Estimating Brain Functional Networks Based on Adaptively-Weighted fMRI Signals for MCI Identification

Brain functional network (BFN) analysis is becoming a crucial way to explore the inherent organized pattern of the brain and reveal potential biomarkers for diagnosing neurological or psychological disorders. In so doing, a well-estimated BFN is of great concern. In practice, however, noises or arti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in aging neuroscience Ročník 12; s. 595322
Hlavní autori: Chen, Huihui, Zhang, Yining, Zhang, Limei, Qiao, Lishan, Shen, Dinggang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland Frontiers Research Foundation 14.01.2021
Frontiers Media S.A
Predmet:
ISSN:1663-4365, 1663-4365
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Brain functional network (BFN) analysis is becoming a crucial way to explore the inherent organized pattern of the brain and reveal potential biomarkers for diagnosing neurological or psychological disorders. In so doing, a well-estimated BFN is of great concern. In practice, however, noises or artifacts involved in the observed data (i.e., fMRI time series in this paper) generally lead to a poor estimation of BFN, and thus a complex preprocessing pipeline is often used to improve the quality of the data prior to BFN estimation. One of the popular preprocessing steps is data-scrubbing that aims at removing “bad” volumes from the fMRI time series according to the amplitude of the head motion. Despite its helpfulness in general, this traditional scrubbing scheme cannot guarantee that the removed volumes are necessarily unhelpful, since such a step is fully independent to the subsequent BFN estimation task. Moreover, the removal of volumes would reduce the statistical power, and different numbers of volumes are generally scrubbed for different subjects, resulting in an inconsistency or bias in the estimated BFNs. To address these issues, we develop a new learning framework that conducts BFN estimation and data-scrubbing simultaneously by an alternating optimization algorithm. The newly developed algorithm adaptively weights volumes (instead of removing them directly) for the task of BFN estimation. As a result, the proposed method can not only reduce the difficulty of threshold selection involved in the traditional scrubbing scheme, but also provide a more flexible framework that scrubs the data in the subsequent FBN estimation model. Finally, we validate the proposed method by identifying subjects with mild cognitive impairment (MCI) from normal controls based on the estimated BFNs, achieving an 80.22% classification accuracy, which significantly improves the baseline methods.
AbstractList Brain functional network (BFN) analysis is becoming a crucial way to explore the inherent organized pattern of the brain and reveal potential biomarkers for diagnosing neurological or psychological disorders. In so doing, a well-estimated BFN is of great concern. In practice, however, noises or artifacts involved in the observed data (i.e., fMRI time series in this paper) generally lead to a poor estimation of BFN, and thus a complex preprocessing pipeline is often used to improve the quality of the data prior to BFN estimation. One of the popular preprocessing steps is data-scrubbing that aims at removing "bad" volumes from the fMRI time series according to the amplitude of the head motion. Despite its helpfulness in general, this traditional scrubbing scheme cannot guarantee that the removed volumes are necessarily unhelpful, since such a step is fully independent to the subsequent BFN estimation task. Moreover, the removal of volumes would reduce the statistical power, and different numbers of volumes are generally scrubbed for different subjects, resulting in an inconsistency or bias in the estimated BFNs. To address these issues, we develop a new learning framework that conducts BFN estimation and data-scrubbing simultaneously by an alternating optimization algorithm. The newly developed algorithm adaptively weights volumes (instead of removing them directly) for the task of BFN estimation. As a result, the proposed method can not only reduce the difficulty of threshold selection involved in the traditional scrubbing scheme, but also provide a more flexible framework that scrubs the data in the subsequent FBN estimation model. Finally, we validate the proposed method by identifying subjects with mild cognitive impairment (MCI) from normal controls based on the estimated BFNs, achieving an 80.22% classification accuracy, which significantly improves the baseline methods.
Abstract—Brain functional network (BFN) analysis has been becoming a crucial way to explore the inherent organized pattern of the brain and reveal potential biomarkers for diagnosing neurological or psychological disorders. In so doing, a well-estimated BFN is of great concern. In practice, however, noises or artifacts involved in the observed data (i.e., fMRI time series in this paper) generally lead to a poor estimation of BFN, and thus a complex preprocessing pipeline is often used to improve the quality of the data prior to BFN estimation. One of popular preprocessing steps is data-scrubbing that aims at removing “bad” volumes from fMRI time series according to the amplitude of the head motion. Despite its helpfulness in general, this traditional scrubbing scheme cannot guarantee that the removed volumes are necessarily unhelpful, since such a step is fully independent to the subsequent BFN estimation task. Moreover, the removal of volumes would reduce the statistical power, and also different numbers of volumes are generally scrubbed for different subjects, resulting in an inconsistency or bias in the estimated BFNs. To address these issues, we develop a new learning framework that conducts BFN estimation and data-scrubbing simultaneously by an alternating optimization algorithm. The newly developed algorithm adaptively weights volumes (instead of removing them directly) for the task of BFN estimation. As a result, the proposed method can not only reduce the difficulty of threshold selection involved in the traditional scrubbing scheme, but also provide a more flexible framework that scrubs the data in the subsequent FBN estimation model. Finally, we validate the proposed method by identifying subjects with mild cognitive impairment (MCI) from normal controls based on the estimated BFNs, achieving an 80.22% classification accuracy, which significantly improve the baseline methods.
Brain functional network (BFN) analysis is becoming a crucial way to explore the inherent organized pattern of the brain and reveal potential biomarkers for diagnosing neurological or psychological disorders. In so doing, a well-estimated BFN is of great concern. In practice, however, noises or artifacts involved in the observed data (i.e., fMRI time series in this paper) generally lead to a poor estimation of BFN, and thus a complex preprocessing pipeline is often used to improve the quality of the data prior to BFN estimation. One of the popular preprocessing steps is data-scrubbing that aims at removing "bad" volumes from the fMRI time series according to the amplitude of the head motion. Despite its helpfulness in general, this traditional scrubbing scheme cannot guarantee that the removed volumes are necessarily unhelpful, since such a step is fully independent to the subsequent BFN estimation task. Moreover, the removal of volumes would reduce the statistical power, and different numbers of volumes are generally scrubbed for different subjects, resulting in an inconsistency or bias in the estimated BFNs. To address these issues, we develop a new learning framework that conducts BFN estimation and data-scrubbing simultaneously by an alternating optimization algorithm. The newly developed algorithm adaptively weights volumes (instead of removing them directly) for the task of BFN estimation. As a result, the proposed method can not only reduce the difficulty of threshold selection involved in the traditional scrubbing scheme, but also provide a more flexible framework that scrubs the data in the subsequent FBN estimation model. Finally, we validate the proposed method by identifying subjects with mild cognitive impairment (MCI) from normal controls based on the estimated BFNs, achieving an 80.22% classification accuracy, which significantly improves the baseline methods.Brain functional network (BFN) analysis is becoming a crucial way to explore the inherent organized pattern of the brain and reveal potential biomarkers for diagnosing neurological or psychological disorders. In so doing, a well-estimated BFN is of great concern. In practice, however, noises or artifacts involved in the observed data (i.e., fMRI time series in this paper) generally lead to a poor estimation of BFN, and thus a complex preprocessing pipeline is often used to improve the quality of the data prior to BFN estimation. One of the popular preprocessing steps is data-scrubbing that aims at removing "bad" volumes from the fMRI time series according to the amplitude of the head motion. Despite its helpfulness in general, this traditional scrubbing scheme cannot guarantee that the removed volumes are necessarily unhelpful, since such a step is fully independent to the subsequent BFN estimation task. Moreover, the removal of volumes would reduce the statistical power, and different numbers of volumes are generally scrubbed for different subjects, resulting in an inconsistency or bias in the estimated BFNs. To address these issues, we develop a new learning framework that conducts BFN estimation and data-scrubbing simultaneously by an alternating optimization algorithm. The newly developed algorithm adaptively weights volumes (instead of removing them directly) for the task of BFN estimation. As a result, the proposed method can not only reduce the difficulty of threshold selection involved in the traditional scrubbing scheme, but also provide a more flexible framework that scrubs the data in the subsequent FBN estimation model. Finally, we validate the proposed method by identifying subjects with mild cognitive impairment (MCI) from normal controls based on the estimated BFNs, achieving an 80.22% classification accuracy, which significantly improves the baseline methods.
Author Chen, Huihui
Shen, Dinggang
Qiao, Lishan
Zhang, Limei
Zhang, Yining
AuthorAffiliation 3 Department of Brain and Cognitive Engineering, Korea University , Seoul , South Korea
2 Department of Research and Development, Shanghai United Imaging Intelligence Co. Ltd. , Shanghai , China
1 School of Mathematics Science, Liaocheng University , Liaocheng , China
AuthorAffiliation_xml – name: 3 Department of Brain and Cognitive Engineering, Korea University , Seoul , South Korea
– name: 1 School of Mathematics Science, Liaocheng University , Liaocheng , China
– name: 2 Department of Research and Development, Shanghai United Imaging Intelligence Co. Ltd. , Shanghai , China
Author_xml – sequence: 1
  givenname: Huihui
  surname: Chen
  fullname: Chen, Huihui
– sequence: 2
  givenname: Yining
  surname: Zhang
  fullname: Zhang, Yining
– sequence: 3
  givenname: Limei
  surname: Zhang
  fullname: Zhang, Limei
– sequence: 4
  givenname: Lishan
  surname: Qiao
  fullname: Qiao, Lishan
– sequence: 5
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33584242$$D View this record in MEDLINE/PubMed
BookMark eNp1Ustu1DAUjVARLaUfwAZFYsNmBsePON4gtaMWIrUg8RBLy8_UQ8YebKeof48z06K2Et7Yuj7n6Nx7z8vqwAdvqup1A5YIdey99WJwSwggWBJGEITPqqOmbdECo5YcPHgfVicprUE5CAFAuhfVIUKkwxDDo8qcp-w2Ijs_1GdROF9fTF5lF7wY688m_wnxV6rPRDK6Dr4-1WKb3Y0Zbxc_jRuucynbq699_c0NhZFqG2J9terrXhufnXVKzFqvque2_JqTu_u4-nFx_n31aXH55WO_Or1cKMxQXiAJGJZGAd1hgKRlhnSWsFbRjlKlkZDaWChVBxomBO0k0KhFUBnSNlIoho6rfq-rg1jzbSydxVsehOO7QogDFzE7NRreKUoUhYgQazHVLcOWEQloS5Es45y1Puy1tpPcGK1KP1GMj0Qf_3h3zYdww4tZ3BBcBN7dCcTwezIp841Lyoyj8CZMiUPcMcIog22Bvn0CXYcpzgMtKErLrhrSFNSbh47-WbnfZgHQPUDFkFI0liuXdwsoBt3IG8Dn6PBddPgcHb6PTmE2T5j34v_n_AWVAcdj
CitedBy_id crossref_primary_10_3389_fninf_2021_802305
crossref_primary_10_1093_cercor_bhae065
crossref_primary_10_1038_s41598_025_95190_9
crossref_primary_10_3390_jpm13020251
crossref_primary_10_3389_fnins_2021_696639
crossref_primary_10_1017_S003329172400045X
crossref_primary_10_3389_fnagi_2023_1101879
Cites_doi 10.1006/nimg.2001.0978
10.1001/archneurol.2009.266
10.1016/j.neuroimage.2012.01.069
10.1101/684779
10.1002/hbm.23524
10.1002/mrm.1910340409
10.1198/jasa.2009.0126
10.1016/j.neuroimage.2011.10.018
10.1016/j.jalz.2011.03.008
10.1016/j.biopsych.2006.09.020
10.1016/j.patrec.2012.04.011
10.1007/s10548-008-0073-2
10.1006/nimg.2001.0869
10.1038/nature09108
10.1016/j.patcog.2018.11.027
10.1109/JBHI.2019.2893880
10.3233/JAD-142547
10.1034/j.1600-0447.2002.01417.x
10.1016/j.patcog.2011.04.006
10.1016/j.patcog.2018.12.001
10.1017/CBO9780511895029.006
10.1007/s10339-006-0093-3
10.1016/j.patcog.2014.12.007
10.1016/j.patcog.2011.04.033
10.1016/j.biopsych.2012.03.026
10.1016/j.patcog.2016.09.032
10.1007/978-1-4419-9569-8_10
10.1038/nrn3801
10.1016/j.pscychresns.2012.02.002
10.1016/j.neuroimage.2011.07.044
10.1016/j.neuroimage.2013.03.004
10.1016/j.neuroimage.2016.07.058
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2013.04.001
10.3389/fninf.2017.00055
10.18632/aging.103719
10.1016/j.neucom.2018.05.084
10.1016/j.patcog.2019.01.015
ContentType Journal Article
Copyright Copyright © 2021 Chen, Zhang, Zhang, Qiao and Shen.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Chen, Zhang, Zhang, Qiao and Shen. 2021 Chen, Zhang, Zhang, Qiao and Shen
Copyright_xml – notice: Copyright © 2021 Chen, Zhang, Zhang, Qiao and Shen.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Chen, Zhang, Zhang, Qiao and Shen. 2021 Chen, Zhang, Zhang, Qiao and Shen
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnagi.2020.595322
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1663-4365
ExternalDocumentID oai_doaj_org_article_8c75c72355ff47d694f95b07673b9539
PMC7874154
33584242
10_3389_fnagi_2020_595322
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
GroupedDBID ---
53G
5VS
7X7
88I
8FE
8FH
8FI
8FJ
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
E3Z
EIHBH
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
UKHRP
ACXDI
ALIPV
IPNFZ
NPM
RIG
3V.
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c493t-3b094bec0d8403bf9e58f596c7877cd3abdef2bc8019aa78b0d3632ce561bac93
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000612408000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1663-4365
IngestDate Fri Oct 03 12:52:46 EDT 2025
Tue Nov 04 01:57:20 EST 2025
Fri Sep 05 10:43:53 EDT 2025
Tue Oct 07 06:56:58 EDT 2025
Mon Jul 21 06:06:50 EDT 2025
Tue Nov 18 21:50:58 EST 2025
Sat Nov 29 06:11:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pearson's correlation
mild cognitive impairment
scrubbing
sparse re presentation
functional magnetic resonance imaging
index terms-brain functional network
Language English
License Copyright © 2021 Chen, Zhang, Zhang, Qiao and Shen.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-3b094bec0d8403bf9e58f596c7877cd3abdef2bc8019aa78b0d3632ce561bac93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Qi Zhu, Nanjing University of Aeronautics and Astronautics, China; Xiang Li, Massachusetts General Hospital and Harvard Medical School, United States; Weikai Li, Nanjing University of Aeronautics and Astronautics, China
Edited by: Mark Stecker, Independent Researcher, Fresno, United States
These authors share first authorship
OpenAccessLink https://doaj.org/article/8c75c72355ff47d694f95b07673b9539
PMID 33584242
PQID 2477842151
PQPubID 4424411
ParticipantIDs doaj_primary_oai_doaj_org_article_8c75c72355ff47d694f95b07673b9539
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7874154
proquest_miscellaneous_2489597926
proquest_journals_2477842151
pubmed_primary_33584242
crossref_citationtrail_10_3389_fnagi_2020_595322
crossref_primary_10_3389_fnagi_2020_595322
PublicationCentury 2000
PublicationDate 2021-01-14
PublicationDateYYYYMMDD 2021-01-14
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-14
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in aging neuroscience
PublicationTitleAlternate Front Aging Neurosci
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Whittingstall (B39) 2008; 21
Poldrack (B27) 2011
Brunetti (B7) 2006; 7
Liu (B20) 2011
Murphy (B23) 2013; 80
Peng (B25) 2019; 88
Stam (B35) 2014; 15
Bischkopf (B5) 2010; 106
Chen (B9) 2019
Qiao (B31) 2018; 84
Shi (B34) 2017; 63
Jin (B16) 2010; 465
Zhang (B43) 2019; 88
Wang (B37) 2013; 73
Li (B19)
Peng (B24) 2009; 104
Power (B28); 59
Liu (B21) 2015; 48
Biswal (B6) 1995; 34
Yu (B41) 2019; 90
Weikai (B38) 2017; 11
Yan (B40) 2013; 76
Greicius (B14) 2007; 62
Jenkinson (B15) 2018
Petersen (B26) 2009; 66
Bazaraa (B3) 2013
Dijk (B11) 2012; 59
Li (B17); 23
Michel (B22) 2012; 45
Rodriguez (B32) 2012; 45
Yu (B42) 2017; 38
Freire (B12) 2001; 14
Rubinov (B33) 2010; 52
Admon (B1) 2012; 203
Li (B18) 2020; 12
Bijsterbosch (B4) 2017
Qiao (B30) 2016; 141
Chaves (B8) 2012; 33
Power (B29); 63
Albert (B2) 2011; 7
Combettes (B10) 2011; 49
Gardini (B13) 2015; 45
Tzourio-Mazoyer (B36) 2002; 15
References_xml – volume: 15
  start-page: 273
  year: 2002
  ident: B36
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 66
  start-page: 1447
  year: 2009
  ident: B26
  article-title: Mild cognitive impairment: ten years later
  publication-title: Archiv. Neurol.
  doi: 10.1001/archneurol.2009.266
– volume: 63
  start-page: 999
  ident: B29
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.069
– start-page: 1
  ident: B19
  article-title: Toward a better estimation of functional brain network for mild cognitive impairment identification: a transfer learning view
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1101/684779
– volume: 38
  start-page: 2370
  year: 2017
  ident: B42
  article-title: Connectivity strength-weighted sparse group representation-based brain network construction for MCI classification
  publication-title: Human Brain Map.
  doi: 10.1002/hbm.23524
– volume: 34
  start-page: 537
  year: 1995
  ident: B6
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magnetic Resonance Med.
  doi: 10.1002/mrm.1910340409
– volume: 104
  start-page: 735
  year: 2009
  ident: B24
  article-title: Partial correlation estimation by joint sparse regression models
  publication-title: J. Am. Statist. Assoc.
  doi: 10.1198/jasa.2009.0126
– volume: 59
  start-page: 2142
  ident: B28
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 7
  start-page: 270
  year: 2011
  ident: B2
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimer Dementia
  doi: 10.1016/j.jalz.2011.03.008
– volume: 62
  start-page: 429
  year: 2007
  ident: B14
  article-title: Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus
  publication-title: Biol. Psychiatr.
  doi: 10.1016/j.biopsych.2006.09.020
– volume: 33
  start-page: 1666
  year: 2012
  ident: B8
  article-title: Initiative AsDN. Functional brain image classification using association rules defined over discriminant regions
  publication-title: Pattern Recogn. Lett
  doi: 10.1016/j.patrec.2012.04.011
– volume: 21
  start-page: 86
  year: 2008
  ident: B39
  article-title: Correspondence of visual evoked potentials with FMRI signals in human visual cortex
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-008-0073-2
– volume-title: Introduction to Resting State fMRI Functional Connectivity.
  year: 2017
  ident: B4
– volume: 14
  start-page: 709
  year: 2001
  ident: B12
  article-title: Motion correction algorithms may create spurious brain activations in the absence of subject motion
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0869
– volume: 465
  start-page: 788
  year: 2010
  ident: B16
  article-title: Global and local fMRI signals driven by neurons defined optogenetically by type and wiring
  publication-title: Nature
  doi: 10.1038/nature09108
– volume: 88
  start-page: 370
  year: 2019
  ident: B25
  article-title: Structured sparsity regularized multiple kernel learning for Alzheimer's disease diagnosis
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.11.027
– volume: 23
  start-page: 2494
  ident: B17
  article-title: Functional brain network estimation with time series self-scrubbing
  publication-title: IEEE J. Biomed. Health Inform
  doi: 10.1109/JBHI.2019.2893880
– volume: 45
  start-page: 457
  year: 2015
  ident: B13
  article-title: Increased functional connectivity in the default mode network in mild cognitive impairment: a maladaptive compensatory mechanism associated with poor semantic memory performance
  publication-title: J. Alzheimer Dis.
  doi: 10.3233/JAD-142547
– volume: 106
  start-page: 403
  year: 2010
  ident: B5
  article-title: Mild cognitive impairment–a review of prevalence, incidence and outcome according to current approaches
  publication-title: Acta Psychiatr. Scand.
  doi: 10.1034/j.1600-0447.2002.01417.x
– volume: 45
  start-page: 2041
  year: 2012
  ident: B22
  article-title: A supervised clustering approach for fMRI-based inference of brain states
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2011.04.006
– volume: 88
  start-page: 421
  year: 2019
  ident: B43
  article-title: Strength and similarity guided group-level brain functional network construction for MCI diagnosis
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.12.001
– start-page: 70
  volume-title: Handbook of Functional MRI Data Analysis
  year: 2011
  ident: B27
  article-title: Statistical modeling: Single subject analysis
  doi: 10.1017/CBO9780511895029.006
– volume: 7
  start-page: 116
  year: 2006
  ident: B7
  article-title: Human brain activation elicited by the localization of sounds delivering at attended or unattended positions: an fMRI/MEG study
  publication-title: Cogn. Process.
  doi: 10.1007/s10339-006-0093-3
– volume: 48
  start-page: 2141
  year: 2015
  ident: B21
  article-title: An efficient radius-incorporated MKL algorithm for Alzheimer's disease prediction
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2014.12.007
– volume: 45
  start-page: 2050
  year: 2012
  ident: B32
  article-title: De-noising, phase ambiguity correction and visualization techniques for complex-valued ICA of group fMRI data
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2011.04.033
– volume: 73
  start-page: 472
  year: 2013
  ident: B37
  article-title: Disrupted functional brain connectome in individuals at risk for Alzheimer's disease
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2012.03.026
– volume: 63
  start-page: 487
  year: 2017
  ident: B34
  article-title: Nonlinear feature transformation and deep fusion for Alzheimer's Disease staging analysis
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2016.09.032
– volume: 49
  start-page: 185
  year: 2011
  ident: B10
  article-title: Proximal splitting methods in signal processing
  publication-title: Heinz H Bauschke
  doi: 10.1007/978-1-4419-9569-8_10
– volume-title: Introduction to Neuroimaging Analysis
  year: 2018
  ident: B15
– volume: 15
  start-page: 683
  year: 2014
  ident: B35
  article-title: Modern network science of neurological disorders
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3801
– volume: 203
  start-page: 207
  year: 2012
  ident: B1
  article-title: Functional and structural neural indices of risk aversion in obsessive–compulsive disorder (OCD)
  publication-title: Psychiatr. Res. Neuroimaging
  doi: 10.1016/j.pscychresns.2012.02.002
– start-page: 29
  volume-title: Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
  year: 2019
  ident: B9
  article-title: Functional brain network estimation based on Weighted BOLD signals for MCI identification
– volume: 59
  start-page: 431
  year: 2012
  ident: B11
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.07.044
– volume: 76
  start-page: 183
  year: 2013
  ident: B40
  article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.004
– volume: 141
  start-page: 399
  year: 2016
  ident: B30
  article-title: Estimating functional brain networks by incorporating a modularity prior
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.07.058
– volume: 52
  start-page: 1059
  year: 2010
  ident: B33
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 80
  start-page: 349
  year: 2013
  ident: B23
  article-title: Resting-state FMRI confounds and cleanup
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.001
– volume-title: Nonlinear Programming: Theory and Algorithms.
  year: 2013
  ident: B3
– volume: 11
  start-page: 55
  year: 2017
  ident: B38
  article-title: Remodeling Pearson's correlation for functional brain network estimation and autism spectrum disorder identification
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2017.00055
– volume: 12
  start-page: 1
  year: 2020
  ident: B18
  article-title: Functional connectivity network estimation with an inter-similarity prior for mild cognitive impairment classification
  publication-title: Aging
  doi: 10.18632/aging.103719
– volume: 84
  start-page: S0925231218306696
  year: 2018
  ident: B31
  article-title: Data-driven graph construction and graph learning: a review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.084
– volume: 90
  start-page: 220
  year: 2019
  ident: B41
  article-title: Weighted graph regularized sparse brain network construction for MCI identification
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2019.01.015
– volume-title: Sparse Learning With Efficient Projections. Techincal Report
  year: 2011
  ident: B20
SSID ssj0000330058
Score 2.2887037
Snippet Brain functional network (BFN) analysis is becoming a crucial way to explore the inherent organized pattern of the brain and reveal potential biomarkers for...
Abstract—Brain functional network (BFN) analysis has been becoming a crucial way to explore the inherent organized pattern of the brain and reveal potential...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 595322
SubjectTerms Algorithms
Alzheimer's disease
Brain mapping
Cognitive ability
Functional magnetic resonance imaging
index terms-brain functional network
Methods
mild cognitive impairment
Neurological diseases
Neuroscience
Pearson's correlation
scrubbing
sparse re presentation
Time series
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgQYgL70dgQUbihGQ2jd8ntF1txUq0Qjx7i_yIS6VVUtouEv-emSQNFKG9cI2dyNE34_lmPJ4h5KUKosCyJsyHaJiIRjGXR8VCkl7qOAqubdr35Z2ezcx8bt_3AbdNn1a52xPbjTo2AWPkR4XQ2gg0UG9W3xl2jcLT1b6FxlVyDdtmo5zruR5iLDnHYuztbTgwrExwJbuDTfDL7FHCPkDgIRb5a2klL4o909RW8P8X7fw7e_IPczS5_b8_cofc6okoPe4k5y65UtX3yI1pf9R-n1SnoPxIZ-sFHWMfCToBE9hFDumsSx7f0DEYwUibmh5Ht8Kd8_wn-9pGW-Fxmn44ox-XCyzRTIEc0-nJGe1uBqc-VPiAfJ6cfjp5y_qeDCwIy7eMe_AHAfc8gmfIfbKVNElaFUDxdYjc-VilwgcwfNY5bXweueJFqICneRcsf0gO6qauHhNaJWMCYFI5cNkCEFXrhA5a5drKwAXPSL6Dowx9wXLsm3FeguOCCJYtgiUiWHYIZuTV8Mqqq9Zx2eQxYjxMxELb7YNmvSh7vS1N0DLoAlhZSkJHZUWy0udaae7hKzYjhzuUy177N-VviDPyYhgGvcXDGFdXzQXOMRacOVuojDzqBGpYCedAC4E7ZUTvidreUvdH6uW3tjY4wACUTDy5fFlPyc0Cc3PyERuJQ3KwXV9Uz8j18GO73Kyft0r0C78UJKk
  priority: 102
  providerName: ProQuest
Title Estimating Brain Functional Networks Based on Adaptively-Weighted fMRI Signals for MCI Identification
URI https://www.ncbi.nlm.nih.gov/pubmed/33584242
https://www.proquest.com/docview/2477842151
https://www.proquest.com/docview/2489597926
https://pubmed.ncbi.nlm.nih.gov/PMC7874154
https://doaj.org/article/8c75c72355ff47d694f95b07673b9539
Volume 12
WOSCitedRecordID wos000612408000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: M7P
  dateStart: 20090730
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: 7X7
  dateStart: 20090730
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: BENPR
  dateStart: 20090730
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: PIMPY
  dateStart: 20090730
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: M2P
  dateStart: 20090730
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BghAXxJvAUhmJE1LY1HZi-7hdtaISqarlVU6Rn0ulVbradpG48NsZO9mqRQguXHzwQ3I8M5lv_PgG4HVlOY20JrmxTubcySrXhatyG0pTCje0OiXt-_xezGZysVDznVRf8U5YRw_cLdyRtKK0gqJbDIELVykeVGkw-hbMqJKlp3uFUDvBVPoHs0jDLrtjTIzC1FGIWX8wHqTF2xLHUbrniBJf_59A5u93JXecz-Q-3OtRIznuZvsAbvj2Idyp-3PxR-DHaKkRe7ZnZBSTPpAJ-qtum4_MupveazJCj-XIqiXHTl_E39z5j_xL2hrF6lCfTsmH5VnkUyaIZEl9MiXdM97Q7-s9hk-T8ceTd3mfQCG3XLFNzgwGbyikwmEYx0xQvpShVJVFKxXWMW2cD9RY9FJKayFN4VjFqPUIqoy2ij2Bg3bV-mdAfJDSclZ5jfGVRVSpNBdWVLj0pWWcZVBcr2Zje3bxmOTivMEoIwqgSQJoogCaTgAZvNkOueioNf7WeRRFtO0YWbFTBepK0-tK8y9dyeDwWsBNb6rrhnIhJI_IJ4NX22Y0snhyolu_uop9pMLIS9Eqg6edPmxnwhhiOAQ6GYg9Tdmb6n5Lu_yWiLxRDIif-PP_8W0v4C6N122KYT7kh3CwubzyL-G2_b5Zri8HcFMsRCrlAG6NxrP56SBZDJY1ncdSpPLnGNvn03r-9RdXtRvk
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED9NHYK98M0IDDASvCCZpbYTxw8IrWPVqrVVBYONp5D4o1SaktJ2oP1T_I2ck7RQhPa2B15tJ3Lin-9-dz7fAbyItWA-rQnNtUmoMElMs9DEVLsoj6Rp66wq2vepL4fD5PRUjTbg5_IujA-rXMrESlCbUnsf-S4TUibCK6i302_UV43yp6vLEho1LI7sxQ802eZveu9wfV8y1j043j-kTVUBqoXiC8pztGhw5qFB24bnTtkocZGKNUJXasOz3FjHco2iW2WZTPLQ8JgzbZFp5Jn2yZdQ5G8KBHvYgs1RbzD6vPLqhNynf6_u36Eqp4LHUX2Uipag2nW-8hDapCx8HamIM7amDKuaAf8iun_Ha_6hALu3_rdfdxtuNlSb7NV74w5s2OIuXB80wQT3wB6gePOEvRiTjq-UQbqo5GvfKBnW4fFz0kE1b0hZkD2TTb1uOLugJ5U_GZvd4H2PfJiMfRJqgvSfDPZ7pL777Bpn6H34eCUf-QBaRVnYh0CsSxKNGLAZGqUaqbjKhNQyDqWKNBc8gHC5_KluUrL7yiBnKZpmHjFphZjUIyatERPAq9Uj0zofyWWDOx5Tq4E-lXjVUM7GaSOZ0kTLSEuGvNM5IU2shFNRHspY8hzfogLYWaIqbeTbPP0NqQCer7pRMvnjpqyw5bkfkyg0VxWLA9iuAbyaCedIfJEdBiDXoL021fWeYvK1yn6Oy4CkUzy6fFrP4Mbh8aCf9nvDo8ewxXwkUtimbbEDrcXs3D6Ba_r7YjKfPW22MIEvVw39X9vbhSs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKaq48H64FFgkuCAtcXbXXu8BoaZNRNQmisqrN2PvI41U2SFJQf1r_DpmbScQhHrrgau9ttb255nvm52dAXgZa8F8WROaa5NQYZKYZqGJqXZRHknT0VnVtO_zsRyNktNTNd6Cn6u9MD6tcmUTK0NtSu1j5G0mpEyEd1Bt16RFjA_772bfqO8g5VdaV-00aogc2csfKN8WbweH-K1fMdbvfTx4T5sOA1QLxZeU56hu8ClCgzqH507ZKHGRijXCWGrDs9xYx3KNZlxlmUzy0PCYM22RdeSZ9oWY0PxvS46ipwXb3d5ofLKO8ITcl4Kv9uKhW6eCx1G9rIqqULWd70KE-pSFbyIVccY2HGPVP-BfpPfv3M0_nGH_9v_8Gu_ArYaCk_36n7kLW7a4BzvDJsngPtgemj1P5IsJ6foOGqSPzr-OmZJRnTa_IF10_4aUBdk32cz7jPNL-qWKM-NhNzwZkA_TiS9OTVAWkOHBgNR7ol0TJH0An67lIR9CqygL-xiIdUmiEQ82Q7GqkaKrTEgt41CqSHPBAwhXUEh1U6rddww5T1GyefSkFXpSj560Rk8Ar9eXzOo6JVcN7np8rQf6EuPVgXI-SRuLlSZaRloy5KPOCWliJZyK8lDGkud4FxXA3gphaWP3FulveAXwYn0aLZZfhsoKW174MYlCGatYHMCjGszrmXCOhBhZYwByA-YbU908U0zPqqro-BmQjIrdq6f1HHYQ7-nxYHT0BG4yn6AUdmhH7EFrOb-wT-GG_r6cLubPmr-ZwNfrRv4vkaeNxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Brain+Functional+Networks+Based+on+Adaptively-Weighted+fMRI+Signals+for+MCI+Identification&rft.jtitle=Frontiers+in+aging+neuroscience&rft.au=Chen%2C+Huihui&rft.au=Zhang%2C+Yining&rft.au=Zhang%2C+Limei&rft.au=Qiao%2C+Lishan&rft.date=2021-01-14&rft.issn=1663-4365&rft.eissn=1663-4365&rft.volume=12&rft_id=info:doi/10.3389%2Ffnagi.2020.595322&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnagi_2020_595322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-4365&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-4365&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-4365&client=summon