A Linear Time Algorithm for a Variant of the MAX CUT Problem in Series Parallel Graphs

Given a graph G=V,E, a connected sides cut U,V\U or δU is the set of edges of E linking all vertices of U to all vertices of V\U such that the induced subgraphs GU and GV\U are connected. Given a positive weight function w defined on E, the maximum connected sides cut problem (MAX CS CUT) is to find...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in Operations Research Ročník 2017; číslo 2017; s. 1 - 4
Hlavní autor: Chaourar, Brahim
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cairo, Egypt Hindawi Publishing Corporation 01.01.2017
Hindawi
John Wiley & Sons, Inc
Témata:
ISSN:1687-9147, 1687-9155
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Given a graph G=V,E, a connected sides cut U,V\U or δU is the set of edges of E linking all vertices of U to all vertices of V\U such that the induced subgraphs GU and GV\U are connected. Given a positive weight function w defined on E, the maximum connected sides cut problem (MAX CS CUT) is to find a connected sides cut Ω such that wΩ is maximum. MAX CS CUT is NP-hard. In this paper, we give a linear time algorithm to solve MAX CS CUT for series parallel graphs. We deduce a linear time algorithm for the minimum cut problem in the same class of graphs without computing the maximum flow.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-9147
1687-9155
DOI:10.1155/2017/1267108