CRBA: A Competitive Rate-Based Algorithm Based on Competitive Spiking Neural Networks
In this paper we present a Competitive Rate-Based Algorithm (CRBA) that approximates operation of a Competitive Spiking Neural Network (CSNN). CRBA is based on modeling of the competition between neurons during a sample presentation, which can be reduced to ranking of the neurons based on a dot prod...
Saved in:
| Published in: | Frontiers in computational neuroscience Vol. 15; p. 627567 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
Frontiers Research Foundation
22.04.2021
Frontiers Media S.A |
| Subjects: | |
| ISSN: | 1662-5188, 1662-5188 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper we present a Competitive Rate-Based Algorithm (CRBA) that approximates operation of a Competitive Spiking Neural Network (CSNN). CRBA is based on modeling of the competition between neurons during a sample presentation, which can be reduced to ranking of the neurons based on a dot product operation and the use of a discrete Expectation Maximization algorithm; the latter is equivalent to the spike time-dependent plasticity rule. CRBA's performance is compared with that of CSNN on the MNIST and Fashion-MNIST datasets. The results show that CRBA performs on par with CSNN, while using three orders of magnitude less computational time. Importantly, we show that the weights and firing thresholds learned by CRBA can be used to initialize CSNN's parameters that results in its much more efficient operation. |
|---|---|
| AbstractList | In this paper we present a Competitive Rate-Based Algorithm (CRBA) that approximates operation of a Competitive Spiking Neural Network (CSNN). CRBA is based on modeling of the competition between neurons during a sample presentation, which can be reduced to ranking of the neurons based on a dot product operation and the use of a discrete Expectation Maximization algorithm; the latter is equivalent to the spike time-dependent plasticity rule. CRBA's performance is compared with that of CSNN on the MNIST and Fashion-MNIST datasets. The results show that CRBA performs on par with CSNN, while using three orders of magnitude less computational time. Importantly, we show that the weights and firing thresholds learned by CRBA can be used to initialize CSNN's parameters that results in its much more efficient operation.In this paper we present a Competitive Rate-Based Algorithm (CRBA) that approximates operation of a Competitive Spiking Neural Network (CSNN). CRBA is based on modeling of the competition between neurons during a sample presentation, which can be reduced to ranking of the neurons based on a dot product operation and the use of a discrete Expectation Maximization algorithm; the latter is equivalent to the spike time-dependent plasticity rule. CRBA's performance is compared with that of CSNN on the MNIST and Fashion-MNIST datasets. The results show that CRBA performs on par with CSNN, while using three orders of magnitude less computational time. Importantly, we show that the weights and firing thresholds learned by CRBA can be used to initialize CSNN's parameters that results in its much more efficient operation. In this paper we present a Competitive Rate-Based Algorithm (CRBA) that approximates operation of a Competitive Spiking Neural Network (CSNN). CRBA is based on modeling of the competition between neurons during a sample presentation, which can be reduced to ranking of the neurons based on a dot product operation and the use of a discrete Expectation Maximization algorithm; the latter is equivalent to the spike time-dependent plasticity rule. CRBA’s performance is compared with that of CSNN on the MNIST and Fashion-MNIST datasets. The results show that CRBA performs on par with CSNN, while using three orders of magnitude less computational time. Importantly, we show that the weights and firing thresholds learned by CRBA can be used to initialize CSNN's parameters that results in its much more efficient operation. |
| Author | Cachi, Paolo G. Cios, Krzysztof J. Ventura, Sebastián |
| AuthorAffiliation | 3 Polish Academy of Sciences , Gliwice , Poland 1 Department of Computer Science, Virginia Commonwealth University , Richmond, VA , United States 2 Department of Computer Science, Universidad de Córdoba , Córdoba , Spain |
| AuthorAffiliation_xml | – name: 3 Polish Academy of Sciences , Gliwice , Poland – name: 2 Department of Computer Science, Universidad de Córdoba , Córdoba , Spain – name: 1 Department of Computer Science, Virginia Commonwealth University , Richmond, VA , United States |
| Author_xml | – sequence: 1 givenname: Paolo G. surname: Cachi fullname: Cachi, Paolo G. – sequence: 2 givenname: Sebastián surname: Ventura fullname: Ventura, Sebastián – sequence: 3 givenname: Krzysztof J. surname: Cios fullname: Cios, Krzysztof J. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33967726$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1DAUhi1URC_wAGxQJDZsMvgS31ggTUcFKlUgFbq2bMeZeprEg-0U8fb1NKXqdMHKl_Od_5xj_8fgYAyjA-AtggtChPzYjTYMCwwxWjDMKeMvwBFiDNcUCXHwZH8IjlPaQMgwo_AVOCREMs4xOwJXq8vT5adqWa3CsHXZZ3_rqkudXX2qk2urZb8O0efroZrPYdwjf279jR_X1Xc3Rd2XJf8J8Sa9Bi873Sf35mE9AVdfzn6tvtUXP76er5YXtW0kyTWjVBKjbcO1YEhaYRB0gncUcgFt21onsLNEI9Ywh6GhzOIWuQ4JrIXBDTkB57NuG_RGbaMfdPyrgvbq_iLEtdIxe9s7JYVhLcWN5IY2vBGmMcZqjYlEnS2RovV51tpOZnCl9pjLSHui-5HRX6t1uFUCQUgIKgIfHgRi-D25lNXgk3V9r0cXpqRwqS4YI1QU9P0zdBOmOJanKhRiFGOJZaHePe3osZV_v1cANAM2hpSi6x4RBNXOIereIWrnEDU7pOTwZznWZ5192A3l-_9k3gFa08Bx |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2024_128655 crossref_primary_10_3390_electronics11233909 |
| Cites_doi | 10.1007/s00422-008-0233-1 10.1109/TNANO.2013.2250995 10.1371/journal.pcbi.1002250 10.1207/s15516709cog0901_5 10.1016/j.neunet.2017.12.005 10.1017/CBO9781107447615 10.1016/j.neucom.2007.12.038 10.1152/jn.00686.2005 10.1371/journal.pcbi.0030031 10.1371/journal.pcbi.1003037 10.1073/pnas.1820458116 10.1109/TNN.2010.2050600 10.1109/ICASSP40776.2020.9053856 10.1162/089976698300017106 10.1109/IJCNN.2011.6033439 10.1109/CVPR.2012.6248110 10.1523/JNEUROSCI.1425-06.2006 10.1016/j.patcog.2019.05.015 10.3390/s20020500 10.1038/ncomms7922 10.1007/978-3-030-50153-2_57 10.1109/IJCNN.2015.7280696 10.1016/j.neunet.2018.08.024 10.3389/fnins.2017.00682 10.1109/IJCNN.2017.7966099 10.1007/s00422-002-0353-y 10.3389/fninf.2018.00079 10.3389/fncom.2015.00099 10.1109/IJCNN.2018.8489673 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Cachi, Ventura and Cios. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2021 Cachi, Ventura and Cios. 2021 Cachi, Ventura and Cios |
| Copyright_xml | – notice: Copyright © 2021 Cachi, Ventura and Cios. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2021 Cachi, Ventura and Cios. 2021 Cachi, Ventura and Cios |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3389/fncom.2021.627567 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-5188 |
| ExternalDocumentID | oai_doaj_org_article_98b6d52497b54748b4bbcaa2391fc6d5 PMC8100331 33967726 10_3389_fncom_2021_627567 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Virginia Commonwealth University |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADBBV ADMLS ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM TR2 ACXDI C1A IPNFZ NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c493t-65593bac47a8619c8b10e87f50780cddce82ec3a1646e20b56c2d1ef182a8b243 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647448100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-5188 |
| IngestDate | Fri Oct 03 12:36:35 EDT 2025 Tue Nov 04 02:01:23 EST 2025 Thu Sep 04 19:24:52 EDT 2025 Fri Jul 25 11:31:51 EDT 2025 Thu Apr 03 06:55:18 EDT 2025 Tue Nov 18 22:18:49 EST 2025 Sat Nov 29 03:37:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | MNIST competitive learning competitive spiking neural networks rate-based algorithm unsupervised image classification |
| Language | English |
| License | Copyright © 2021 Cachi, Ventura and Cios. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c493t-65593bac47a8619c8b10e87f50780cddce82ec3a1646e20b56c2d1ef182a8b243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Thomas Pfeil, Bosch Center for Artificial Intelligence, Germany; Aditya Gilra, Institute of Science and Technology Austria (IST Austria), Austria Edited by: Anthony N. Burkitt, The University of Melbourne, Australia |
| OpenAccessLink | https://doaj.org/article/98b6d52497b54748b4bbcaa2391fc6d5 |
| PMID | 33967726 |
| PQID | 2516522929 |
| PQPubID | 4424409 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_98b6d52497b54748b4bbcaa2391fc6d5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8100331 proquest_miscellaneous_2524866358 proquest_journals_2516522929 pubmed_primary_33967726 crossref_primary_10_3389_fncom_2021_627567 crossref_citationtrail_10_3389_fncom_2021_627567 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-22 |
| PublicationDateYYYYMMDD | 2021-04-22 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in computational neuroscience |
| PublicationTitleAlternate | Front Comput Neurosci |
| PublicationYear | 2021 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Shin (B31) 2010; 21 Kheradpisheh (B14) 2018; 99 Rueckauer (B29) 2017; 11 Gerstner (B9) 2002; 87 Ciregan (B3) 2012 Morrison (B22) 2008; 98 Nessler (B24) 2013; 9 Nessler (B25) 2009 Masquelier (B21) 2007; 3 Diehl (B6) 2015; 9 Querlioz (B28) 2011 Hebb (B12) 1949 Wan (B33) 2013 Diehl (B7) 2015 Zenke (B36) 2015; 6 Liang (B19) 2018; 108 Pfister (B26) 2006; 26 Tavanaei (B32) 2017 Gerstner (B10) 2014 Ermentrout (B8) 1998; 10 Koch (B15) 1998 Comsa (B4) 2020 Xiao (B35) 2017 Querlioz (B27) 2013; 12 B18 Lobov (B20) 2020; 20 Mozafari (B23) 2019; 94 Hazan (B11) 2018 Konorski (B16) 1948 Brette (B1) 2005; 94 Demin (B5) 2018; 12 Kandel (B13) 2013 Krotov (B17) 2019; 116 Wysoski (B34) 2008; 71 Rumelhart (B30) 1985; 9 Zylberberg (B37) 2011; 7 Cachi (B2) 2020 |
| References_xml | – volume: 98 start-page: 459 year: 2008 ident: B22 article-title: Phenomenological models of synaptic plasticity based on spike timing publication-title: Biol. Cybern doi: 10.1007/s00422-008-0233-1 – volume: 12 start-page: 288 year: 2013 ident: B27 article-title: Immunity to device variations in a spiking neural network with memristive nanodevices publication-title: IEEE Trans. Nanotechnol doi: 10.1109/TNANO.2013.2250995 – volume: 7 start-page: e1002250 year: 2011 ident: B37 article-title: A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of v1 simple cell receptive fields publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1002250 – volume-title: Conditioned Reflexes and Neuron Organization year: 1948 ident: B16 – volume: 9 start-page: 75 year: 1985 ident: B30 article-title: Feature discovery by competitive learning publication-title: Cogn. Sci doi: 10.1207/s15516709cog0901_5 – volume: 99 start-page: 56 year: 2018 ident: B14 article-title: Stdp-based spiking deep convolutional neural networks for object recognition publication-title: Neural Netw doi: 10.1016/j.neunet.2017.12.005 – volume-title: Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition year: 2014 ident: B10 doi: 10.1017/CBO9781107447615 – volume: 71 start-page: 2563 year: 2008 ident: B34 article-title: Fast and adaptive network of spiking neurons for multi-view visual pattern recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.12.038 – ident: B18 – start-page: 1357 volume-title: Advances in Neural Information Processing Systems 22 year: 2009 ident: B25 article-title: “STDP enables spiking neurons to detect hidden causes of their inputs,” – volume: 94 start-page: 3637 year: 2005 ident: B1 article-title: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity publication-title: J. Neurophysiol doi: 10.1152/jn.00686.2005 – volume: 3 start-page: e30031 year: 2007 ident: B21 article-title: Unsupervised learning of visual features through spike timing dependent plasticity publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.0030031 – volume: 9 start-page: e1003037 year: 2013 ident: B24 article-title: Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1003037 – volume: 116 start-page: 7723 year: 2019 ident: B17 article-title: Unsupervised learning by competing hidden units publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1820458116 – volume: 21 start-page: 1697 year: 2010 ident: B31 article-title: Recognition of partially occluded and rotated images with a network of spiking neurons publication-title: IEEE Trans. Neural Netw doi: 10.1109/TNN.2010.2050600 – start-page: 8529 year: 2020 ident: B4 article-title: “Temporal coding in spiking neural networks with alpha synaptic function,” publication-title: ICASSP 2020 doi: 10.1109/ICASSP40776.2020.9053856 – volume: 10 start-page: 1721 year: 1998 ident: B8 article-title: Linearization of F-I curves by adaptation publication-title: Neural Comput doi: 10.1162/089976698300017106 – start-page: 1775 volume-title: The 2011 International Joint Conference on Neural Networks year: 2011 ident: B28 article-title: “Simulation of a memristor-based spiking neural network immune to device variations,” doi: 10.1109/IJCNN.2011.6033439 – start-page: 3642 volume-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition year: 2012 ident: B3 article-title: “Multi-column deep neural networks for image classification,” doi: 10.1109/CVPR.2012.6248110 – volume-title: The Organization of Behavior: A Neuropsychological Theory year: 1949 ident: B12 – volume: 26 start-page: 9673 year: 2006 ident: B26 article-title: Triplets of spikes in a model of spike timing-dependent plasticity publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.1425-06.2006 – volume-title: Principles of Neural Science, Vol. 5 year: 2013 ident: B13 – volume: 94 start-page: 87 year: 2019 ident: B23 article-title: Bio-inspired digit recognition using reward-modulated spike-timing-dependent plasticity in deep convolutional networks publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.05.015 – volume: 20 start-page: 500 year: 2020 ident: B20 article-title: Competitive learning in a spiking neural network: towards an intelligent pattern classifier publication-title: Sensors doi: 10.3390/s20020500 – volume: 6 start-page: 6922 year: 2015 ident: B36 article-title: Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks publication-title: Nat. Commun doi: 10.1038/ncomms7922 – start-page: 773 volume-title: Information Processing and Management of Uncertainty in Knowledge-Based Systems year: 2020 ident: B2 article-title: “Fast convergence of competitive spiking neural networks with sample-based weight initialization,” doi: 10.1007/978-3-030-50153-2_57 – start-page: 1 volume-title: 2015 International Joint Conference on Neural Networks (IJCNN) year: 2015 ident: B7 article-title: “Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing,” doi: 10.1109/IJCNN.2015.7280696 – volume-title: Methods in Neuronal Modeling: From Ions to Networks year: 1998 ident: B15 – volume: 108 start-page: 365 year: 2018 ident: B19 article-title: The impact of encoding-decoding schemes and weight normalization in spiking neural networks publication-title: Neural Netw doi: 10.1016/j.neunet.2018.08.024 – volume: 11 start-page: 682 year: 2017 ident: B29 article-title: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification publication-title: Front. Neurosci doi: 10.3389/fnins.2017.00682 – start-page: 2023 volume-title: 2017 International Joint Conference on Neural Networks (IJCNN) year: 2017 ident: B32 article-title: “Multi-layer unsupervised learning in a spiking convolutional neural network,” doi: 10.1109/IJCNN.2017.7966099 – year: 2017 ident: B35 article-title: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms publication-title: arXiv [Preprint] – volume: 87 start-page: 404 year: 2002 ident: B9 article-title: Mathematical formulations of Hebbian learning publication-title: Biol. Cybern doi: 10.1007/s00422-002-0353-y – start-page: 1058 volume-title: Proceedings of the 30th International Conference on Machine Learning, Volume 28 of Proceedings of Machine Learning Research year: 2013 ident: B33 article-title: “Regularization of neural networks using dropconnect,” – volume: 12 start-page: 79 year: 2018 ident: B5 article-title: Recurrent spiking neural network learning based on a competitive maximization of neuronal activity publication-title: Front. Neuroinform doi: 10.3389/fninf.2018.00079 – volume: 9 start-page: 99 year: 2015 ident: B6 article-title: Unsupervised learning of digit recognition using spike-timing-dependent plasticity publication-title: Front. Comput. Neurosci doi: 10.3389/fncom.2015.00099 – start-page: 1 volume-title: 2018 International Joint Conference on Neural Networks (IJCNN) year: 2018 ident: B11 article-title: “Unsupervised learning with self-organizing spiking neural networks,” doi: 10.1109/IJCNN.2018.8489673 |
| SSID | ssj0062650 |
| Score | 2.2394876 |
| Snippet | In this paper we present a Competitive Rate-Based Algorithm (CRBA) that approximates operation of a Competitive Spiking Neural Network (CSNN). CRBA is based on... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 627567 |
| SubjectTerms | Algorithms Back propagation Competition competitive learning competitive spiking neural networks Computers Fashion models Firing pattern Learning MNIST Neural networks Neurons Neuroscience rate-based algorithm unsupervised image classification |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcODCqzwCBRkJcUAKXT-S2FxQdkXFaVUVKvUWxa92pTZZdrdI_HtmHO9CEOqFY2JbsTy25_vsyTeEvA0mCGZEkQcbQi4Zd7lunc0d40aV-POycTHZRDWfq7MzfZwO3NYprHK7J8aN2vUWz8gPwQ-XgBXAm39afs8xaxTerqYUGrfJHVRJEDF073i7EwNWL9JNJhAxfRg6DBABts8-RNXzauSLomT_v3Dm3-GSf_ifowf_2_OH5H5CnrQepsojcst3j8l-3QHrvvpJ39EYCxoP2ffJ6exkWn-kNZ1FWB3ji-gJwNJ8Cl7P0fryHL6wubiiw3PfjWp-XS7wBJ6i8gd8cj6Emq-fkNOjz99mX_KUgCG3UotNXgLdEKa1smoVEC2rDJt4VQXAkGpiHQyI4t6KFjXKPJ-YorTcMR-As7TKcCmekr2u7_xzQpWSmgdVOQUYKGiAPdAY4Iu3rWDClhmZbE3R2KROjkkyLhtgKWi9JlqvQes1g_Uy8n7XZDlIc9xUeYr23VVEVe34ol-dN2mRNlqZ0hVASCtTyEoqI42xbcuFZsFCSUYOthZu0lJfN7_Nm5E3u2JYpHjz0na-v8Y6XCrEdiojz4bJtOuJELoEigMjUI2m2air45JucRGFwBXDVHzsxc3deknu4UDgFRjnB2Rvs7r2r8hd-2OzWK9exxXzC6ZJIM4 priority: 102 providerName: ProQuest |
| Title | CRBA: A Competitive Rate-Based Algorithm Based on Competitive Spiking Neural Networks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33967726 https://www.proquest.com/docview/2516522929 https://www.proquest.com/docview/2524866358 https://pubmed.ncbi.nlm.nih.gov/PMC8100331 https://doaj.org/article/98b6d52497b54748b4bbcaa2391fc6d5 |
| Volume | 15 |
| WOSCitedRecordID | wos000647448100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-5188 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: M7P dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-5188 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: BENPR dateStart: 20071102 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1662-5188 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: PIMPY dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-5188 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: M2P dateStart: 20071102 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH6CwYELAsaPwKiMhDgghdV2Ejvc0qoTHFZFhUnlFMVOvFXa0qntkLjwt_Oek1bLNLHLLpYSO4rz8hx_n_3yPYCPzjjJjYxDZ50LIy6qMC0rG1ZcGJ3Qz8um8skm1HSq5_M0v5bqi2LCWnng1nCHqTZJFSNJUCaOVKRNZIwtSyFT7izW0NcXUc-WTLXfYETpcbeHiRQsPXQNhYYgz-dfvN656s1CXqz_NoR5M1Dy2sxz9AyedpCRZW1Xn8ODunkB-1mDdPniD_vEfBCnXx3fh5PxbJR9ZRkbezzsA4PYDPFkOMLpqmLZ-elytdicXbD2eNn0Wv64XNDSOSPJDrzltI0RX7-Ek6PJz_G3sMucENoolZswQZ4gTWkjVWpkSFYbPqy1cgj-9NBW-Dxa1FaWJC5Wi6GJEysqXjskG6U2IpKvYK9ZNvUbYFpHqXBaVRrBi0sRr-DFiDtqW0oubRLAcGvJwnay4pTd4rxAekHGL7zxCzJ-0Ro_gM-7Sy5bTY3_NR7R69k1JDlsfwKdpOicpLjLSQI42L7cohuj6wKRXYLoE_FhAB921Ti6aMukbOrlFbURkSZQpgN43frCridSpglyE7SA6nlJr6v9mmZx5hW8NaccevztfTzbO3hC5qIdLiEOYG-zuqrfw2P7e7NYrwbwUM31AB6NJtN8NvCDBMtjkVOpfPl3gvX59-P81z9nahoo |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggSX8ijQQAEjAQek0I2dh4OEUHahatWyqkor9ZbGr3alNll2U1D_FL-RsZMsBKHeeuCY2E4c-8vMN5nJDMArIwwLBIt8I43xw4AqPy2U9FVABY_tz8tCuWITyXjMj47SvSX42f0LY8MqO5noBLWqpP1GvoF6OEaugNr84_Sbb6tGWe9qV0KjgcWOvvyBJtv8w_Yn3N_XlG5-Phht-W1VAV-GKav9GDk0E4UMk4Kj9SC5CAaaJwaJER9IpaTmVEtW2MRbmg5EFEuqAm2QiBdc0JDhdW_ATaQRlLtQwb1O8qNtELWeUzT80g1T2oAUilr0ncuynvR0nysR8C9e-3d45h_6bvPu_7ZS92ClZdYka16F-7CkywewmpVFXZ1fkjfExbo6J8IqHI72h9l7kpGRMxtc_BTZR9rtD1GrK5KdneAT1afnpDmuyl7Pr9OJ9TAQm9kEbzluQunnD-HwWh7wESyXVanXgHAeptTwRHHkeCZFWoeDkZ5pWbCAydiDQbf1uWyzr9siIGc5WmEWLblDS27Rkjdo8eDtYsi0ST1yVeehxdOio80a7k5Us5O8FUJ5ykWsIjS4ExGFSchFKIQsCsrSwEhs8WC9Q1TeirJ5_htOHrxcNKMQsp6lotTVhe1DQ265K_fgcQPexUwYS2M04XAFkh6se1Ptt5STU5fonAe21GDw5OppvYDbWwdfdvPd7fHOU7hjF8W6-yhdh-V6dqGfwS35vZ7MZ8_d20rg-LpB_wvyI31u |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VglAvvArUUGCRgAOSabzr2GskhJKUiKooigqVejPeVxuptUOSgvrX-HXMrO1AEOqtB4727trr9bcz33jGMwAvnHIiUqIbOu1cGEfchFlhdGgirmRCPy8r44tNpKORPDrKxmvws_0XhsIqW5noBbWpNH0j30E9nCBXQG2-45qwiPHu8P30W0gVpMjT2pbTqCGyby9-oPk2f7e3i-_6JefDD18GH8OmwkCo40wswgT5tFCFjtNCoiWhpYo6VqYOSZLsaGO0ldxqUVASLss7qptobiLrkJQXUvFY4HWvwfWUkpb7sMFxqwXQTug2XlQ0AnHOJQWncNSob3zG9XRFD_pyAf_iuH-Hav6h-4a3_-dVuwO3GsbNevUWuQtrtrwHm72yWFRnF-wV8zGw3rmwCYeDg37vLeuxgTcnfFwVO0A6HvZR2xvWOz3GJ1qcnLH6uCpXen6eTsjzwCjjCd5yVIfYz-_D4ZU84ANYL6vSbgGTMs64k6mRyP1chnQPByNts7oQkdBJAJ0WBrlusrJTcZDTHK0zQk7ukZMTcvIaOQG8Xg6Z1ilJLuvcJ2wtO1I2cX-imh3njXDKM6kS00VDPFXdOI2lipXSRcFFFjmNLQFst-jKGxE3z39DK4Dny2YUTuRxKkpbnVMfHkvitDKAhzWQlzMRIkvQtMMVSFcgvjLV1ZZycuIToMuIShBGjy6f1jO4iVjPP-2N9h_DBq0JeQE534b1xezcPoEb-vtiMp899RuXwderxvwvQYuGKw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRBA%3A+A+Competitive+Rate-Based+Algorithm+Based+on+Competitive+Spiking+Neural+Networks&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Paolo+G.+Cachi&rft.au=Sebasti%C3%A1n+Ventura&rft.au=Krzysztof+J.+Cios&rft.au=Krzysztof+J.+Cios&rft.date=2021-04-22&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5188&rft.volume=15&rft_id=info:doi/10.3389%2Ffncom.2021.627567&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_98b6d52497b54748b4bbcaa2391fc6d5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon |