Detection of EEG burst-suppression in neurocritical care patients using an unsupervised machine learning algorithm
•A novel burst suppression detection algorithm that doesn’t require annotated data.•The algorithm adapts to each patient, is fast and provides confidence scores.•We report competitive performance compared to supervised deep neural networks. The burst suppression pattern in clinical electroencephalog...
Saved in:
| Published in: | Clinical neurophysiology Vol. 132; no. 10; pp. 2485 - 2492 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.10.2021
|
| Subjects: | |
| ISSN: | 1388-2457, 1872-8952, 1872-8952 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A novel burst suppression detection algorithm that doesn’t require annotated data.•The algorithm adapts to each patient, is fast and provides confidence scores.•We report competitive performance compared to supervised deep neural networks.
The burst suppression pattern in clinical electroencephalographic (EEG) recordings is an important diagnostic tool because of its association with comas of various etiologies, as with hypoxia, drug related intoxication or deep anesthesia. The detection of bursts and the calculation of burst/suppression ratio are often used to monitor the level of anesthesia during treatment of status epilepticus. However, manual counting of bursts is a laborious process open to inter-rater variation and motivates a need for automatic detection. METHODS: We describe a novel unsupervised learning algorithm that detects bursts in EEG and generates burst-per-minute estimates for the purpose of monitoring sedation level in an intensive care unit (ICU). We validated the algorithm on 29 hours of burst annotated EEG data from 29 patients suffering from status epilepticus and hemorrhage. RESULTS: We report competitive results in comparison to neural networks learned via supervised learning. The mean absolute error (SD) in bursts per minute was 0.93 (1.38). CONCLUSION: We present a novel burst suppression detection algorithm that adapts to each patient individually, reports bursts-per-minute quickly, and does not require manual fine-tuning unlike previous approaches to burst-suppression pattern detection. SIGNIFICANCE: Our algorithm for automatic burst suppression quantification can greatly reduce manual oversight in depth of sedation monitoring. |
|---|---|
| AbstractList | •A novel burst suppression detection algorithm that doesn’t require annotated data.•The algorithm adapts to each patient, is fast and provides confidence scores.•We report competitive performance compared to supervised deep neural networks.
The burst suppression pattern in clinical electroencephalographic (EEG) recordings is an important diagnostic tool because of its association with comas of various etiologies, as with hypoxia, drug related intoxication or deep anesthesia. The detection of bursts and the calculation of burst/suppression ratio are often used to monitor the level of anesthesia during treatment of status epilepticus. However, manual counting of bursts is a laborious process open to inter-rater variation and motivates a need for automatic detection. METHODS: We describe a novel unsupervised learning algorithm that detects bursts in EEG and generates burst-per-minute estimates for the purpose of monitoring sedation level in an intensive care unit (ICU). We validated the algorithm on 29 hours of burst annotated EEG data from 29 patients suffering from status epilepticus and hemorrhage. RESULTS: We report competitive results in comparison to neural networks learned via supervised learning. The mean absolute error (SD) in bursts per minute was 0.93 (1.38). CONCLUSION: We present a novel burst suppression detection algorithm that adapts to each patient individually, reports bursts-per-minute quickly, and does not require manual fine-tuning unlike previous approaches to burst-suppression pattern detection. SIGNIFICANCE: Our algorithm for automatic burst suppression quantification can greatly reduce manual oversight in depth of sedation monitoring. The burst suppression pattern in clinical electroencephalographic (EEG) recordings is an important diagnostic tool because of its association with comas of various etiologies, as with hypoxia, drug related intoxication or deep anesthesia. The detection of bursts and the calculation of burst/suppression ratio are often used to monitor the level of anesthesia during treatment of status epilepticus. However, manual counting of bursts is a laborious process open to inter-rater variation and motivates a need for automatic detection.OBJECTIVEThe burst suppression pattern in clinical electroencephalographic (EEG) recordings is an important diagnostic tool because of its association with comas of various etiologies, as with hypoxia, drug related intoxication or deep anesthesia. The detection of bursts and the calculation of burst/suppression ratio are often used to monitor the level of anesthesia during treatment of status epilepticus. However, manual counting of bursts is a laborious process open to inter-rater variation and motivates a need for automatic detection.We describe a novel unsupervised learning algorithm that detects bursts in EEG and generates burst-per-minute estimates for the purpose of monitoring sedation level in an intensive care unit (ICU). We validated the algorithm on 29 hours of burst annotated EEG data from 29 patients suffering from status epilepticus and hemorrhage.METHODSWe describe a novel unsupervised learning algorithm that detects bursts in EEG and generates burst-per-minute estimates for the purpose of monitoring sedation level in an intensive care unit (ICU). We validated the algorithm on 29 hours of burst annotated EEG data from 29 patients suffering from status epilepticus and hemorrhage.We report competitive results in comparison to neural networks learned via supervised learning. The mean absolute error (SD) in bursts per minute was 0.93 (1.38).RESULTSWe report competitive results in comparison to neural networks learned via supervised learning. The mean absolute error (SD) in bursts per minute was 0.93 (1.38).We present a novel burst suppression detection algorithm that adapts to each patient individually, reports bursts-per-minute quickly, and does not require manual fine-tuning unlike previous approaches to burst-suppression pattern detection.CONCLUSIONWe present a novel burst suppression detection algorithm that adapts to each patient individually, reports bursts-per-minute quickly, and does not require manual fine-tuning unlike previous approaches to burst-suppression pattern detection.Our algorithm for automatic burst suppression quantification can greatly reduce manual oversight in depth of sedation monitoring.SIGNIFICANCEOur algorithm for automatic burst suppression quantification can greatly reduce manual oversight in depth of sedation monitoring. Highlights•A novel burst suppression detection algorithm that doesn’t require annotated data. •The algorithm adapts to each patient, is fast and provides confidence scores. •We report competitive performance compared to supervised deep neural networks. |
| Author | Strässle, C. Narula, G. Imbach, L.L. Haeberlin, M. Keller, E. Balsiger, J. |
| Author_xml | – sequence: 1 givenname: G. surname: Narula fullname: Narula, G. email: gagan.narula@uzh.ch organization: Neurocritical Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, University Hospital Zürich, Zürich, Switzerland – sequence: 2 givenname: M. surname: Haeberlin fullname: Haeberlin, M. organization: Department of Epileptology, Neurology Clinic, University Hospital Zürich, Zürich, Switzerland – sequence: 3 givenname: J. surname: Balsiger fullname: Balsiger, J. organization: Department of Epileptology, Neurology Clinic, University Hospital Zürich, Zürich, Switzerland – sequence: 4 givenname: C. surname: Strässle fullname: Strässle, C. organization: Neurocritical Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, University Hospital Zürich, Zürich, Switzerland – sequence: 5 givenname: L.L. surname: Imbach fullname: Imbach, L.L. organization: Department of Epileptology, Neurology Clinic, University Hospital Zürich, Zürich, Switzerland – sequence: 6 givenname: E. surname: Keller fullname: Keller, E. organization: Neurocritical Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, University Hospital Zürich, Zürich, Switzerland |
| BookMark | eNqVkk1rFTEUhgepYFv9By6ydDNjPmbyISJIvbZCwYXdh0zmTG-uc5MxyRT67028rgQpXSWQ93kDzzkXzZkPHprmLcEdwYS_P3R2cX7ddxRT0mHRYSJfNOdECtpKNdCzcmdStrQfxKvmIqUDxljgnp438QtksNkFj8KMdrtrNG4x5TZt6xohpfrgPPKwxWCjy86aBVkTAa0mO_A5oS05f4-MR5svFMQHl2BCR2P3zgNawET_J7Dch1KwP75uXs5mSfDm73nZ3H3d3V3dtLffr79dfb5tba9YbvuJ0xnLUUkCarJilsqYmc1kpIYxy6UYBwWG0t4oOoNhRqgRJgGUcd737LJ5d6pdY_i1Qcr66JKFZTEewpY0HTjHlKuhRvtT1MaQUoRZr9EdTXzUBOtqWB_0ybCuhjUWuhgu2Id_MOuyqS5zNG55Cv50gqEoeHAQdbLFp4XJxTIQPQX33IIaqvP5CY-QDmGLvujVRCeqsf5RN6AuACUYc8lwKfj4_4Kn__8NbzjIGA |
| CitedBy_id | crossref_primary_10_3389_fmed_2023_1174429 crossref_primary_10_1213_ANE_0000000000006119 crossref_primary_10_1007_s12028_024_02140_w crossref_primary_10_1016_j_seizure_2025_06_019 crossref_primary_10_1093_jamia_ocac064 crossref_primary_10_1016_j_neurot_2025_e00524 crossref_primary_10_1097_MCC_0000000000000940 crossref_primary_10_1109_ACCESS_2025_3581598 crossref_primary_10_1227_neu_0000000000002017 crossref_primary_10_1097_JHM_D_23_00252 crossref_primary_10_1213_ANE_0000000000007141 |
| Cites_doi | 10.1111/j.1651-2227.2009.01653.x 10.1016/S0013-4694(98)00009-1 10.1097/CCM.0b013e31825b94f0 10.1016/j.clinph.2016.02.001 10.1007/978-3-662-05296-9_31 10.1016/0303-8467(91)90015-H 10.1038/s41592-019-0686-2 10.1088/1741-2560/10/5/056017 10.1007/BF02551274 10.1109/10.661266 10.1016/0013-4694(85)91085-5 10.1016/j.jneumeth.2013.07.003 10.1016/j.yebeh.2015.06.012 10.1152/ajplegacy.1936.116.3.577 10.1023/A:1009990629797 10.1007/BF02332690 10.1152/jn.1949.12.2.137 10.1177/155005949903000305 10.1023/A:1016393904439 10.1109/TIT.1982.1056489 |
| ContentType | Journal Article |
| Copyright | 2021 International Federation of Clinical Neurophysiology Copyright © 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2021 International Federation of Clinical Neurophysiology – notice: Copyright © 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION 7X8 |
| DOI | 10.1016/j.clinph.2021.07.018 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-8952 |
| EndPage | 2492 |
| ExternalDocumentID | 10_1016_j_clinph_2021_07_018 S1388245721006830 1_s2_0_S1388245721006830 |
| GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFO ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HX~ HZ~ IHE J1W K-O KOM L7B M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OHT OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSN SSZ T5K UAP UNMZH UV1 VH1 X7M XOL XPP Z5R ZGI ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW PKN RIG VQA 6I. AADPK AAFTH AAIAV ABLVK ABYKQ AFMIJ AHPSJ AJBFU LCYCR ZA5 9DU AAYXX CITATION 7X8 |
| ID | FETCH-LOGICAL-c493t-4d62f08b981e9dc7f89aaf3f1b2a33c687b59ea224a92fea3a79bed7e2366443 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704914800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1388-2457 1872-8952 |
| IngestDate | Sun Sep 28 00:47:55 EDT 2025 Tue Nov 18 22:23:36 EST 2025 Sat Nov 29 07:02:51 EST 2025 Fri Feb 23 02:43:37 EST 2024 Tue Feb 25 20:10:14 EST 2025 Tue Oct 14 19:38:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Burst suppression Unsupervised Neurocritical care EEG Machine learning machine learning unsupervised neurocritical care |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c493t-4d62f08b981e9dc7f89aaf3f1b2a33c687b59ea224a92fea3a79bed7e2366443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.clinph.2021.07.018 |
| PQID | 2566026954 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2566026954 crossref_primary_10_1016_j_clinph_2021_07_018 crossref_citationtrail_10_1016_j_clinph_2021_07_018 elsevier_sciencedirect_doi_10_1016_j_clinph_2021_07_018 elsevier_clinicalkeyesjournals_1_s2_0_S1388245721006830 elsevier_clinicalkey_doi_10_1016_j_clinph_2021_07_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Clinical neurophysiology |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hallberg, Grossmann, Bartocci, Blennow (b0050) 2010; 99 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b0090) 2011; 12 Chemali, Ching, Purdon, Solt, Brown (b0020) 2013; 10 Weissenborn, Wilkens, Hausmann, Degen (b0115) 1991; 93 Agarwal, Gotman, Flanagan, Rosenblatt (b0005) 1998; 107 Derbyshire, Rempel, Forbes, Lambert (b0035) 1936; 116 Särkelä, Mustola, Seppänen, Koskinen, Lepola, Suominen (b0095) 2002; 17 Pagni, Courjon (b0085) 1964; 13 Shi, Malik (b0100) 2000; 22 Ba JL, Kiros JR, Hinton GE. Layer Normalization. ArXiv160706450 Cs Stat 2016. Cloostermans, van Meulen, Eertman, Hom, van Putten (b0025) 2012; 40 Fürbass, Herta, Koren, Westover, Hartmann, Gruber, Baumgartner, Kluge (b0045) 2016; 127 Lloyd (b0070) 1982; 28 Swank, Watson (b0105) 1949; 12 Amzica (b0010) 2015; 49 Lipping, Jäntti, Yli-Hankala, Hartikainen (b0065) 1995; 12 Niedermeyer, Sherman, Geocadin, Hansen, Hanley (b0080) 1999; 30 Westover, Shafi, Ching, Chemali, Purdon, Cash, Brown (b0120) 2013; 219 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau (b0110) 2020; 17 Leistritz, Jäger, Schelenz, Witte, Putsche, Specht (b0060) 1999; 15 Zaret (b0130) 1985; 61 Young, Wang, Connolly (b0125) 2004; 21 Förstner W, Moonen B. A metric for covariance matrices. In: Grafarend EW, Krumm FW, Schwarze VS (editors). Geod.- Chall. 3rd Millenn. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, p. 299–309. https://doi.org/10.1007/978-3-662-05296-9_31. Mukhopadhyay, Ray (b0075) 1998; 45 Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Int. Conf. Mach. Learn., PMLR; 2015, p. 448–56. Cybenko (b0030) 1989; 2 Mukhopadhyay (10.1016/j.clinph.2021.07.018_b0075) 1998; 45 Young (10.1016/j.clinph.2021.07.018_b0125) 2004; 21 Weissenborn (10.1016/j.clinph.2021.07.018_b0115) 1991; 93 Fürbass (10.1016/j.clinph.2021.07.018_b0045) 2016; 127 Agarwal (10.1016/j.clinph.2021.07.018_b0005) 1998; 107 10.1016/j.clinph.2021.07.018_b0015 Lipping (10.1016/j.clinph.2021.07.018_b0065) 1995; 12 Derbyshire (10.1016/j.clinph.2021.07.018_b0035) 1936; 116 10.1016/j.clinph.2021.07.018_b0040 Westover (10.1016/j.clinph.2021.07.018_b0120) 2013; 219 Hallberg (10.1016/j.clinph.2021.07.018_b0050) 2010; 99 Chemali (10.1016/j.clinph.2021.07.018_b0020) 2013; 10 Leistritz (10.1016/j.clinph.2021.07.018_b0060) 1999; 15 Lloyd (10.1016/j.clinph.2021.07.018_b0070) 1982; 28 Zaret (10.1016/j.clinph.2021.07.018_b0130) 1985; 61 Amzica (10.1016/j.clinph.2021.07.018_b0010) 2015; 49 Niedermeyer (10.1016/j.clinph.2021.07.018_b0080) 1999; 30 Cybenko (10.1016/j.clinph.2021.07.018_b0030) 1989; 2 Pagni (10.1016/j.clinph.2021.07.018_b0085) 1964; 13 10.1016/j.clinph.2021.07.018_b0055 Virtanen (10.1016/j.clinph.2021.07.018_b0110) 2020; 17 Swank (10.1016/j.clinph.2021.07.018_b0105) 1949; 12 Särkelä (10.1016/j.clinph.2021.07.018_b0095) 2002; 17 Shi (10.1016/j.clinph.2021.07.018_b0100) 2000; 22 Pedregosa (10.1016/j.clinph.2021.07.018_b0090) 2011; 12 Cloostermans (10.1016/j.clinph.2021.07.018_b0025) 2012; 40 |
| References_xml | – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: b0110 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat Methods – volume: 40 start-page: 2867 year: 2012 end-page: 2875 ident: b0025 article-title: Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: A prospective cohort study publication-title: Crit Care Med – volume: 17 start-page: 125 year: 2002 end-page: 134 ident: b0095 article-title: Automatic analysis and monitoring of burst suppression in Anesthesia publication-title: J Clin Monit Comput – reference: Förstner W, Moonen B. A metric for covariance matrices. In: Grafarend EW, Krumm FW, Schwarze VS (editors). Geod.- Chall. 3rd Millenn. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, p. 299–309. https://doi.org/10.1007/978-3-662-05296-9_31. – volume: 127 start-page: 2038 year: 2016 end-page: 2046 ident: b0045 article-title: Monitoring burst suppression in critically ill patients: Multi-centric evaluation of a novel method publication-title: Clin Neurophysiol – volume: 22 start-page: 18 year: 2000 ident: b0100 article-title: Normalized Cuts and Image Segmentation publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 30 start-page: 99 year: 1999 end-page: 105 ident: b0080 article-title: The Burst-Suppression Electroencephalogram publication-title: Clin Electroencephalogr – volume: 13 start-page: 35 year: 1964 end-page: 49 ident: b0085 article-title: Electroencephalographic modifications induced by moderate and deep hypothermia in man publication-title: Acta Neurochir – volume: 219 start-page: 131 year: 2013 end-page: 141 ident: b0120 article-title: Real-time segmentation of burst suppression patterns in critical care EEG monitoring publication-title: J Neurosci Methods – volume: 116 start-page: 577 year: 1936 end-page: 596 ident: b0035 article-title: The effects of anesthetics on action potentials in the cerebral cortex of the cat publication-title: Am J Physiol – volume: 45 start-page: 180 year: 1998 end-page: 187 ident: b0075 article-title: A new interpretation of nonlinear energy operator and its efficacy in spike detection publication-title: IEEE Trans Biomed Eng – reference: Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Int. Conf. Mach. Learn., PMLR; 2015, p. 448–56. – volume: 93 start-page: 77 year: 1991 end-page: 80 ident: b0115 article-title: Burst suppression EEG with baclofen overdose publication-title: Clin Neurol Neurosurg – volume: 28 start-page: 129 year: 1982 end-page: 137 ident: b0070 article-title: Least squares quantization in PCM publication-title: IEEE Trans Inf Theory – volume: 10 year: 2013 ident: b0020 article-title: Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression publication-title: J Neural Eng – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b0090 article-title: Scikit-learn: Machine Learning in Python publication-title: J Mach Learn Res – volume: 12 start-page: 161 year: 1995 end-page: 167 ident: b0065 article-title: Adaptive segmentation of burst-suppression pattern in isoflurane and enflurane anesthesia publication-title: Int J Clin Monit Comput – volume: 21 start-page: 379 year: 2004 end-page: 390 ident: b0125 article-title: Prognostic determination in anoxic-ischemic and traumatic encephalopathies publication-title: J Clin Neurophysiol – volume: 2 start-page: 303 year: 1989 end-page: 314 ident: b0030 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math Control Signals Syst – volume: 61 start-page: 199 year: 1985 end-page: 209 ident: b0130 article-title: Prognostic and neurophysiological implications of concurrent burst suppression and alpha patterns in the EEG of post-anoxic coma publication-title: Electroencephalogr Clin Neurophysiol – volume: 49 start-page: 234 year: 2015 end-page: 237 ident: b0010 article-title: What does burst suppression really mean? publication-title: Epilepsy Behav – volume: 107 start-page: 44 year: 1998 end-page: 58 ident: b0005 article-title: Automatic EEG analysis during long-term monitoring in the ICU publication-title: Electroencephalogr Clin Neurophysiol – volume: 12 start-page: 137 year: 1949 end-page: 160 ident: b0105 article-title: Effects of barbiturates and ether on spontaneous electrical activity of dog brain publication-title: J Neurophysiol – volume: 99 start-page: 531 year: 2010 end-page: 536 ident: b0050 article-title: The prognostic value of early aEEG in asphyxiated infants undergoing systemic hypothermia treatment publication-title: Acta Paediatr – reference: Ba JL, Kiros JR, Hinton GE. Layer Normalization. ArXiv160706450 Cs Stat 2016. – volume: 15 start-page: 357 year: 1999 end-page: 367 ident: b0060 article-title: New approaches for the detection and analysis of electroencephalographic burst-suppression patterns in patients under sedation publication-title: J Clin Monit Comput – volume: 99 start-page: 531 year: 2010 ident: 10.1016/j.clinph.2021.07.018_b0050 article-title: The prognostic value of early aEEG in asphyxiated infants undergoing systemic hypothermia treatment publication-title: Acta Paediatr doi: 10.1111/j.1651-2227.2009.01653.x – volume: 107 start-page: 44 issue: 1 year: 1998 ident: 10.1016/j.clinph.2021.07.018_b0005 article-title: Automatic EEG analysis during long-term monitoring in the ICU publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/S0013-4694(98)00009-1 – ident: 10.1016/j.clinph.2021.07.018_b0015 – volume: 22 start-page: 18 year: 2000 ident: 10.1016/j.clinph.2021.07.018_b0100 article-title: Normalized Cuts and Image Segmentation publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 40 start-page: 2867 issue: 10 year: 2012 ident: 10.1016/j.clinph.2021.07.018_b0025 article-title: Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: A prospective cohort study publication-title: Crit Care Med doi: 10.1097/CCM.0b013e31825b94f0 – volume: 127 start-page: 2038 issue: 4 year: 2016 ident: 10.1016/j.clinph.2021.07.018_b0045 article-title: Monitoring burst suppression in critically ill patients: Multi-centric evaluation of a novel method publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2016.02.001 – ident: 10.1016/j.clinph.2021.07.018_b0040 doi: 10.1007/978-3-662-05296-9_31 – volume: 13 start-page: 35 year: 1964 ident: 10.1016/j.clinph.2021.07.018_b0085 article-title: Electroencephalographic modifications induced by moderate and deep hypothermia in man publication-title: Acta Neurochir – volume: 93 start-page: 77 issue: 1 year: 1991 ident: 10.1016/j.clinph.2021.07.018_b0115 article-title: Burst suppression EEG with baclofen overdose publication-title: Clin Neurol Neurosurg doi: 10.1016/0303-8467(91)90015-H – volume: 17 start-page: 261 issue: 3 year: 2020 ident: 10.1016/j.clinph.2021.07.018_b0110 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat Methods doi: 10.1038/s41592-019-0686-2 – volume: 10 issue: 5 year: 2013 ident: 10.1016/j.clinph.2021.07.018_b0020 article-title: Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression publication-title: J Neural Eng doi: 10.1088/1741-2560/10/5/056017 – volume: 2 start-page: 303 issue: 4 year: 1989 ident: 10.1016/j.clinph.2021.07.018_b0030 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math Control Signals Syst doi: 10.1007/BF02551274 – ident: 10.1016/j.clinph.2021.07.018_b0055 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.clinph.2021.07.018_b0090 article-title: Scikit-learn: Machine Learning in Python publication-title: J Mach Learn Res – volume: 45 start-page: 180 year: 1998 ident: 10.1016/j.clinph.2021.07.018_b0075 article-title: A new interpretation of nonlinear energy operator and its efficacy in spike detection publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.661266 – volume: 61 start-page: 199 issue: 4 year: 1985 ident: 10.1016/j.clinph.2021.07.018_b0130 article-title: Prognostic and neurophysiological implications of concurrent burst suppression and alpha patterns in the EEG of post-anoxic coma publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(85)91085-5 – volume: 219 start-page: 131 issue: 1 year: 2013 ident: 10.1016/j.clinph.2021.07.018_b0120 article-title: Real-time segmentation of burst suppression patterns in critical care EEG monitoring publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2013.07.003 – volume: 49 start-page: 234 year: 2015 ident: 10.1016/j.clinph.2021.07.018_b0010 article-title: What does burst suppression really mean? publication-title: Epilepsy Behav doi: 10.1016/j.yebeh.2015.06.012 – volume: 116 start-page: 577 issue: 3 year: 1936 ident: 10.1016/j.clinph.2021.07.018_b0035 article-title: The effects of anesthetics on action potentials in the cerebral cortex of the cat publication-title: Am J Physiol doi: 10.1152/ajplegacy.1936.116.3.577 – volume: 15 start-page: 357 year: 1999 ident: 10.1016/j.clinph.2021.07.018_b0060 article-title: New approaches for the detection and analysis of electroencephalographic burst-suppression patterns in patients under sedation publication-title: J Clin Monit Comput doi: 10.1023/A:1009990629797 – volume: 12 start-page: 161 issue: 3 year: 1995 ident: 10.1016/j.clinph.2021.07.018_b0065 article-title: Adaptive segmentation of burst-suppression pattern in isoflurane and enflurane anesthesia publication-title: Int J Clin Monit Comput doi: 10.1007/BF02332690 – volume: 12 start-page: 137 issue: 2 year: 1949 ident: 10.1016/j.clinph.2021.07.018_b0105 article-title: Effects of barbiturates and ether on spontaneous electrical activity of dog brain publication-title: J Neurophysiol doi: 10.1152/jn.1949.12.2.137 – volume: 30 start-page: 99 issue: 3 year: 1999 ident: 10.1016/j.clinph.2021.07.018_b0080 article-title: The Burst-Suppression Electroencephalogram publication-title: Clin Electroencephalogr doi: 10.1177/155005949903000305 – volume: 17 start-page: 125 year: 2002 ident: 10.1016/j.clinph.2021.07.018_b0095 article-title: Automatic analysis and monitoring of burst suppression in Anesthesia publication-title: J Clin Monit Comput doi: 10.1023/A:1016393904439 – volume: 21 start-page: 379 year: 2004 ident: 10.1016/j.clinph.2021.07.018_b0125 article-title: Prognostic determination in anoxic-ischemic and traumatic encephalopathies publication-title: J Clin Neurophysiol – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 10.1016/j.clinph.2021.07.018_b0070 article-title: Least squares quantization in PCM publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1982.1056489 |
| SSID | ssj0007042 |
| Score | 2.4490335 |
| Snippet | •A novel burst suppression detection algorithm that doesn’t require annotated data.•The algorithm adapts to each patient, is fast and provides confidence... Highlights•A novel burst suppression detection algorithm that doesn’t require annotated data. •The algorithm adapts to each patient, is fast and provides... The burst suppression pattern in clinical electroencephalographic (EEG) recordings is an important diagnostic tool because of its association with comas of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2485 |
| SubjectTerms | Burst suppression EEG Machine learning Neurocritical care Neurology Unsupervised |
| Title | Detection of EEG burst-suppression in neurocritical care patients using an unsupervised machine learning algorithm |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1388245721006830 https://www.clinicalkey.es/playcontent/1-s2.0-S1388245721006830 https://dx.doi.org/10.1016/j.clinph.2021.07.018 https://www.proquest.com/docview/2566026954 |
| Volume | 132 |
| WOSCitedRecordID | wos000704914800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8952 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007042 issn: 1388-2457 databaseCode: AIEXJ dateStart: 20180601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiFeEFcxLpOREC9VpsRJ6vhxjG6ASkGiSH2znMQenbq0NMm0n8LP5dix05YOrTzwElWWnVQ-n48_H58LQm_yFPZEyWClsZR4AAq95jIKAtHLUupNwSRxHdLRKJlM2NdO55eLhbma0aJIrq_Z4r-KGtpA2Dp09h_E3b4UGuA3CB2eIHZ47iT497KSmeOBg8FZD6atrLyyXlifV-PbaPJYZq7OgfH_silWy15dNpGLvbqAUVqZlEBLL43bpXR1JqDD7HwOL_hxuU5wT1ykpfmAsZtsGO5HYlnPDGE9Wyk_EPHSFo5vDUHvYKKm5w2gVldXVXOzHwE9lisbr7VakKD1f3OKNqEaH0322iN5Q5vTzivzZ926wFplGzXVfrZ2gcYgcXGkg0sX-saJBCZDq9X0G0m3R1_46ffhkI8Hk_HbxU9P1yPT9_a2OMse2ic0ZkkX7R9_HEw-tbs89U1hpvY_u7BM4zu4_eG_0Z4_CIBhNeMH6L49juDjBkYPUUcWj9Ddz9bh4jFatmjCc4UBTXgLTXha4A00YY0m7NCEDZqwKPA6mrBFE3Zowi2anqDx6WB88sGzZTq8LGJh5UV5nyg_SVkSSJZnVCVMCBWqICUiDLN-QtOYSQFcUTCipAgFZanMQRGEfWDj4VPULeaFfIawEFlMfJGlSmZRTuAwo3Kgl8pXKlUqYAcodJPIM5vCXldSmXHnq3jBm6nneuq5TzlM_QHy2lGLJoXLLf1jJx_uwpNhQ-WArlvG0ZvGydIqh5IHvCTc59-CEM61UUxJoCO0Qn99pCW-DaHd4ZuvHYA47Av6sk8Ucl6XHI4yuroci6PnO_R5ge6tVulL1K2WtXyF7mRX1bRcHqI9OkkO7Qr4DTbs4Dw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+EEG+burst-suppression+in+neurocritical+care+patients+using+an+unsupervised+machine+learning+algorithm&rft.jtitle=Clinical+neurophysiology&rft.au=Narula%2C+G&rft.au=Haeberlin%2C+M&rft.au=Balsiger%2C+J&rft.au=Str%C3%A4ssle%2C+C&rft.date=2021-10-01&rft.issn=1872-8952&rft.eissn=1872-8952&rft.volume=132&rft.issue=10&rft.spage=2485&rft_id=info:doi/10.1016%2Fj.clinph.2021.07.018&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2457&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2457&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2457&client=summon |