CRBA: A Competitive Rate-Based Algorithm Based on Competitive Spiking Neural Networks

In this paper we present a Competitive Rate-Based Algorithm (CRBA) that approximates operation of a Competitive Spiking Neural Network (CSNN). CRBA is based on modeling of the competition between neurons during a sample presentation, which can be reduced to ranking of the neurons based on a dot prod...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in computational neuroscience Vol. 15; p. 627567
Main Authors: Cachi, Paolo G., Ventura, Sebastián, Cios, Krzysztof J.
Format: Journal Article
Language:English
Published: Switzerland Frontiers Research Foundation 22.04.2021
Frontiers Media S.A
Subjects:
ISSN:1662-5188, 1662-5188
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we present a Competitive Rate-Based Algorithm (CRBA) that approximates operation of a Competitive Spiking Neural Network (CSNN). CRBA is based on modeling of the competition between neurons during a sample presentation, which can be reduced to ranking of the neurons based on a dot product operation and the use of a discrete Expectation Maximization algorithm; the latter is equivalent to the spike time-dependent plasticity rule. CRBA's performance is compared with that of CSNN on the MNIST and Fashion-MNIST datasets. The results show that CRBA performs on par with CSNN, while using three orders of magnitude less computational time. Importantly, we show that the weights and firing thresholds learned by CRBA can be used to initialize CSNN's parameters that results in its much more efficient operation.
AbstractList In this paper we present a Competitive Rate-Based Algorithm (CRBA) that approximates operation of a Competitive Spiking Neural Network (CSNN). CRBA is based on modeling of the competition between neurons during a sample presentation, which can be reduced to ranking of the neurons based on a dot product operation and the use of a discrete Expectation Maximization algorithm; the latter is equivalent to the spike time-dependent plasticity rule. CRBA's performance is compared with that of CSNN on the MNIST and Fashion-MNIST datasets. The results show that CRBA performs on par with CSNN, while using three orders of magnitude less computational time. Importantly, we show that the weights and firing thresholds learned by CRBA can be used to initialize CSNN's parameters that results in its much more efficient operation.In this paper we present a Competitive Rate-Based Algorithm (CRBA) that approximates operation of a Competitive Spiking Neural Network (CSNN). CRBA is based on modeling of the competition between neurons during a sample presentation, which can be reduced to ranking of the neurons based on a dot product operation and the use of a discrete Expectation Maximization algorithm; the latter is equivalent to the spike time-dependent plasticity rule. CRBA's performance is compared with that of CSNN on the MNIST and Fashion-MNIST datasets. The results show that CRBA performs on par with CSNN, while using three orders of magnitude less computational time. Importantly, we show that the weights and firing thresholds learned by CRBA can be used to initialize CSNN's parameters that results in its much more efficient operation.
In this paper we present a Competitive Rate-Based Algorithm (CRBA) that approximates operation of a Competitive Spiking Neural Network (CSNN). CRBA is based on modeling of the competition between neurons during a sample presentation, which can be reduced to ranking of the neurons based on a dot product operation and the use of a discrete Expectation Maximization algorithm; the latter is equivalent to the spike time-dependent plasticity rule. CRBA’s performance is compared with that of CSNN on the MNIST and Fashion-MNIST datasets. The results show that CRBA performs on par with CSNN, while using three orders of magnitude less computational time. Importantly, we show that the weights and firing thresholds learned by CRBA can be used to initialize CSNN's parameters that results in its much more efficient operation.
Author Cachi, Paolo G.
Cios, Krzysztof J.
Ventura, Sebastián
AuthorAffiliation 3 Polish Academy of Sciences , Gliwice , Poland
1 Department of Computer Science, Virginia Commonwealth University , Richmond, VA , United States
2 Department of Computer Science, Universidad de Córdoba , Córdoba , Spain
AuthorAffiliation_xml – name: 3 Polish Academy of Sciences , Gliwice , Poland
– name: 2 Department of Computer Science, Universidad de Córdoba , Córdoba , Spain
– name: 1 Department of Computer Science, Virginia Commonwealth University , Richmond, VA , United States
Author_xml – sequence: 1
  givenname: Paolo G.
  surname: Cachi
  fullname: Cachi, Paolo G.
– sequence: 2
  givenname: Sebastián
  surname: Ventura
  fullname: Ventura, Sebastián
– sequence: 3
  givenname: Krzysztof J.
  surname: Cios
  fullname: Cios, Krzysztof J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33967726$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhi1URC_wAGxQJDZsMvgS31ggTUcFKlUgFbq2bMeZeprEg-0U8fb1NKXqdMHKl_Od_5xj_8fgYAyjA-AtggtChPzYjTYMCwwxWjDMKeMvwBFiDNcUCXHwZH8IjlPaQMgwo_AVOCREMs4xOwJXq8vT5adqWa3CsHXZZ3_rqkudXX2qk2urZb8O0efroZrPYdwjf279jR_X1Xc3Rd2XJf8J8Sa9Bi873Sf35mE9AVdfzn6tvtUXP76er5YXtW0kyTWjVBKjbcO1YEhaYRB0gncUcgFt21onsLNEI9Ywh6GhzOIWuQ4JrIXBDTkB57NuG_RGbaMfdPyrgvbq_iLEtdIxe9s7JYVhLcWN5IY2vBGmMcZqjYlEnS2RovV51tpOZnCl9pjLSHui-5HRX6t1uFUCQUgIKgIfHgRi-D25lNXgk3V9r0cXpqRwqS4YI1QU9P0zdBOmOJanKhRiFGOJZaHePe3osZV_v1cANAM2hpSi6x4RBNXOIereIWrnEDU7pOTwZznWZ5192A3l-_9k3gFa08Bx
CitedBy_id crossref_primary_10_1016_j_neucom_2024_128655
crossref_primary_10_3390_electronics11233909
Cites_doi 10.1007/s00422-008-0233-1
10.1109/TNANO.2013.2250995
10.1371/journal.pcbi.1002250
10.1207/s15516709cog0901_5
10.1016/j.neunet.2017.12.005
10.1017/CBO9781107447615
10.1016/j.neucom.2007.12.038
10.1152/jn.00686.2005
10.1371/journal.pcbi.0030031
10.1371/journal.pcbi.1003037
10.1073/pnas.1820458116
10.1109/TNN.2010.2050600
10.1109/ICASSP40776.2020.9053856
10.1162/089976698300017106
10.1109/IJCNN.2011.6033439
10.1109/CVPR.2012.6248110
10.1523/JNEUROSCI.1425-06.2006
10.1016/j.patcog.2019.05.015
10.3390/s20020500
10.1038/ncomms7922
10.1007/978-3-030-50153-2_57
10.1109/IJCNN.2015.7280696
10.1016/j.neunet.2018.08.024
10.3389/fnins.2017.00682
10.1109/IJCNN.2017.7966099
10.1007/s00422-002-0353-y
10.3389/fninf.2018.00079
10.3389/fncom.2015.00099
10.1109/IJCNN.2018.8489673
ContentType Journal Article
Copyright Copyright © 2021 Cachi, Ventura and Cios.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Cachi, Ventura and Cios. 2021 Cachi, Ventura and Cios
Copyright_xml – notice: Copyright © 2021 Cachi, Ventura and Cios.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Cachi, Ventura and Cios. 2021 Cachi, Ventura and Cios
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fncom.2021.627567
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
PubMed


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5188
ExternalDocumentID oai_doaj_org_article_98b6d52497b54748b4bbcaa2391fc6d5
PMC8100331
33967726
10_3389_fncom_2021_627567
Genre Journal Article
GrantInformation_xml – fundername: Virginia Commonwealth University
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADMLS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
ACXDI
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c493t-65593bac47a8619c8b10e87f50780cddce82ec3a1646e20b56c2d1ef182a8b243
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647448100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-5188
IngestDate Fri Oct 03 12:36:35 EDT 2025
Tue Nov 04 02:01:23 EST 2025
Thu Sep 04 19:24:52 EDT 2025
Fri Jul 25 11:31:51 EDT 2025
Thu Apr 03 06:55:18 EDT 2025
Tue Nov 18 22:18:49 EST 2025
Sat Nov 29 03:37:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MNIST
competitive learning
competitive spiking neural networks
rate-based algorithm
unsupervised image classification
Language English
License Copyright © 2021 Cachi, Ventura and Cios.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-65593bac47a8619c8b10e87f50780cddce82ec3a1646e20b56c2d1ef182a8b243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Thomas Pfeil, Bosch Center for Artificial Intelligence, Germany; Aditya Gilra, Institute of Science and Technology Austria (IST Austria), Austria
Edited by: Anthony N. Burkitt, The University of Melbourne, Australia
OpenAccessLink https://doaj.org/article/98b6d52497b54748b4bbcaa2391fc6d5
PMID 33967726
PQID 2516522929
PQPubID 4424409
ParticipantIDs doaj_primary_oai_doaj_org_article_98b6d52497b54748b4bbcaa2391fc6d5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8100331
proquest_miscellaneous_2524866358
proquest_journals_2516522929
pubmed_primary_33967726
crossref_primary_10_3389_fncom_2021_627567
crossref_citationtrail_10_3389_fncom_2021_627567
PublicationCentury 2000
PublicationDate 2021-04-22
PublicationDateYYYYMMDD 2021-04-22
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-22
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in computational neuroscience
PublicationTitleAlternate Front Comput Neurosci
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Shin (B31) 2010; 21
Kheradpisheh (B14) 2018; 99
Rueckauer (B29) 2017; 11
Gerstner (B9) 2002; 87
Ciregan (B3) 2012
Morrison (B22) 2008; 98
Nessler (B24) 2013; 9
Nessler (B25) 2009
Masquelier (B21) 2007; 3
Diehl (B6) 2015; 9
Querlioz (B28) 2011
Hebb (B12) 1949
Wan (B33) 2013
Diehl (B7) 2015
Zenke (B36) 2015; 6
Liang (B19) 2018; 108
Pfister (B26) 2006; 26
Tavanaei (B32) 2017
Gerstner (B10) 2014
Ermentrout (B8) 1998; 10
Koch (B15) 1998
Comsa (B4) 2020
Xiao (B35) 2017
Querlioz (B27) 2013; 12
B18
Lobov (B20) 2020; 20
Mozafari (B23) 2019; 94
Hazan (B11) 2018
Konorski (B16) 1948
Brette (B1) 2005; 94
Demin (B5) 2018; 12
Kandel (B13) 2013
Krotov (B17) 2019; 116
Wysoski (B34) 2008; 71
Rumelhart (B30) 1985; 9
Zylberberg (B37) 2011; 7
Cachi (B2) 2020
References_xml – volume: 98
  start-page: 459
  year: 2008
  ident: B22
  article-title: Phenomenological models of synaptic plasticity based on spike timing
  publication-title: Biol. Cybern
  doi: 10.1007/s00422-008-0233-1
– volume: 12
  start-page: 288
  year: 2013
  ident: B27
  article-title: Immunity to device variations in a spiking neural network with memristive nanodevices
  publication-title: IEEE Trans. Nanotechnol
  doi: 10.1109/TNANO.2013.2250995
– volume: 7
  start-page: e1002250
  year: 2011
  ident: B37
  article-title: A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of v1 simple cell receptive fields
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1002250
– volume-title: Conditioned Reflexes and Neuron Organization
  year: 1948
  ident: B16
– volume: 9
  start-page: 75
  year: 1985
  ident: B30
  article-title: Feature discovery by competitive learning
  publication-title: Cogn. Sci
  doi: 10.1207/s15516709cog0901_5
– volume: 99
  start-page: 56
  year: 2018
  ident: B14
  article-title: Stdp-based spiking deep convolutional neural networks for object recognition
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2017.12.005
– volume-title: Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition
  year: 2014
  ident: B10
  doi: 10.1017/CBO9781107447615
– volume: 71
  start-page: 2563
  year: 2008
  ident: B34
  article-title: Fast and adaptive network of spiking neurons for multi-view visual pattern recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.12.038
– ident: B18
– start-page: 1357
  volume-title: Advances in Neural Information Processing Systems 22
  year: 2009
  ident: B25
  article-title: “STDP enables spiking neurons to detect hidden causes of their inputs,”
– volume: 94
  start-page: 3637
  year: 2005
  ident: B1
  article-title: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity
  publication-title: J. Neurophysiol
  doi: 10.1152/jn.00686.2005
– volume: 3
  start-page: e30031
  year: 2007
  ident: B21
  article-title: Unsupervised learning of visual features through spike timing dependent plasticity
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.0030031
– volume: 9
  start-page: e1003037
  year: 2013
  ident: B24
  article-title: Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1003037
– volume: 116
  start-page: 7723
  year: 2019
  ident: B17
  article-title: Unsupervised learning by competing hidden units
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1820458116
– volume: 21
  start-page: 1697
  year: 2010
  ident: B31
  article-title: Recognition of partially occluded and rotated images with a network of spiking neurons
  publication-title: IEEE Trans. Neural Netw
  doi: 10.1109/TNN.2010.2050600
– start-page: 8529
  year: 2020
  ident: B4
  article-title: “Temporal coding in spiking neural networks with alpha synaptic function,”
  publication-title: ICASSP 2020
  doi: 10.1109/ICASSP40776.2020.9053856
– volume: 10
  start-page: 1721
  year: 1998
  ident: B8
  article-title: Linearization of F-I curves by adaptation
  publication-title: Neural Comput
  doi: 10.1162/089976698300017106
– start-page: 1775
  volume-title: The 2011 International Joint Conference on Neural Networks
  year: 2011
  ident: B28
  article-title: “Simulation of a memristor-based spiking neural network immune to device variations,”
  doi: 10.1109/IJCNN.2011.6033439
– start-page: 3642
  volume-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition
  year: 2012
  ident: B3
  article-title: “Multi-column deep neural networks for image classification,”
  doi: 10.1109/CVPR.2012.6248110
– volume-title: The Organization of Behavior: A Neuropsychological Theory
  year: 1949
  ident: B12
– volume: 26
  start-page: 9673
  year: 2006
  ident: B26
  article-title: Triplets of spikes in a model of spike timing-dependent plasticity
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.1425-06.2006
– volume-title: Principles of Neural Science, Vol. 5
  year: 2013
  ident: B13
– volume: 94
  start-page: 87
  year: 2019
  ident: B23
  article-title: Bio-inspired digit recognition using reward-modulated spike-timing-dependent plasticity in deep convolutional networks
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.05.015
– volume: 20
  start-page: 500
  year: 2020
  ident: B20
  article-title: Competitive learning in a spiking neural network: towards an intelligent pattern classifier
  publication-title: Sensors
  doi: 10.3390/s20020500
– volume: 6
  start-page: 6922
  year: 2015
  ident: B36
  article-title: Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks
  publication-title: Nat. Commun
  doi: 10.1038/ncomms7922
– start-page: 773
  volume-title: Information Processing and Management of Uncertainty in Knowledge-Based Systems
  year: 2020
  ident: B2
  article-title: “Fast convergence of competitive spiking neural networks with sample-based weight initialization,”
  doi: 10.1007/978-3-030-50153-2_57
– start-page: 1
  volume-title: 2015 International Joint Conference on Neural Networks (IJCNN)
  year: 2015
  ident: B7
  article-title: “Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing,”
  doi: 10.1109/IJCNN.2015.7280696
– volume-title: Methods in Neuronal Modeling: From Ions to Networks
  year: 1998
  ident: B15
– volume: 108
  start-page: 365
  year: 2018
  ident: B19
  article-title: The impact of encoding-decoding schemes and weight normalization in spiking neural networks
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.08.024
– volume: 11
  start-page: 682
  year: 2017
  ident: B29
  article-title: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2017.00682
– start-page: 2023
  volume-title: 2017 International Joint Conference on Neural Networks (IJCNN)
  year: 2017
  ident: B32
  article-title: “Multi-layer unsupervised learning in a spiking convolutional neural network,”
  doi: 10.1109/IJCNN.2017.7966099
– year: 2017
  ident: B35
  article-title: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms
  publication-title: arXiv [Preprint]
– volume: 87
  start-page: 404
  year: 2002
  ident: B9
  article-title: Mathematical formulations of Hebbian learning
  publication-title: Biol. Cybern
  doi: 10.1007/s00422-002-0353-y
– start-page: 1058
  volume-title: Proceedings of the 30th International Conference on Machine Learning, Volume 28 of Proceedings of Machine Learning Research
  year: 2013
  ident: B33
  article-title: “Regularization of neural networks using dropconnect,”
– volume: 12
  start-page: 79
  year: 2018
  ident: B5
  article-title: Recurrent spiking neural network learning based on a competitive maximization of neuronal activity
  publication-title: Front. Neuroinform
  doi: 10.3389/fninf.2018.00079
– volume: 9
  start-page: 99
  year: 2015
  ident: B6
  article-title: Unsupervised learning of digit recognition using spike-timing-dependent plasticity
  publication-title: Front. Comput. Neurosci
  doi: 10.3389/fncom.2015.00099
– start-page: 1
  volume-title: 2018 International Joint Conference on Neural Networks (IJCNN)
  year: 2018
  ident: B11
  article-title: “Unsupervised learning with self-organizing spiking neural networks,”
  doi: 10.1109/IJCNN.2018.8489673
SSID ssj0062650
Score 2.2394876
Snippet In this paper we present a Competitive Rate-Based Algorithm (CRBA) that approximates operation of a Competitive Spiking Neural Network (CSNN). CRBA is based on...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 627567
SubjectTerms Algorithms
Back propagation
Competition
competitive learning
competitive spiking neural networks
Computers
Fashion models
Firing pattern
Learning
MNIST
Neural networks
Neurons
Neuroscience
rate-based algorithm
unsupervised image classification
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcODCqzwCBRkJcUAKXT-S2FxQdkXFaVUVKvUWxa92pTZZdrdI_HtmHO9CEOqFY2JbsTy25_vsyTeEvA0mCGZEkQcbQi4Zd7lunc0d40aV-POycTHZRDWfq7MzfZwO3NYprHK7J8aN2vUWz8gPwQ-XgBXAm39afs8xaxTerqYUGrfJHVRJEDF073i7EwNWL9JNJhAxfRg6DBABts8-RNXzauSLomT_v3Dm3-GSf_ifowf_2_OH5H5CnrQepsojcst3j8l-3QHrvvpJ39EYCxoP2ffJ6exkWn-kNZ1FWB3ji-gJwNJ8Cl7P0fryHL6wubiiw3PfjWp-XS7wBJ6i8gd8cj6Emq-fkNOjz99mX_KUgCG3UotNXgLdEKa1smoVEC2rDJt4VQXAkGpiHQyI4t6KFjXKPJ-YorTcMR-As7TKcCmekr2u7_xzQpWSmgdVOQUYKGiAPdAY4Iu3rWDClhmZbE3R2KROjkkyLhtgKWi9JlqvQes1g_Uy8n7XZDlIc9xUeYr23VVEVe34ol-dN2mRNlqZ0hVASCtTyEoqI42xbcuFZsFCSUYOthZu0lJfN7_Nm5E3u2JYpHjz0na-v8Y6XCrEdiojz4bJtOuJELoEigMjUI2m2air45JucRGFwBXDVHzsxc3deknu4UDgFRjnB2Rvs7r2r8hd-2OzWK9exxXzC6ZJIM4
  priority: 102
  providerName: ProQuest
Title CRBA: A Competitive Rate-Based Algorithm Based on Competitive Spiking Neural Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/33967726
https://www.proquest.com/docview/2516522929
https://www.proquest.com/docview/2524866358
https://pubmed.ncbi.nlm.nih.gov/PMC8100331
https://doaj.org/article/98b6d52497b54748b4bbcaa2391fc6d5
Volume 15
WOSCitedRecordID wos000647448100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: M7P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: PIMPY
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: M2P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH6CwYELAsaPwKiMhDgghdV2Ejvc0qoTHFZFhUnlFMVOvFXa0qntkLjwt_Oek1bLNLHLLpYSO4rz8hx_n_3yPYCPzjjJjYxDZ50LIy6qMC0rG1ZcGJ3Qz8um8skm1HSq5_M0v5bqi2LCWnng1nCHqTZJFSNJUCaOVKRNZIwtSyFT7izW0NcXUc-WTLXfYETpcbeHiRQsPXQNhYYgz-dfvN656s1CXqz_NoR5M1Dy2sxz9AyedpCRZW1Xn8ODunkB-1mDdPniD_vEfBCnXx3fh5PxbJR9ZRkbezzsA4PYDPFkOMLpqmLZ-elytdicXbD2eNn0Wv64XNDSOSPJDrzltI0RX7-Ek6PJz_G3sMucENoolZswQZ4gTWkjVWpkSFYbPqy1cgj-9NBW-Dxa1FaWJC5Wi6GJEysqXjskG6U2IpKvYK9ZNvUbYFpHqXBaVRrBi0sRr-DFiDtqW0oubRLAcGvJwnay4pTd4rxAekHGL7zxCzJ-0Ro_gM-7Sy5bTY3_NR7R69k1JDlsfwKdpOicpLjLSQI42L7cohuj6wKRXYLoE_FhAB921Ti6aMukbOrlFbURkSZQpgN43frCridSpglyE7SA6nlJr6v9mmZx5hW8NaccevztfTzbO3hC5qIdLiEOYG-zuqrfw2P7e7NYrwbwUM31AB6NJtN8NvCDBMtjkVOpfPl3gvX59-P81z9nahoo
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggSX8ijQQAEjAQek0I2dh4OEUHahatWyqkor9ZbGr3alNll2U1D_FL-RsZMsBKHeeuCY2E4c-8vMN5nJDMArIwwLBIt8I43xw4AqPy2U9FVABY_tz8tCuWITyXjMj47SvSX42f0LY8MqO5noBLWqpP1GvoF6OEaugNr84_Sbb6tGWe9qV0KjgcWOvvyBJtv8w_Yn3N_XlG5-Phht-W1VAV-GKav9GDk0E4UMk4Kj9SC5CAaaJwaJER9IpaTmVEtW2MRbmg5EFEuqAm2QiBdc0JDhdW_ATaQRlLtQwb1O8qNtELWeUzT80g1T2oAUilr0ncuynvR0nysR8C9e-3d45h_6bvPu_7ZS92ClZdYka16F-7CkywewmpVFXZ1fkjfExbo6J8IqHI72h9l7kpGRMxtc_BTZR9rtD1GrK5KdneAT1afnpDmuyl7Pr9OJ9TAQm9kEbzluQunnD-HwWh7wESyXVanXgHAeptTwRHHkeCZFWoeDkZ5pWbCAydiDQbf1uWyzr9siIGc5WmEWLblDS27Rkjdo8eDtYsi0ST1yVeehxdOio80a7k5Us5O8FUJ5ykWsIjS4ExGFSchFKIQsCsrSwEhs8WC9Q1TeirJ5_htOHrxcNKMQsp6lotTVhe1DQ265K_fgcQPexUwYS2M04XAFkh6se1Ptt5STU5fonAe21GDw5OppvYDbWwdfdvPd7fHOU7hjF8W6-yhdh-V6dqGfwS35vZ7MZ8_d20rg-LpB_wvyI31u
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VglAvvArUUGCRgAOSabzr2GskhJKUiKooigqVejPeVxuptUOSgvrX-HXMrO1AEOqtB4727trr9bcz33jGMwAvnHIiUqIbOu1cGEfchFlhdGgirmRCPy8r44tNpKORPDrKxmvws_0XhsIqW5noBbWpNH0j30E9nCBXQG2-45qwiPHu8P30W0gVpMjT2pbTqCGyby9-oPk2f7e3i-_6JefDD18GH8OmwkCo40wswgT5tFCFjtNCoiWhpYo6VqYOSZLsaGO0ldxqUVASLss7qptobiLrkJQXUvFY4HWvwfWUkpb7sMFxqwXQTug2XlQ0AnHOJQWncNSob3zG9XRFD_pyAf_iuH-Hav6h-4a3_-dVuwO3GsbNevUWuQtrtrwHm72yWFRnF-wV8zGw3rmwCYeDg37vLeuxgTcnfFwVO0A6HvZR2xvWOz3GJ1qcnLH6uCpXen6eTsjzwCjjCd5yVIfYz-_D4ZU84ANYL6vSbgGTMs64k6mRyP1chnQPByNts7oQkdBJAJ0WBrlusrJTcZDTHK0zQk7ukZMTcvIaOQG8Xg6Z1ilJLuvcJ2wtO1I2cX-imh3njXDKM6kS00VDPFXdOI2lipXSRcFFFjmNLQFst-jKGxE3z39DK4Dny2YUTuRxKkpbnVMfHkvitDKAhzWQlzMRIkvQtMMVSFcgvjLV1ZZycuIToMuIShBGjy6f1jO4iVjPP-2N9h_DBq0JeQE534b1xezcPoEb-vtiMp899RuXwderxvwvQYuGKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRBA%3A+A+Competitive+Rate-Based+Algorithm+Based+on+Competitive+Spiking+Neural+Networks&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Paolo+G.+Cachi&rft.au=Sebasti%C3%A1n+Ventura&rft.au=Krzysztof+J.+Cios&rft.au=Krzysztof+J.+Cios&rft.date=2021-04-22&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5188&rft.volume=15&rft_id=info:doi/10.3389%2Ffncom.2021.627567&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_98b6d52497b54748b4bbcaa2391fc6d5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon