Unified Polynomial Dynamic Programming Algorithms for P-Center Variants in a 2D Pareto Front

With many efficient solutions for a multi-objective optimization problem, this paper aims to cluster the Pareto Front in a given number of clusters K and to detect isolated points. K-center problems and variants are investigated with a unified formulation considering the discrete and continuous vers...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics Ročník 9; číslo 4; s. 453
Hlavní autori: Dupin, Nicolas, Nielsen, Frank, Talbi, El-Ghazali
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 23.02.2021
MDPI
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With many efficient solutions for a multi-objective optimization problem, this paper aims to cluster the Pareto Front in a given number of clusters K and to detect isolated points. K-center problems and variants are investigated with a unified formulation considering the discrete and continuous versions, partial K-center problems, and their min-sum-K-radii variants. In dimension three (or upper), this induces NP-hard complexities. In the planar case, common optimality property is proven: non-nested optimal solutions exist. This induces a common dynamic programming algorithm running in polynomial time. Specific improvements hold for some variants, such as K-center problems and min-sum K-radii on a line. When applied to N points and allowing to uncover M<N points, K-center and min-sum-K-radii variants are, respectively, solvable in O(K(M+1)NlogN) and O(K(M+1)N2) time. Such complexity of results allows an efficient straightforward implementation. Parallel implementations can also be designed for a practical speed-up. Their application inside multi-objective heuristics is discussed to archive partial Pareto fronts, with a special interest in partial clustering variants.
AbstractList With many efficient solutions for a multi-objective optimization problem, this paper aims to cluster the Pareto Front in a given number of clusters K and to detect isolated points. K-center problems and variants are investigated with a unified formulation considering the discrete and continuous versions, partial K-center problems, and their min-sum-K-radii variants. In dimension three (or upper), this induces NP-hard complexities. In the planar case, common optimality property is proven: non-nested optimal solutions exist. This induces a common dynamic programming algorithm running in polynomial time. Specific improvements hold for some variants, such as K-center problems and min-sum K-radii on a line. When applied to N points and allowing to uncover M<N points, K-center and min-sum-K-radii variants are, respectively, solvable in O(K(M+1)NlogN) and O(K(M+1)N2) time. Such complexity of results allows an efficient straightforward implementation. Parallel implementations can also be designed for a practical speed-up. Their application inside multi-objective heuristics is discussed to archive partial Pareto fronts, with a special interest in partial clustering variants.
With many efficient solutions for a multi-objective optimization problem, this paper aims to cluster the Pareto Front in a given number of clusters $K$ and to detect isolated points. $K$-center problems and variants are investigated with a unified formulation considering the discrete and continuous versions, partial $K$-center problems, and their min-sum-$K$-radii variants. In dimension three (or upper), this induces NP-hard complexities. In the planar case, common optimality property is proven: non-nested optimal solutions exist. This induces a common dynamic programming algorithm running in polynomial time. Specific improvements hold for some variants, such as $K$-center problems and min-sum $K$-radii on a line. When applied to N points and allowing to uncover $M$ < $N$ points, K-center and min-sum-$K$-radii variants are, respectively, solvable in $O$($K$($M$ +1)$N$ log $N$) and $O$($K$($M$ + 1)$N^2$) time. Such complexity of results allows an efficient straightforward implementation. Parallel implementations can also be designed for a practical speed-up. Their application inside multi-objective heuristics is discussed to archive partial Pareto fronts, with a special interest in partial clustering variants.
With many efficient solutions for a multi-objective optimization problem, this paper aims to cluster the Pareto Front in a given number of clusters K and to detect isolated points. K-center problems and variants are investigated with a unified formulation considering the discrete and continuous versions, partial K-center problems, and their min-sum-K-radii variants. In dimension three (or upper), this induces NP-hard complexities. In the planar case, common optimality property is proven: non-nested optimal solutions exist. This induces a common dynamic programming algorithm running in polynomial time. Specific improvements hold for some variants, such as K-center problems and min-sum K-radii on a line. When applied to N points and allowing to uncoverM<Npoints, K-center and min-sum-K-radii variants are, respectively, solvable inO(K(M+1)NlogN)andO(K(M+1)N2)time. Such complexity of results allows an efficient straightforward implementation. Parallel implementations can also be designed for a practical speed-up. Their application inside multi-objective heuristics is discussed to archive partial Pareto fronts, with a special interest in partial clustering variants.
With many efficient solutions for a multi-objective optimization problem, this paper aims to cluster the Pareto Front in a given number of clusters K and to detect isolated points. K-center problems and variants are investigated with a unified formulation considering the discrete and continuous versions, partial K-center problems, and their min-sum-K-radii variants. In dimension three (or upper), this induces NP-hard complexities. In the planar case, common optimality property is proven: non-nested optimal solutions exist. This induces a common dynamic programming algorithm running in polynomial time. Specific improvements hold for some variants, such as K-center problems and min-sum K-radii on a line. When applied to N points and allowing to uncover M<N points, K-center and min-sum-K-radii variants are, respectively, solvable in O(K(M+1)N log N) and O(K(M+1)N2) time. Such complexity of results allows an efficient straightforward implementation. Parallel implementations can also be designed for a practical speed-up. Their application inside multi-objective heuristics is discussed to archive partial Pareto fronts, with a special interest in partial clustering variants.
Author Nicolas Dupin
Frank Nielsen
El-Ghazali Talbi
Author_xml – sequence: 1
  givenname: Nicolas
  orcidid: 0000-0003-3775-5629
  surname: Dupin
  fullname: Dupin, Nicolas
– sequence: 2
  givenname: Frank
  orcidid: 0000-0001-5728-0726
  surname: Nielsen
  fullname: Nielsen, Frank
– sequence: 3
  givenname: El-Ghazali
  orcidid: 0000-0003-4549-1010
  surname: Talbi
  fullname: Talbi, El-Ghazali
BackLink https://cir.nii.ac.jp/crid/1870021791410539904$$DView record in CiNii
https://hal.science/hal-03150807$$DView record in HAL
BookMark eNp1kV1rFDEUhoNUsNZe-QcCeiMymq-ZJJfL1n7AgntRvRLCmUyymzKT1Exa2H9v1ilSBW-S8PKch3NyXqOTmKJD6C0lnzjX5PMEZa-JIKLlL9ApY0w2suYnz96v0Pk8h560UqqW6e4U_fgWgw9uwNs0HmKaAoz44hBhChZvc9plmKYQd3g17lIOZT_N2KeMt83axeIy_g45QCwzDhEDZhd4C9mVhC9ziuUNeulhnN35032Gbi-_3K6vm83Xq5v1atNYoXlpus4pUTtvwWnJ7CCc5YOgjjHwPXNApdC9b70TXlNJB95Z4SntFXgOreJn6GbRDgnuzH0OE-SDSRDM7yDlnYFcgh2dEZ55oD1XoLwgve87Cd7bVhLbW2Whuj4srj2Mf6muVxtzzAinLVFEPtLKvlvY-5x-Pri5mLv0kGOd1LA6mNKEC1Kpjwtlc5rn7PwfLSXmuDjzbHGVpv_QNhQoof5mhjD-p-b9UhNDqPjxpEoSwqjUVFDScl1R_gsMQKcy
CitedBy_id crossref_primary_10_1134_S0040601523080086
crossref_primary_10_3390_math9212762
crossref_primary_10_3390_math10111825
crossref_primary_10_3390_math11112418
crossref_primary_10_1007_s10898_023_01280_1
crossref_primary_10_3390_math12040606
Cites_doi 10.1016/0377-2217(90)90297-O
10.1287/moor.10.2.180
10.1137/0212051
10.1007/s00453-001-0110-y
10.1007/s10732-018-9403-z
10.1007/BF01185335
10.1016/j.swevo.2020.100720
10.1016/0020-0190(88)90174-3
10.1016/S0925-7721(99)00052-8
10.1287/mnsc.27.7.848
10.1007/978-3-030-21803-4_79
10.32614/RJ-2011-015
10.1002/1520-6750(198704)34:2<229::AID-NAV3220340207>3.0.CO;2-1
10.1007/BF02614317
10.1016/j.ejor.2016.08.038
10.1007/978-3-319-13111-5_4
10.1007/s10732-020-09450-0
10.1016/0020-0190(96)00116-0
10.1016/j.ejor.2010.10.021
10.1287/ijoc.1030.0028
10.1016/0166-218X(79)90044-1
10.1007/s00453-009-9282-7
10.1007/BFb0028271
10.1007/s10878-012-9452-4
10.1137/0212052
10.1109/ICDE.2009.84
10.1007/PL00009311
10.1002/9780470496916
10.1007/978-3-319-49103-5_3
10.1007/s00453-014-9907-3
10.1007/s10732-018-9383-z
10.1016/j.tcs.2015.05.028
10.1145/1569901.1569980
10.1162/EVCO_a_00157
10.1137/19M1290607
10.1016/j.cor.2013.07.011
10.1007/s101070050011
10.1007/s10898-019-00841-7
10.1287/opre.42.2.299
10.1007/978-3-540-24854-5_20
10.1145/2576768.2598276
10.1007/PL00009387
10.1007/b101915
10.1137/0213014
10.1016/0304-3975(85)90224-5
10.1111/j.1538-4632.1999.tb00979.x
10.1007/BF01874389
10.1007/978-3-030-41913-4_15
10.1016/j.jcss.2003.07.014
10.1016/j.tcs.2010.05.034
10.1002/9781118032343
ContentType Journal Article
Contributor Laboratoire Interdisciplinaire des Sciences du Numérique (LISN) ; Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Optimisation de grande taille et calcul large échelle (BONUS) ; Inria Lille - Nord Europe ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL) ; Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Interdisciplinaire des Sciences du Numérique (LISN) ; CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Dupin, Nicolas
Sony Computer Science Laboratories [Tokyo, Japan] ; Sony France SA
Contributor_xml – sequence: 1
  fullname: Laboratoire Interdisciplinaire des Sciences du Numérique (LISN) ; Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
– sequence: 2
  fullname: Sony Computer Science Laboratories [Tokyo, Japan] ; Sony France SA
– sequence: 3
  fullname: Optimisation de grande taille et calcul large échelle (BONUS) ; Inria Lille - Nord Europe ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL) ; Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
– sequence: 4
  fullname: Dupin, Nicolas
– sequence: 5
  fullname: Laboratoire Interdisciplinaire des Sciences du Numérique (LISN) ; CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID RYH
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
DOA
DOI 10.3390/math9040453
DatabaseName CiNii Complete
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_4f2fa1b38a8f40bfb67affc570cbc8ca
oai:HAL:hal-03150807v1
10_3390_math9040453
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
RYH
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
1XC
IPNFZ
ITC
RIG
ID FETCH-LOGICAL-c493t-66e849045ae972cd4ec3d41e22afb2ea1749bf5fe4f9171d36c4f11b8af3a583
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000624191400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Mon Nov 10 04:30:31 EST 2025
Tue Oct 14 20:03:21 EDT 2025
Fri Jul 25 12:00:03 EDT 2025
Sat Nov 29 07:16:46 EST 2025
Tue Nov 18 20:53:53 EST 2025
Mon Nov 10 09:12:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Operational research
Clustering
Pareto Front
Complexity
Sum-diameter clustering
Computational geometry
Bi-objective optimization
Parallel programming
Algorithms
K-center
Discrete optimization
Sum-radii clustering
P-center
Dynamic programming
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-66e849045ae972cd4ec3d41e22afb2ea1749bf5fe4f9171d36c4f11b8af3a583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3775-5629
0000-0003-4549-1010
0000-0001-5728-0726
OpenAccessLink https://doaj.org/article/4f2fa1b38a8f40bfb67affc570cbc8ca
PQID 2493890340
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_4f2fa1b38a8f40bfb67affc570cbc8ca
hal_primary_oai_HAL_hal_03150807v1
proquest_journals_2493890340
crossref_primary_10_3390_math9040453
crossref_citationtrail_10_3390_math9040453
nii_cinii_1870021791410539904
PublicationCentury 2000
PublicationDate 2021-02-23
PublicationDateYYYYMMDD 2021-02-23
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-23
  day: 23
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hochbaum (ref_18) 1984; 1
Chen (ref_35) 2015; 592
ref_50
Katz (ref_37) 2000; 15
ref_58
ref_57
ref_12
ref_56
ref_11
ref_55
ref_10
ref_54
Doddi (ref_40) 2000; 7
ref_51
Kuhn (ref_52) 2016; 24
Schuetze (ref_4) 2019; 25
Erkut (ref_53) 1990; 46
Karmakar (ref_34) 2013; 25
Daskin (ref_15) 1999; 31
ref_16
Mahajan (ref_44) 2012; 442
Hwang (ref_26) 1993; 9
Ravi (ref_8) 1994; 42
(ref_14) 2020; 77
Agarwal (ref_27) 2002; 33
Gmys (ref_60) 2020; 57
Callaghan (ref_24) 2017; 257
Hochbaum (ref_19) 1985; 10
ref_21
ref_63
ref_29
Drezner (ref_38) 1981; 27
Agarwal (ref_32) 1998; 20
Shang (ref_45) 2020; 80
Zio (ref_61) 2011; 210
Hansen (ref_39) 1997; 79
Drezner (ref_36) 1987; 34
Eppstein (ref_31) 1997; 97
Nielsen (ref_13) 1996; 59
ref_33
Calik (ref_22) 2013; 40
Charikar (ref_42) 2004; 68
Elloumi (ref_23) 2004; 16
Wang (ref_59) 2011; 3
Megiddo (ref_28) 1983; 12
Wang (ref_9) 1988; 28
Drezner (ref_25) 1984; 35
Behsaz (ref_43) 2015; 73
ref_47
ref_46
Gonzalez (ref_20) 1985; 38
Megiddo (ref_7) 1983; 12
ref_1
ref_3
Samorani (ref_62) 2019; 25
ref_2
Hsu (ref_6) 1979; 1
Gibson (ref_41) 2010; 57
ref_49
(ref_48) 2000; 87
ref_5
Megiddo (ref_17) 1984; 13
Sharir (ref_30) 1997; 18
References_xml – volume: 46
  start-page: 48
  year: 1990
  ident: ref_53
  article-title: The discrete p-dispersion problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(90)90297-O
– ident: ref_55
– volume: 10
  start-page: 180
  year: 1985
  ident: ref_19
  article-title: A best possible heuristic for the k-center problem
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.10.2.180
– volume: 12
  start-page: 751
  year: 1983
  ident: ref_7
  article-title: New results on the complexity of p-centre problems
  publication-title: SIAM J. Comput.
  doi: 10.1137/0212051
– volume: 33
  start-page: 201
  year: 2002
  ident: ref_27
  article-title: Exact and approximation algorithms for clustering
  publication-title: Algorithmica
  doi: 10.1007/s00453-001-0110-y
– volume: 25
  start-page: 629
  year: 2019
  ident: ref_62
  article-title: Clustering-driven evolutionary algorithms: An application of path relinking to the quadratic unconstrained binary optimization problem
  publication-title: J. Heuristics
  doi: 10.1007/s10732-018-9403-z
– volume: 9
  start-page: 1
  year: 1993
  ident: ref_26
  article-title: The slab dividing approach to solve the Euclidean P-Center problem
  publication-title: Algorithmica
  doi: 10.1007/BF01185335
– ident: ref_58
– volume: 57
  start-page: 100720
  year: 2020
  ident: ref_60
  article-title: A comparative study of high-productivity high-performance programming languages for parallel metaheuristics
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100720
– volume: 28
  start-page: 281
  year: 1988
  ident: ref_9
  article-title: A study on two geometric location problems
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(88)90174-3
– volume: 15
  start-page: 203
  year: 2000
  ident: ref_37
  article-title: Discrete rectilinear 2-center problems
  publication-title: Comput. Geom.
  doi: 10.1016/S0925-7721(99)00052-8
– volume: 27
  start-page: 848
  year: 1981
  ident: ref_38
  article-title: On a modified one-center model
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.27.7.848
– volume: 7
  start-page: 185
  year: 2000
  ident: ref_40
  article-title: Approximation algorithms for clustering to minimize the sum of diameters
  publication-title: Nord. J. Comput.
– ident: ref_56
  doi: 10.1007/978-3-030-21803-4_79
– volume: 3
  start-page: 29
  year: 2011
  ident: ref_59
  article-title: Ckmeans. 1d. dp: Optimal k-means clustering in one dimension by dynamic programming
  publication-title: R J.
  doi: 10.32614/RJ-2011-015
– volume: 34
  start-page: 229
  year: 1987
  ident: ref_36
  article-title: On the rectangular p-center problem
  publication-title: Nav. Res. Logist. (NRL)
  doi: 10.1002/1520-6750(198704)34:2<229::AID-NAV3220340207>3.0.CO;2-1
– volume: 79
  start-page: 191
  year: 1997
  ident: ref_39
  article-title: Cluster analysis and mathematical programming
  publication-title: Math. Program.
  doi: 10.1007/BF02614317
– volume: 257
  start-page: 722
  year: 2017
  ident: ref_24
  article-title: Speeding up the optimal method of Drezner for the p-centre problem in the plane
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.08.038
– ident: ref_16
  doi: 10.1007/978-3-319-13111-5_4
– ident: ref_2
  doi: 10.1007/s10732-020-09450-0
– volume: 59
  start-page: 255
  year: 1996
  ident: ref_13
  article-title: Output-sensitive peeling of convex and maximal layers
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(96)00116-0
– volume: 210
  start-page: 624
  year: 2011
  ident: ref_61
  article-title: A clustering procedure for reducing the number of representative solutions in the Pareto Front of multiobjective optimization problems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2010.10.021
– volume: 16
  start-page: 84
  year: 2004
  ident: ref_23
  article-title: A new formulation and resolution method for the p-center problem
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1030.0028
– volume: 1
  start-page: 209
  year: 1979
  ident: ref_6
  article-title: Easy and hard bottleneck location problems
  publication-title: Discret. Appl. Math.
  doi: 10.1016/0166-218X(79)90044-1
– volume: 57
  start-page: 484
  year: 2010
  ident: ref_41
  article-title: On metric clustering to minimize the sum of radii
  publication-title: Algorithmica
  doi: 10.1007/s00453-009-9282-7
– ident: ref_33
  doi: 10.1007/BFb0028271
– volume: 25
  start-page: 176
  year: 2013
  ident: ref_34
  article-title: Some variations on constrained minimum enclosing circle problem
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-012-9452-4
– volume: 35
  start-page: 741
  year: 1984
  ident: ref_25
  article-title: The p-centre problem—heuristic and optimal algorithms
  publication-title: J. Oper. Res. Soc.
– volume: 12
  start-page: 759
  year: 1983
  ident: ref_28
  article-title: Linear-time algorithms for linear programming in R3 and related problems
  publication-title: SIAM J. Comput.
  doi: 10.1137/0212052
– ident: ref_46
  doi: 10.1109/ICDE.2009.84
– volume: 18
  start-page: 125
  year: 1997
  ident: ref_30
  article-title: A near-linear algorithm for the planar 2-center problem
  publication-title: Discret. Comput. Geom.
  doi: 10.1007/PL00009311
– ident: ref_5
  doi: 10.1002/9780470496916
– ident: ref_47
– ident: ref_1
  doi: 10.1007/978-3-319-49103-5_3
– volume: 73
  start-page: 143
  year: 2015
  ident: ref_43
  article-title: On minimum sum of radii and diameters clustering
  publication-title: Algorithmica
  doi: 10.1007/s00453-014-9907-3
– volume: 25
  start-page: 71
  year: 2019
  ident: ref_4
  article-title: Archivers for the representation of the set of approximate solutions for MOPs
  publication-title: J. Heuristics
  doi: 10.1007/s10732-018-9383-z
– volume: 592
  start-page: 135
  year: 2015
  ident: ref_35
  article-title: Efficient algorithms for the one-dimensional k-center problem
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2015.05.028
– ident: ref_49
  doi: 10.1145/1569901.1569980
– volume: 24
  start-page: 411
  year: 2016
  ident: ref_52
  article-title: Hypervolume subset selection in two dimensions: Formulations and algorithms
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00157
– volume: 80
  start-page: 1272
  year: 2020
  ident: ref_45
  article-title: Generalized K-Core percolation in networks with community structure
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/19M1290607
– volume: 40
  start-page: 2991
  year: 2013
  ident: ref_22
  article-title: Double bound method for solving the p-center location problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2013.07.011
– volume: 87
  start-page: 543
  year: 2000
  ident: ref_48
  article-title: Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming
  publication-title: Math. Program.
  doi: 10.1007/s101070050011
– volume: 77
  start-page: 27
  year: 2020
  ident: ref_14
  article-title: On generating the set of nondominated solutions of a linear programming problem with parameterized fuzzy numbers
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-019-00841-7
– volume: 42
  start-page: 299
  year: 1994
  ident: ref_8
  article-title: Heuristic and special case algorithms for dispersion problems
  publication-title: Oper. Res.
  doi: 10.1287/opre.42.2.299
– ident: ref_11
  doi: 10.1007/978-3-030-21803-4_79
– ident: ref_63
  doi: 10.1007/978-3-540-24854-5_20
– ident: ref_51
  doi: 10.1145/2576768.2598276
– volume: 20
  start-page: 287
  year: 1998
  ident: ref_32
  article-title: The discrete 2-center problem
  publication-title: Discret. Comput. Geom.
  doi: 10.1007/PL00009387
– ident: ref_3
  doi: 10.1007/b101915
– volume: 13
  start-page: 182
  year: 1984
  ident: ref_17
  article-title: On the complexity of some common geometric location problems
  publication-title: SIAM J. Comput.
  doi: 10.1137/0213014
– volume: 38
  start-page: 293
  year: 1985
  ident: ref_20
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(85)90224-5
– volume: 31
  start-page: 217
  year: 1999
  ident: ref_15
  article-title: Two New Location Covering Problems: The Partial P-Center Problem and the Partial Set Covering Problem
  publication-title: Geogr. Anal.
  doi: 10.1111/j.1538-4632.1999.tb00979.x
– ident: ref_50
– ident: ref_29
– ident: ref_54
– volume: 1
  start-page: 201
  year: 1984
  ident: ref_18
  article-title: When are NP-hard location problems easy?
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF01874389
– ident: ref_10
  doi: 10.1007/978-3-030-41913-4_15
– ident: ref_12
– volume: 68
  start-page: 417
  year: 2004
  ident: ref_42
  article-title: Clustering to minimize the sum of cluster diameters
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2003.07.014
– volume: 97
  start-page: 131
  year: 1997
  ident: ref_31
  article-title: Faster construction of planar two-centers
  publication-title: SODA
– ident: ref_57
– volume: 442
  start-page: 13
  year: 2012
  ident: ref_44
  article-title: The planar k-means problem is NP-hard
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2010.05.034
– ident: ref_21
  doi: 10.1002/9781118032343
SSID ssib057785296
ssj0000913849
Score 2.2109168
Snippet With many efficient solutions for a multi-objective optimization problem, this paper aims to cluster the Pareto Front in a given number of clusters K and to...
With many efficient solutions for a multi-objective optimization problem, this paper aims to cluster the Pareto Front in a given number of clusters $K$ and to...
SourceID doaj
hal
proquest
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 453
SubjectTerms [INFO.INFO-CC] Computer Science [cs]/Computational Complexity [cs.CC]
[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG]
[INFO.INFO-RO] Computer Science [cs]/Operations Research [math.OC]
[INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO]
[INFO]Computer Science [cs]
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Algorithms
bi-objective optimization
Clustering
Complexity
Computational Complexity
Computational Geometry
Computer Science
Discrete optimization
Dynamic programming
Food science
K-center
Linear programming
Mathematics
Multiple objective analysis
Objectives
Operational research
Operations Research
Optimization
Optimization and Control
P-center
Parallel programming
Pareto Front
Pareto optimization
Polynomials
QA1-939
Sum-diameter clustering
sum-radii clustering
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADB7RwgEO5VmRPtAI9YQ06rySSU7VQllVolQ5VKgHpGhmMtNdaZuUzVKJf4-dZBcqEBcuOSRWYsWO_dnxg5AjnMJVcK2ZA2PHdG3BDgJyZbw2IqbKeaf6RuFzc3GRX10V5Zhw68ayyrVN7A113XrMkR9DmAC-lSvNT26_MdwahX9XxxUaW-ShkFKgnn8ybJNjwZmXuS6GtjwF0f0xoMAZsAY4Rt1zRP28fnAvM6yG3Grm8z9Mc-9vpk__l9NnZGdEmnQyqMZz8iA0L8iTz5sxrd1L8hUQZwQMSst28QP7k4H-dFhRT8uhcOsGXBudLK7hAavZTUcB49KSYU44LOkXCLSxjobOG2qpPKUl7sxt6RSnIrwil9OPlx_O2LhugXngeMWyLOQot9SGwkhf6-BVrUWQ0kYng4XYpXAxjUFHiPFErTKvoxAut1HZNFe7ZLtpm_Ca0CyqIpqaY6ym6yJ1qZZBOu15yAzPZELerV995cdR5LgRY1FBSIJyqn6TU0KONsS3wwSOv5O9RxluSHBsdn-iXV5X41dY6SijFU7lNo-au-gyY2P0qeHe-dzbhLwFDbh3j7PJeYXncBsGoGtzJxJyCAoCjONRgL3DsK7o62UB7XGdkIO1XlSjQeiqX0qx9-_L--SxxLIZ7JpXB2R7tfweDskjf7ead8s3vX7_BJk1AJc
  priority: 102
  providerName: ProQuest
Title Unified Polynomial Dynamic Programming Algorithms for P-Center Variants in a 2D Pareto Front
URI https://cir.nii.ac.jp/crid/1870021791410539904
https://www.proquest.com/docview/2493890340
https://hal.science/hal-03150807
https://doaj.org/article/4f2fa1b38a8f40bfb67affc570cbc8ca
Volume 9
WOSCitedRecordID wos000624191400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbt4f1YeyTeW2DGH0amOrLlvWYrgkda4PZyuhgYCRZWgKpU5Ks0Jf97buz3ZCywV72ogdZmOPufPf7mdMdIYfYhcswpVIHwS5VtYU4CMg1ZbXmMZPOO9leFD7Tk0lxeWnKrVFfWBPWtQfuFHekooiWO1nYIirmosu1jdFnmnnnC99CI0A9W2SqjcGGy0KZ7kKeBF5_BPhvCkIBgpH3UlDbqR8SyxTrIB82s9kfQbnNNONn5GkPEemwE-05eRCaF2T3fNNfdfWSfAeoGAE80nIxv8WLxXD-pJstT8uu4uoKchIdzn8sgP1Pr1YUwCktU_yZG5b0KzBkLIChs4ZaKk5oicNuF3SM7QxekYvx6OLDadrPSUi9MnKd5nkoUOGZDUYLX6vgZa14EMJGJ4IF0mFczGJQEcgZr2XuVeTcFTZKmxXyNdlpFk14Q2gepYm6ZkiyVG0ylykRhFOehVyzXCTk_Z3mKt_3EMdRFvMKuASqudpSc0ION4evu9YZfz92jCbYHMF-1-0GeEHVe0H1Ly9IyDsw4L13nA7PKtzDMRbgIPqGJ-QA7AuC48ohUCEfM22hK8A0phKyf2f5qv-SVxXQU8B0TCr29n8IukeeCKyKwUvxcp_srJc_wwF57G_Ws9VyQB4djybl50HrzLB-0ukAq1G_4PprBM_Lj-flt98G-ftL
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH5qCxJwYEcEWrBQuSCN6rE92wGhQIhSNY0iEaEekEa2x24iJTMlE4ryo_iPvDdZoAJx64HLHDxPXsaf3-J5C8AhZeHKuFKBQWYXqEIjH0TNNeBFEvpIGmtkEyjcTwaD9OwsG-7Aj00sDLlVbnhiw6iLytId-RGaCShbuVT83cXXgKpG0d_VTQmNFSxO3PI7mmz12-MO7u9rIbofRx96wbqqQGCxi0UQxy6l6UXaZYmwhXJWFip0QmhvhNOoomfGR94pj6ZMWMjYKh-GJtVe6iiV2O0u3FDE_BtPwU_bKx1KsYldr6IApcz4ESqdYxwKB5NX5F5THgCl2ZicL3fLyeQPSdCIt-69_-zD3Ie7az2atVfAfwA7rnwId063SWjrR_AF9WmPGjYbVtMlRV8jfWdZ6tnEsuHKLW2Ggpu1p-e4nsV4VjPU4NkwoBtvN2efNR7OclGzSck0Ex02pIrAFetSzofHMLqO1T2BvbIq3VNgsZeZTwpOlqgqsshESjhhlOUuTngsWvBms9O5XSdap3of0xwNLoJF_hssWnC4Jb5Y5Rf5O9l7gsyWhJKCNw3V_Dxf85hceeF1aGSqU6-48SZOtPc2Srg1NrW6Ba8QcFf66LX7ObVRrQ-0HZLLsAUHiEecOD1D5OZktGaNNzDqsly1YH8Dw3zN7ur8Fwaf_fv1S7jVG5328_7x4OQ53BbkIET5AeQ-7C3m39wB3LSXi0k9f9EcLQb5NSP2J24BXiI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELb6QAgOvBELLVioXJCidWzndUBoy3bVqssqQhXqASmyHbu70m5SNqFofxr_jpkku1CBuPXAJQfH8iP-PPONM54h5ACjcCVMSk-DsPNkrkAOAnP1WB75LhDaaNFcFB5Hk0l8fp6kW-TH-i4MulWuZWIjqPPS4Bl5H8wE0K1MSNZ3nVtEOhy9v_zqYQYp_NO6TqfRQuTUrr6D-Va9OxnCWr_hfHR09uHY6zIMeAaaq70wtDEONVA2ibjJpTUil77lXDnNrQK6nmgXOCsdmDV-LkIjne_rWDmhglhAs9tkNwKOAZtr9_Bokn7aHPBgwE1ovL0TKETC-kBBp9AZdCeuacEmWQDotim6Ym4Xs9kfeqFRdqP7__FnekDudQybDtot8ZBs2eIRuftxE562eky-ANN2wL1pWs5XeC8b6g9XhVrMDE1bh7UFqHQ6mF_AfOrpoqLA7Wnq4Vm4XdLPCrZtUVd0VlBF-ZCmmCu4pCOMBvGEnN3E7J6SnaIs7DNCQycSF-UMbVSZJ4EOJLdcS8NsGLGQ98jb9apnpgvBjplA5hmYYgiR7DeI9MjBpvJlG3nk79UOET6bKhguvCkolxdZJ30y6bhTvhaxip1k2ukwUs6ZIGJGm9ioHnkN4LvWxvFgnGEZZgEBqyK68ntkH7AJA8enD3Iezdmk8RMGlstkj-ytIZl1grDKfuHx-b9fvyK3AajZ-GRy-oLc4eg5hIEDxB7ZqZff7D65Za7qWbV82e0zSrIbhuxPy6ZoMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unified+Polynomial+Dynamic+Programming+Algorithms+for+P-Center+Variants+in+a+2D+Pareto+Front&rft.jtitle=Mathematics+%28Basel%29&rft.au=Dupin%2C+Nicolas&rft.au=Nielsen%2C+Frank&rft.au=Talbi%2C+El-Ghazali&rft.date=2021-02-23&rft.pub=MDPI&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=9&rft.issue=4&rft_id=info:doi/10.3390%2Fmath9040453&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03150807v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon