Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking

A multilayer perceptron neural network cloud mask for Meteosat Second Generation SEVIRI (Spinning Enhanced Visible and Infrared Imager) images is introduced and evaluated. The model is trained for cloud detection on MSG SEVIRI daytime data. It consists of a multi-layer perceptron with one hidden sig...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 7; no. 2; pp. 1529 - 1539
Main Authors: Taravat, Alireza, Proud, Simon, Peronaci, Simone, Del Frate, Fabio, Oppelt, Natascha
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.02.2015
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A multilayer perceptron neural network cloud mask for Meteosat Second Generation SEVIRI (Spinning Enhanced Visible and Infrared Imager) images is introduced and evaluated. The model is trained for cloud detection on MSG SEVIRI daytime data. It consists of a multi-layer perceptron with one hidden sigmoid layer, trained with the error back-propagation algorithm. The model is fed by six bands of MSG data (0.6, 0.8, 1.6, 3.9, 6.2 and 10.8 μm) with 10 hidden nodes. The multiple-layer perceptrons lead to a cloud detection accuracy of 88.96%, when trained to map two predefined values that classify cloud and clear sky. The network was further evaluated using sixty MSG images taken at different dates. The network detected not only bright thick clouds but also thin or less bright clouds. The analysis demonstrated the feasibility of using machine learning models of cloud detection in MSG SEVIRI imagery.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs70201529