doi | 10.1080/014311698215748 10.1016/j.jestch.2017.02.004 10.1109/TIP.2015.2498413 10.1109/TGRS.2016.2623626 10.1016/j.asoc.2013.10.034 10.1016/S1566-2535(01)00056-2 10.1016/j.bspc.2016.02.008 10.1504/IJBET.2018.095982 10.1109/TIP.2006.888340 10.1109/TBME.2012.2211017 10.1109/TGRS.2005.846874 10.1109/JSEN.2016.2533864 10.1016/j.compeleceng.2019.06.001 10.1016/j.measurement.2019.04.072 10.3390/s91007771 10.1109/JSTARS.2014.2328344 10.1016/j.compbiomed.2016.12.006 10.1109/JSEN.2017.2747220 10.1109/TMM.2013.2244870 10.1080/01431160600746456 10.1016/j.comnet.2019.04.016 10.1016/j.ins.2017.12.008 10.1364/OL.30.000144 10.1016/j.inffus.2013.04.005 10.1016/j.future.2018.10.009 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Health Care Management Science is a copyright of Springer, (2019). All Rights Reserved. Springer Science+Business Media, LLC, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Health Care Management Science is a copyright of Springer, (2019). All Rights Reserved. – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
| DBID | AAYXX CITATION NPM 3V. 7WY 7WZ 7X7 7XB 87Z 88C 88E 8AO 8FI 8FJ 8FK 8FL ABUWG AFKRA BENPR BEZIV CCPQU DWQXO FRNLG FYUFA F~G GHDGH K60 K6~ K9. L.- M0C M0S M0T M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI Q9U 7X8 |
| DOI | 10.1007/s10729-019-09492-2 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Business Premium Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global Health & Medical Collection (Alumni Edition) Healthcare Administration Database PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Health Management ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed ABI/INFORM Global (Corporate) ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: M0T name: Healthcare Administration Database url: https://search.proquest.com/healthmanagement sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Business |
| EISSN | 1572-9389 |
| EndPage | 669 |
| ExternalDocumentID | 31292844 10_1007_s10729_019_09492_2 |
| Genre | Journal Article |
| GroupedDBID | --- -57 -5G -BR -EM -Y2 -~C .86 .VR 06D 07C 0R~ 0VY 199 1N0 1SB 203 29I 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 44B 53G 5GY 5VS 67Z 6NX 78A 7WY 7X7 88E 8AO 8FI 8FJ 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHQT ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AQUVI ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN B-. BA0 BAPOH BDATZ BENPR BEZIV BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBO EBS EBU EHE EIOEI EJD EMB EMOBN EOH ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6~ KDC KOV LAK LLZTM M0C M0T M1P M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9J OAM OVD P2P P9M PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOS QWB R89 R9I RNI ROL RPX RSV RZC RZD RZK S16 S1Z S27 S3B SAP SBE SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TEORI TH9 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 ZL0 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY NPM 7XB 8FK K9. L.- PKEHL PQEST PQUKI Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c493t-7a47c74df455732d376b5209ad5a332e4e68165740bc51355f6e61d1d92956e23 |
| IEDL.DBID | M0T |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000590520200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-9620 1572-9389 |
| IngestDate | Thu Sep 04 17:22:25 EDT 2025 Tue Nov 04 23:32:18 EST 2025 Tue Nov 04 22:17:49 EST 2025 Thu Apr 03 07:03:02 EDT 2025 Sat Nov 29 04:41:22 EST 2025 Tue Nov 18 22:10:51 EST 2025 Fri Feb 21 02:35:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Medical image fusion Discrete wavelet transform Binary crow search optimization Detailed coefficients Approximation coefficients Modality Median filter |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c493t-7a47c74df455732d376b5209ad5a332e4e68165740bc51355f6e61d1d92956e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3314-1454 |
| PMID | 31292844 |
| PQID | 2254901226 |
| PQPubID | 25887 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2256106651 proquest_journals_2561677252 proquest_journals_2254901226 pubmed_primary_31292844 crossref_primary_10_1007_s10729_019_09492_2 crossref_citationtrail_10_1007_s10729_019_09492_2 springer_journals_10_1007_s10729_019_09492_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Netherlands – name: New york |
| PublicationTitle | Health care management science |
| PublicationTitleAbbrev | Health Care Manag Sci |
| PublicationTitleAlternate | Health Care Manag Sci |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Xia, Kamel (CR13) 2007; 16 Chavan, Mahajan, Talbar, Desai, Thakur, Dcruz (CR23) 2017; 81 Wang, DjemelZiou, Li, Li (CR2) 2005; 43 Elhoseny, Shankar (CR9) 2019; 143 Shen, Cheng, Basu (CR12) 2013; 60 Ghimpeteanu, Batard, Bertalmio (CR16) 2016; 25 Javidi, Ferraro, Hong, De Nicola, Finizio, Alfieri, Pierattini (CR5) 2005; 30 Elhoseny, Bian, Lakshmanaprabu, Shankar, Singh, Wu (CR7) 2019; 159 Zhang, Wang, Yang (CR14) 2017; 55 Kavitha, Chellamuthu (CR24) 2014; 20 Hou, Wei, Zheng, Wang (CR11) 2014; 7 Velmurugan, Sivakumar, Rajasekaran (CR18) 2018; 28 Bhatnagar, Wu, Liu (CR15) 2013; 15 Yang, Que, Huang, Lin (CR17) 2016; 16 Dong, Zhuang, Huang, Fu (CR6) 2009; 9 Lakshmanaprabu, Mohanty, Shankar, Arunkumar, Ramirez (CR10) 2019; 92 Wang, Li, Tian (CR19) 2014; 19 Chen (CR21) 2017; 17 Shankar, Lakshmanaprabu, Khanna, Tanwar, Rodrigues, Roy (CR8) 2019; 77 Pohl, Van Genderen (CR1) 1998; 19 Simone, Farina, Morabito, Serpico, Bruzzone (CR3) 2002; 3 Abdelaziz, Fathy (CR25) 2017; 20 Xu, Wang, Chen (CR20) 2016; 27 Lu, Weng (CR4) 2007; 28 Du, Li, Xiao (CR22) 2018; 430-431 G Simone (9492_CR3) 2002; 3 Y Xia (9492_CR13) 2007; 16 SP Velmurugan (9492_CR18) 2018; 28 L Wang (9492_CR19) 2014; 19 Y Yang (9492_CR17) 2016; 16 M Elhoseny (9492_CR7) 2019; 159 CT Kavitha (9492_CR24) 2014; 20 D Lu (9492_CR4) 2007; 28 B Javidi (9492_CR5) 2005; 30 SK Lakshmanaprabu (9492_CR10) 2019; 92 AY Abdelaziz (9492_CR25) 2017; 20 C Pohl (9492_CR1) 1998; 19 G Bhatnagar (9492_CR15) 2013; 15 X Xu (9492_CR20) 2016; 27 R Shen (9492_CR12) 2013; 60 Z Wang (9492_CR2) 2005; 43 M Elhoseny (9492_CR9) 2019; 143 J Dong (9492_CR6) 2009; 9 K Shankar (9492_CR8) 2019; 77 G Ghimpeteanu (9492_CR16) 2016; 25 SS Chavan (9492_CR23) 2017; 81 B Hou (9492_CR11) 2014; 7 CI Chen (9492_CR21) 2017; 17 J Du (9492_CR22) 2018; 430-431 K Zhang (9492_CR14) 2017; 55 |
| References_xml | – volume: 19 start-page: 823 issue: 5 year: 1998 end-page: 854 ident: CR1 article-title: Review article multisensor image fusion in remote sensing: concepts, methods and applications publication-title: Int J Remote Sens doi: 10.1080/014311698215748 – volume: 20 start-page: 391 issue: 2 year: 2017 end-page: 402 ident: CR25 article-title: A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks publication-title: Engineering Science and Technology an International Journal doi: 10.1016/j.jestch.2017.02.004 – volume: 25 start-page: 388 issue: 1 year: 2016 end-page: 399 ident: CR16 article-title: A decomposition framework for image denoising algorithms publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2015.2498413 – volume: 55 start-page: 1363 issue: 3 year: 2017 end-page: 1371 ident: CR14 article-title: Multispectral and hyperspectral image fusion based on group spectral embedding and low-rank factorization publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2016.2623626 – volume: 20 start-page: 83 year: 2014 end-page: 94 ident: CR24 article-title: Medical image fusion based on hybrid intelligence publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.10.034 – volume: 3 start-page: 3 issue: 1 year: 2002 end-page: 15 ident: CR3 article-title: Image fusion techniques for remote sensing applications publication-title: Information Fusion doi: 10.1016/S1566-2535(01)00056-2 – volume: 27 start-page: 103 year: 2016 end-page: 111 ident: CR20 article-title: Medical image fusion using discrete fractional wavelet transform publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2016.02.008 – volume: 28 start-page: 322 year: 2018 end-page: 348 ident: CR18 article-title: Multimodality image fusion using centre-based genetic algorithm and fuzzy logic publication-title: Int J Biomed Eng Technol doi: 10.1504/IJBET.2018.095982 – volume: 16 start-page: 367 issue: 2 year: 2007 end-page: 381 ident: CR13 article-title: Novel cooperative neural fusion algorithms for image restoration and image fusion publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2006.888340 – volume: 60 start-page: 1069 issue: 4 year: 2013 end-page: 1079 ident: CR12 article-title: Cross-scale coefficient selection for volumetric medical image fusion publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2211017 – volume: 43 start-page: 1391 issue: 6 year: 2005 end-page: 1402 ident: CR2 article-title: A comparative analysis of image fusion methods publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2005.846874 – volume: 16 start-page: 3735 issue: 10 year: 2016 end-page: 3745 ident: CR17 article-title: Multimodal sensor medical image fusion based on type-2 Fuzzy logic in NSCT domain publication-title: IEEE Sensors J doi: 10.1109/JSEN.2016.2533864 – volume: 77 start-page: 230 year: 2019 end-page: 243 ident: CR8 article-title: Alzheimer detection using Group Grey Wolf Optimization based features with convolutional classifier publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2019.06.001 – volume: 143 start-page: 125 year: 2019 end-page: 135 ident: CR9 article-title: Optimal bilateral filter and convolutional neural network based denoising method of medical image measurements publication-title: Measurement doi: 10.1016/j.measurement.2019.04.072 – volume: 9 start-page: 7771 year: 2009 end-page: 7784 ident: CR6 article-title: Advances in multi -sensor data fusion: algorithms and applications publication-title: Sensors doi: 10.3390/s91007771 – volume: 7 start-page: 3297 issue: 8 year: 2014 end-page: 3317 ident: CR11 article-title: Unsupervised change detection in SAR image based on Gauss-log ratio image fusion and compressed projection publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2014.2328344 – volume: 81 start-page: 64 issue: 1 year: 2017 end-page: 78 ident: CR23 article-title: Nonsubsampled rotated complex wavelet transform (NSRCxWT) for medical image fusion related to clinical aspects in neurocysticercosis publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.12.006 – volume: 17 start-page: 6995 issue: 21 year: 2017 end-page: 7010 ident: CR21 article-title: Fusion of PET and MR brain images based on IHS and LogGabor transforms publication-title: IEEE Sensors J doi: 10.1109/JSEN.2017.2747220 – volume: 15 start-page: 1014 issue: 5 year: 2013 end-page: 1024 ident: CR15 article-title: Directive contrast based multimodal medical image fusion in NSCT domain publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2013.2244870 – volume: 28 start-page: 823 issue: 5 year: 2007 end-page: 870 ident: CR4 article-title: A survey of image classification methods and techniques for improving classification performance publication-title: Int J Remote Sens doi: 10.1080/01431160600746456 – volume: 159 start-page: 147 year: 2019 end-page: 156 ident: CR7 article-title: Effective features to classify ovarian cancer data in internet of medical things publication-title: Comput Netw doi: 10.1016/j.comnet.2019.04.016 – volume: 430-431 start-page: 567 year: 2018 end-page: 576 ident: CR22 article-title: Fusion of anatomical and functional images using parallel saliency features publication-title: Inf Sci doi: 10.1016/j.ins.2017.12.008 – volume: 30 start-page: 144 issue: 2 year: 2005 end-page: 146 ident: CR5 article-title: Three-dimensional image fusion by use of multiwavelength digital holography publication-title: Opt Lett doi: 10.1364/OL.30.000144 – volume: 19 start-page: 29 year: 2014 end-page: 37 ident: CR19 article-title: EGGDD: An explicit dependency model for multi-modal medical image fusion in shift-invariant shearlet transform domain publication-title: Information Fusion doi: 10.1016/j.inffus.2013.04.005 – volume: 92 start-page: 374 year: 2019 end-page: 382 ident: CR10 article-title: Optimal deep learning model for classification of lung cancer on CT images publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2018.10.009 – volume: 43 start-page: 1391 issue: 6 year: 2005 ident: 9492_CR2 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2005.846874 – volume: 143 start-page: 125 year: 2019 ident: 9492_CR9 publication-title: Measurement doi: 10.1016/j.measurement.2019.04.072 – volume: 430-431 start-page: 567 year: 2018 ident: 9492_CR22 publication-title: Inf Sci doi: 10.1016/j.ins.2017.12.008 – volume: 77 start-page: 230 year: 2019 ident: 9492_CR8 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2019.06.001 – volume: 19 start-page: 29 year: 2014 ident: 9492_CR19 publication-title: Information Fusion doi: 10.1016/j.inffus.2013.04.005 – volume: 3 start-page: 3 issue: 1 year: 2002 ident: 9492_CR3 publication-title: Information Fusion doi: 10.1016/S1566-2535(01)00056-2 – volume: 159 start-page: 147 year: 2019 ident: 9492_CR7 publication-title: Comput Netw doi: 10.1016/j.comnet.2019.04.016 – volume: 15 start-page: 1014 issue: 5 year: 2013 ident: 9492_CR15 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2013.2244870 – volume: 30 start-page: 144 issue: 2 year: 2005 ident: 9492_CR5 publication-title: Opt Lett doi: 10.1364/OL.30.000144 – volume: 19 start-page: 823 issue: 5 year: 1998 ident: 9492_CR1 publication-title: Int J Remote Sens doi: 10.1080/014311698215748 – volume: 17 start-page: 6995 issue: 21 year: 2017 ident: 9492_CR21 publication-title: IEEE Sensors J doi: 10.1109/JSEN.2017.2747220 – volume: 16 start-page: 367 issue: 2 year: 2007 ident: 9492_CR13 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2006.888340 – volume: 60 start-page: 1069 issue: 4 year: 2013 ident: 9492_CR12 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2211017 – volume: 55 start-page: 1363 issue: 3 year: 2017 ident: 9492_CR14 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2016.2623626 – volume: 28 start-page: 823 issue: 5 year: 2007 ident: 9492_CR4 publication-title: Int J Remote Sens doi: 10.1080/01431160600746456 – volume: 81 start-page: 64 issue: 1 year: 2017 ident: 9492_CR23 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.12.006 – volume: 16 start-page: 3735 issue: 10 year: 2016 ident: 9492_CR17 publication-title: IEEE Sensors J doi: 10.1109/JSEN.2016.2533864 – volume: 28 start-page: 322 year: 2018 ident: 9492_CR18 publication-title: Int J Biomed Eng Technol doi: 10.1504/IJBET.2018.095982 – volume: 9 start-page: 7771 year: 2009 ident: 9492_CR6 publication-title: Sensors doi: 10.3390/s91007771 – volume: 20 start-page: 83 year: 2014 ident: 9492_CR24 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.10.034 – volume: 27 start-page: 103 year: 2016 ident: 9492_CR20 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2016.02.008 – volume: 20 start-page: 391 issue: 2 year: 2017 ident: 9492_CR25 publication-title: Engineering Science and Technology an International Journal doi: 10.1016/j.jestch.2017.02.004 – volume: 92 start-page: 374 year: 2019 ident: 9492_CR10 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2018.10.009 – volume: 7 start-page: 3297 issue: 8 year: 2014 ident: 9492_CR11 publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2014.2328344 – volume: 25 start-page: 388 issue: 1 year: 2016 ident: 9492_CR16 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2015.2498413 |
| SSID | ssj0005061 |
| Score | 2.4231596 |
| Snippet | In clinical applications, single modality images do not provide sufficient diagnostic information. Therefore, it is necessary to combine the advantages or... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 661 |
| SubjectTerms | Approximation Business and Management Econometrics Health Administration Health Informatics Management Operations Research/Decision Theory Optimization Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Springer Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEA5SRQTxqFe1SgTfNNBkk-z2UcTikwgeFF-W3STVgu1KD8V_70x2t1VaBX3OwWQ2M_PNzhFCTrgFK2QwPhilgsnIRSwVxrBAGi2TVKc6SfxjE-H1ddRuN2-KorBhme1ehiS9pv5S7AZAEFxfTPGRTcFA8S4q7DaDPvrtwzSxo5F3SQ0izZpaNIpSmfl7fDdHMxhzJj7qzU5r_X8Eb5C1AmbS8_xebJIF16-S5TLLvUpW8991NK9C2iKPvhCX9TLrcTnt5fEb2u2BvqGdMf5To7j6iT5_YJFXUb5Jsw5NfUkvhQO-01xwaAaKqFdM2Sb3rcu7iytWPLvAjGwGIxYmMjShtB2pVBgICyooxWSZxKokCISTTkdcq1A2UqM44JWOdppbbgFpKe1EsEMq_azv9gjF5nQhhow5txJbBwKWRwSlhLSA1GSN8JL7sSl6kuPTGC_xtJsyMjEGJsaeibGokdPJmte8I8evs-vlR40L6RzGAr1ijCnq-cOAKTVQqmD18WQYxA5jKUnfZWO_BQBPrRWvkd38rkyoCQBDgdWH052VF2O6-c-k7v9t-gFZEej7-9SaOqmMBmN3SJbM26g7HBx5kfgEWIwAqA priority: 102 providerName: Springer Nature |
| Title | Multi-modality medical image fusion using hybridization of binary crow search optimization |
| URI | https://link.springer.com/article/10.1007/s10729-019-09492-2 https://www.ncbi.nlm.nih.gov/pubmed/31292844 https://www.proquest.com/docview/2254901226 https://www.proquest.com/docview/2561677252 https://www.proquest.com/docview/2256106651 |
| Volume | 23 |
| WOSCitedRecordID | wos000590520200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1572-9389 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005061 issn: 1386-9620 databaseCode: RSV dateStart: 19980901 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB71gRASKlBeoSUyEjewGnv92JxQW7XiQlSVAIHLatd2oBLJliYB9d93xutNhEp74eKL15a945n57HkBvBYetZAj-2BeSa7ykPNKOscz5YwqK1OZsozFJuxgkI9G_ZP04DZLbpWtTIyC2teO3sj3UDULg1BQy3fnvzhVjSLraiqhsQ6bAqE1VTD40BuuXDx6Tb7ULDe8b2QvBc2k0DmElXiRJoch1Zdc_q2YrqHNa5bSqICOH_zv0h_CVoKebL85K49gLUy34W7r-b4N95snPNZEJj2GbzE4l09qH7E6mzQ2HXY2QRnExgt6Z2M0-jv7cUmBXymkk9VjVsUwX4Zb_cMaZmI1CqdJ-uQJfDo-Gh6-56kUA3eqn825LZV1Vvmx0tpm0qNYqsiBpvS6zDIZVDC5MNqqXuW0QAwzNsEILzyiL22CzJ7CxrSehufAKGGdJTOyEF5ROkH8M4SqtFQe0ZvqgGjpULiUp5zKZfwsVhmWiXYF0q6ItCtkB94sx5w3WTpu_Xq3pVOROHZWSLopk53R_Lt7ScMOvFp2IyuSfaWchnoRp0AwaowWHXjWnJrlajLEVYgEcHdv22O0mvzmpb64fS07cE_S_T-61-zCxvxiEV7CHfd7fja76MK6_fKV2pGNbd6FzYOjwclpl9jkMLZDbE8_fr4C_aQQ-Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTxQxFH8haJTE-IGAK6g1wZM2bDttZ_ZgiEEJBNh4wIR4GWfaLmzC7iC7C-Gf4m_0vXZmNwbhxsHzzDTt9Nf3fn2fAOvCoRay5B_MSslV5jNeSmt5oqxRRWlKUxSh2UTa7WZHR53vc3Dd5MJQWGUjE4OgdpUlG_kGqmZhkApquXn2m1PXKPKuNi00Iiz2_NUlXtlGn3e_4v5-kHL72-HWDq-7CnCrOsmYp4VKbapcT2mdJtLhCSspFqRwukgS6ZU3mTA6Ve3SaoHquGe8EU44JBLaeCp0gCL_gcKLF52rg_bWLKSkHeuzJpnhHSPbdZJOnaqHNBYv7hSgpDqSy78V4Q12e8MzGxTe9rP_7Vc9h6c1tWZf4ll4AXN-uAiPmsj-RXgSTZQsZl69hJ8h-ZgPKhfuImwQfVasP0AZy3oTsiMy-vqYnVxRYludssqqHitDGjPDX3vJ4lJZhcJ3UL-yBD_uZaXLMD-shv4VMCrIl5KbXAinqFwi7gSxRi2VQ3aqWiCafc9tXYed2oGc5rMK0oSVHLGSB6zksgUfp9-cxSokd7691uAiryXSKJdkCSA_qvn34ylmWvB--hhFDfmPiqGvJmEIJNvGaNGClYjS6WwS5I3IdHB1nxrYzga_faqv757LO3i8c3iwn-_vdvdWYUGSrSOEEq3B_Ph84t_AQ3sx7o_O34aDyODXfcP5D568Y80 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBVVIiEd5LRQwEpzA6trxI3tACFFWVEWrHkAULmliO7RSd1O6u1T9a_w6ZhxnV6jQWw-c40S283nm8zwBnguPWsiRfzCvJFd5yHklneOZckaVlalMWcZmE3Y0yvf2Brsr8KvLhaGwyk4mRkHtG0c28k1UzcIgFdRys05hEbtbwzfHPzh1kCJPa9dOo4XITjg7xevb9PX2Fv7rF1IO339694GnDgPcqUE247ZU1lnla6W1zaTH01ZRXEjpdZllMqhgcmG0Vf3KaYGquTbBCC88kgptAhU9QPF_xVIrODxL9svXZXhJv63VmuWGD4zsp4SdlLaHlBYv8RSspAaSyz-V4jmme85LG5Xf8Ob_vG234Eai3Oxte0Zuw0qYrMNaF_G_Dtdb0yVrM7LuwLeYlMzHjY93FDZufVnscIyyl9Vzsi8yevs7OzijhLeUysqamlUxvZnhNp-ydqmsQaE8TkPuwudLWek9WJ00k_AAGBXqs-Q-F8IrKqOIf4XYpJbKI2tVPRAdBgqX6rNTm5CjYllZmnBTIG6KiJtC9uDl4p3jtjrJhaM3OowUSVJNC0kWAvKvmr8_XuCnB88Wj1EEkV-pnIRmHj-BJNwYLXpwv0XsYjYZ8klkQLi6Vx2Elx__91QfXjyXp7CGKC4-bo92HsE1SSaQGGG0Aauzk3l4DFfdz9nh9ORJPJMM9i8bzb8BRX5s4Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-modality+medical+image+fusion+using+hybridization+of+binary+crow+search+optimization&rft.jtitle=Health+care+management+science&rft.au=Parvathy%2C+Velmurugan+Subbiah&rft.au=Pothiraj%2C+Sivakumar&rft.date=2020-12-01&rft.issn=1386-9620&rft.eissn=1572-9389&rft.volume=23&rft.issue=4&rft.spage=661&rft.epage=669&rft_id=info:doi/10.1007%2Fs10729-019-09492-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10729_019_09492_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-9620&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-9620&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-9620&client=summon |