Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography
Objectives The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic radiography. Methods Three hundred panoramic images containing a total of 330 VRF teeth with clearly visible fracture lines were selected fr...
Saved in:
| Published in: | Oral radiology Vol. 36; no. 4; pp. 337 - 343 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Singapore
Springer Singapore
01.10.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0911-6028, 1613-9674, 1613-9674 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Objectives
The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic radiography.
Methods
Three hundred panoramic images containing a total of 330 VRF teeth with clearly visible fracture lines were selected from our hospital imaging database. Confirmation of VRF lines was performed by two radiologists and one endodontist. Eighty percent (240 images) of the 300 images were assigned to a training set and 20% (60 images) to a test set. A CNN-based deep learning model for the detection of VRFs was built using DetectNet with DIGITS version 5.0. To defend test data selection bias and increase reliability, fivefold cross-validation was performed. Diagnostic performance was evaluated using recall, precision, and
F
measure.
Results
Of the 330 VRFs, 267 were detected. Twenty teeth without fractures were falsely detected. Recall was 0.75, precision 0.93, and
F
measure 0.83.
Conclusions
The CNN learning model has shown promise as a tool to detect VRFs on panoramic images and to function as a CAD tool. |
|---|---|
| AbstractList | Objectives
The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic radiography.
Methods
Three hundred panoramic images containing a total of 330 VRF teeth with clearly visible fracture lines were selected from our hospital imaging database. Confirmation of VRF lines was performed by two radiologists and one endodontist. Eighty percent (240 images) of the 300 images were assigned to a training set and 20% (60 images) to a test set. A CNN-based deep learning model for the detection of VRFs was built using DetectNet with DIGITS version 5.0. To defend test data selection bias and increase reliability, fivefold cross-validation was performed. Diagnostic performance was evaluated using recall, precision, and
F
measure.
Results
Of the 330 VRFs, 267 were detected. Twenty teeth without fractures were falsely detected. Recall was 0.75, precision 0.93, and
F
measure 0.83.
Conclusions
The CNN learning model has shown promise as a tool to detect VRFs on panoramic images and to function as a CAD tool. ObjectivesThe aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic radiography.MethodsThree hundred panoramic images containing a total of 330 VRF teeth with clearly visible fracture lines were selected from our hospital imaging database. Confirmation of VRF lines was performed by two radiologists and one endodontist. Eighty percent (240 images) of the 300 images were assigned to a training set and 20% (60 images) to a test set. A CNN-based deep learning model for the detection of VRFs was built using DetectNet with DIGITS version 5.0. To defend test data selection bias and increase reliability, fivefold cross-validation was performed. Diagnostic performance was evaluated using recall, precision, and F measure.ResultsOf the 330 VRFs, 267 were detected. Twenty teeth without fractures were falsely detected. Recall was 0.75, precision 0.93, and F measure 0.83.ConclusionsThe CNN learning model has shown promise as a tool to detect VRFs on panoramic images and to function as a CAD tool. The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic radiography. Three hundred panoramic images containing a total of 330 VRF teeth with clearly visible fracture lines were selected from our hospital imaging database. Confirmation of VRF lines was performed by two radiologists and one endodontist. Eighty percent (240 images) of the 300 images were assigned to a training set and 20% (60 images) to a test set. A CNN-based deep learning model for the detection of VRFs was built using DetectNet with DIGITS version 5.0. To defend test data selection bias and increase reliability, fivefold cross-validation was performed. Diagnostic performance was evaluated using recall, precision, and F measure. Of the 330 VRFs, 267 were detected. Twenty teeth without fractures were falsely detected. Recall was 0.75, precision 0.93, and F measure 0.83. The CNN learning model has shown promise as a tool to detect VRFs on panoramic images and to function as a CAD tool. The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic radiography.OBJECTIVESThe aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic radiography.Three hundred panoramic images containing a total of 330 VRF teeth with clearly visible fracture lines were selected from our hospital imaging database. Confirmation of VRF lines was performed by two radiologists and one endodontist. Eighty percent (240 images) of the 300 images were assigned to a training set and 20% (60 images) to a test set. A CNN-based deep learning model for the detection of VRFs was built using DetectNet with DIGITS version 5.0. To defend test data selection bias and increase reliability, fivefold cross-validation was performed. Diagnostic performance was evaluated using recall, precision, and F measure.METHODSThree hundred panoramic images containing a total of 330 VRF teeth with clearly visible fracture lines were selected from our hospital imaging database. Confirmation of VRF lines was performed by two radiologists and one endodontist. Eighty percent (240 images) of the 300 images were assigned to a training set and 20% (60 images) to a test set. A CNN-based deep learning model for the detection of VRFs was built using DetectNet with DIGITS version 5.0. To defend test data selection bias and increase reliability, fivefold cross-validation was performed. Diagnostic performance was evaluated using recall, precision, and F measure.Of the 330 VRFs, 267 were detected. Twenty teeth without fractures were falsely detected. Recall was 0.75, precision 0.93, and F measure 0.83.RESULTSOf the 330 VRFs, 267 were detected. Twenty teeth without fractures were falsely detected. Recall was 0.75, precision 0.93, and F measure 0.83.The CNN learning model has shown promise as a tool to detect VRFs on panoramic images and to function as a CAD tool.CONCLUSIONSThe CNN learning model has shown promise as a tool to detect VRFs on panoramic images and to function as a CAD tool. |
| Author | Katsumata, Akitoshi Kutsuna, Shota Inamoto, Kyoko Nakata, Kazuhiko Ariji, Eiichiro Fujita, Hiroshi Yanashita, Yudai Fukuda, Motoki Shibata, Naoki Ariji, Yoshiko |
| Author_xml | – sequence: 1 givenname: Motoki orcidid: 0000-0002-0285-5008 surname: Fukuda fullname: Fukuda, Motoki email: halpop@dpc.agu.ac.jp organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry – sequence: 2 givenname: Kyoko surname: Inamoto fullname: Inamoto, Kyoko organization: Department of Endodontics, Aichi-Gakuin University School of Dentistry – sequence: 3 givenname: Naoki surname: Shibata fullname: Shibata, Naoki organization: Department of Endodontics, Aichi-Gakuin University School of Dentistry – sequence: 4 givenname: Yoshiko surname: Ariji fullname: Ariji, Yoshiko organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry – sequence: 5 givenname: Yudai surname: Yanashita fullname: Yanashita, Yudai organization: Department of Electrical, Electronic and Computer Faculty of Engineering, Gifu University – sequence: 6 givenname: Shota surname: Kutsuna fullname: Kutsuna, Shota organization: Department of Electrical, Electronic and Computer Faculty of Engineering, Gifu University – sequence: 7 givenname: Kazuhiko surname: Nakata fullname: Nakata, Kazuhiko organization: Department of Endodontics, Aichi-Gakuin University School of Dentistry – sequence: 8 givenname: Akitoshi surname: Katsumata fullname: Katsumata, Akitoshi organization: Department of Oral Radiology, Asahi University – sequence: 9 givenname: Hiroshi surname: Fujita fullname: Fujita, Hiroshi organization: Department of Electrical, Electronic and Computer Faculty of Engineering, Gifu University – sequence: 10 givenname: Eiichiro surname: Ariji fullname: Ariji, Eiichiro organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31535278$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kT1PHDEQhq2IKBwkf4AispQmzRJ_7XpdRggCEhJNUltz3tmL0a59sb2I-_c4HAiJ4hpP8zyvxvOekKMQAxJyxtk5Z0z_yJyLXjSMm4YxxUzz-IGseMdlYzqtjsiKGc6bjon-mJzkfM-YMEr1n8ix5K1she5XZL58gGmB4mOgcaQQKKTiR-88TNSHgtPkNxgc0rzLBWc6xkQHLOiKDxv6gJV2FU0xFjomcGVJSGvYFkJMMHtHEww-bhJs_-4-k48jTBm_vMxT8ufq8vfFdXN79-vm4udt45SRpeGIa96xdaeEksgQ6tsyzZkbtRJgtFOtEbwHMYyD0t0wOKbWuhODBKl6kKfk-z53m-K_BXOxs8-u_gUCxiVbIYw0PWu5qOi3d-h9XFKo21mhFBdGGG0OUhVRUkmtKvX1hVrWMw52m_wMaWdfz12Bfg-4FHNOOFrny_PxSwI_Wc7s_2btvllbm7XPzdrHqop36mv6QUnupVzhsMH0tvYB6wmz-rYn |
| CitedBy_id | crossref_primary_10_21802_artm_2025_2_34_101 crossref_primary_10_4103_njcp_njcp_394_22 crossref_primary_10_1186_s12903_024_04721_9 crossref_primary_10_1016_j_identj_2024_11_009 crossref_primary_10_1016_j_jormas_2023_101524 crossref_primary_10_3390_app12020877 crossref_primary_10_1016_j_bspc_2023_105082 crossref_primary_10_1016_j_sdentj_2022_04_004 crossref_primary_10_1051_e3sconf_202129701074 crossref_primary_10_1186_s12880_024_01338_w crossref_primary_10_1016_j_heliyon_2024_e41137 crossref_primary_10_4103_jpbs_jpbs_1341_24 crossref_primary_10_1259_dmfr_20200611 crossref_primary_10_52037_eads_2025_0002 crossref_primary_10_1016_j_oooo_2020_04_813 crossref_primary_10_1007_s00784_024_05999_3 crossref_primary_10_3390_ijerph17103716 crossref_primary_10_1155_2021_6659133 crossref_primary_10_1186_s12903_024_04786_6 crossref_primary_10_1038_s41405_025_00336_6 crossref_primary_10_4103_jpcdoh_jpcdoh_9_25 crossref_primary_10_1080_09540091_2025_2522706 crossref_primary_10_1259_dmfr_20220345 crossref_primary_10_1016_j_ijmedinf_2023_105170 crossref_primary_10_3390_app15179790 crossref_primary_10_1093_dmfr_twae014 crossref_primary_10_3390_bioengineering11121267 crossref_primary_10_4103_sej_sej_199_23 crossref_primary_10_1016_j_joen_2021_09_009 crossref_primary_10_1186_s12903_022_02422_9 crossref_primary_10_1007_s11282_023_00677_8 crossref_primary_10_1007_s10278_024_00972_8 crossref_primary_10_1007_s12663_025_02664_4 crossref_primary_10_7759_cureus_27405 crossref_primary_10_1007_s11282_020_00449_8 crossref_primary_10_3390_diagnostics15030314 crossref_primary_10_1007_s11604_024_01702_4 crossref_primary_10_1038_s41598_024_82378_8 crossref_primary_10_2298_SJEE2502279P crossref_primary_10_3390_diagnostics11081477 crossref_primary_10_1007_s00784_024_05566_w crossref_primary_10_1007_s11282_024_00765_3 crossref_primary_10_1155_2023_4415970 crossref_primary_10_1038_s41598_021_95653_9 crossref_primary_10_1109_ACCESS_2024_3472012 crossref_primary_10_1111_edt_13027 crossref_primary_10_1259_dmfr_20220335 crossref_primary_10_1007_s11282_021_00577_9 crossref_primary_10_1016_j_oooo_2020_04_005 crossref_primary_10_1016_j_dib_2024_111152 crossref_primary_10_1109_ACCESS_2024_3523816 crossref_primary_10_3390_diagnostics14202336 crossref_primary_10_3390_healthcare10071269 crossref_primary_10_3389_froh_2025_1572665 crossref_primary_10_1016_j_oooo_2023_09_011 crossref_primary_10_1111_iej_14128 crossref_primary_10_1007_s42044_024_00226_4 crossref_primary_10_1259_dmfr_20200513 crossref_primary_10_1259_dmfr_20220122 crossref_primary_10_1016_j_oooo_2021_08_010 crossref_primary_10_1038_s41598_021_94093_9 crossref_primary_10_3390_diagnostics12051029 crossref_primary_10_3390_healthcare10112188 crossref_primary_10_4103_jpbs_jpbs_1106_24 crossref_primary_10_1155_2023_7049360 crossref_primary_10_33808_clinexphealthsci_1466714 crossref_primary_10_3390_asi8010007 crossref_primary_10_1016_j_compbiomed_2024_109262 crossref_primary_10_33295_1992_576X_2024_5_72 crossref_primary_10_1007_s10278_022_00766_w crossref_primary_10_1016_j_ajoms_2022_02_004 crossref_primary_10_1186_s12903_024_03896_5 crossref_primary_10_1007_s00784_024_06049_8 crossref_primary_10_7759_cureus_88515 crossref_primary_10_1108_IJICC_08_2023_0230 crossref_primary_10_1016_j_jebdp_2025_102164 crossref_primary_10_1111_exsy_13326 crossref_primary_10_1007_s00784_020_03544_6 crossref_primary_10_1111_eje_13028 crossref_primary_10_1259_dmfr_20210436 crossref_primary_10_3390_app14104093 crossref_primary_10_1007_s11042_024_19920_3 crossref_primary_10_7759_cureus_51825 crossref_primary_10_4103_CTD_CTD_11_24 crossref_primary_10_3390_diagnostics14121260 crossref_primary_10_1007_s00784_022_04477_y crossref_primary_10_1007_s11282_022_00622_1 crossref_primary_10_1007_s10278_021_00481_y crossref_primary_10_1177_20552076241291345 crossref_primary_10_1259_dmfr_20210185 crossref_primary_10_17694_bajece_1457754 crossref_primary_10_1007_s44163_025_00371_0 crossref_primary_10_1016_j_identj_2025_02_005 crossref_primary_10_3390_diagnostics13152512 crossref_primary_10_1016_j_oooo_2022_05_014 crossref_primary_10_1155_2022_3500552 crossref_primary_10_1016_j_joen_2021_11_007 crossref_primary_10_1016_j_media_2025_103709 crossref_primary_10_1080_00016357_2020_1840624 crossref_primary_10_3390_diagnostics14212442 crossref_primary_10_1002_cre2_70035 crossref_primary_10_7759_cureus_85062 crossref_primary_10_1016_j_joen_2024_05_015 crossref_primary_10_1109_JBHI_2021_3117575 crossref_primary_10_1016_j_eswa_2022_116968 crossref_primary_10_2174_0118742106349183250131062154 crossref_primary_10_1371_journal_pone_0310925 crossref_primary_10_1007_s11282_020_00485_4 crossref_primary_10_1111_eje_13042 crossref_primary_10_1016_j_compbiomed_2024_108910 crossref_primary_10_1016_j_compbiomed_2024_108755 crossref_primary_10_1186_s12903_025_05431_6 crossref_primary_10_3390_bioengineering12050447 crossref_primary_10_1016_j_prosdent_2021_08_003 crossref_primary_10_1007_s40368_025_01063_0 crossref_primary_10_3390_app10082856 crossref_primary_10_4103_njcp_njcp_624_22 crossref_primary_10_3390_jcm12030937 crossref_primary_10_3390_app15063295 crossref_primary_10_1259_dmfr_20210002 crossref_primary_10_3390_diagnostics11020233 crossref_primary_10_1111_iej_14163 crossref_primary_10_3390_diagnostics13121995 crossref_primary_10_1016_j_jdent_2025_106066 crossref_primary_10_1259_dmfr_20220209 crossref_primary_10_1007_s11282_022_00644_9 crossref_primary_10_1007_s10266_023_00864_3 crossref_primary_10_1016_j_compbiomed_2024_108800 crossref_primary_10_1186_s12880_021_00656_7 crossref_primary_10_1007_s10278_024_01113_x crossref_primary_10_1016_j_jdent_2023_104768 crossref_primary_10_1007_s10517_021_05133_3 crossref_primary_10_1259_dmfr_20210246 crossref_primary_10_3389_fcell_2024_1497457 crossref_primary_10_3390_diagnostics13172742 crossref_primary_10_7717_peerj_11451 crossref_primary_10_12944_EDJ_06_SI01_03 crossref_primary_10_1016_j_cden_2025_05_007 crossref_primary_10_1159_000527145 crossref_primary_10_1155_2022_6384905 crossref_primary_10_3390_diagnostics13030414 crossref_primary_10_1093_dmfr_twaf011 crossref_primary_10_1007_s10278_024_01218_3 crossref_primary_10_3390_life13071441 crossref_primary_10_1093_dmfr_twaf004 crossref_primary_10_1259_dmfr_20210197 crossref_primary_10_1259_dmfr_20200171 crossref_primary_10_1259_dmfr_20200172 crossref_primary_10_1007_s11282_022_00634_x crossref_primary_10_7759_cureus_75300 crossref_primary_10_1007_s11282_021_00572_0 crossref_primary_10_1093_ejo_cjaf054 crossref_primary_10_1016_j_jds_2023_03_020 crossref_primary_10_1186_s12874_024_02183_9 crossref_primary_10_1016_j_bspc_2024_107059 crossref_primary_10_1016_j_jdent_2025_105648 crossref_primary_10_3390_bioengineering11050431 crossref_primary_10_3389_fdmed_2023_1085251 crossref_primary_10_3390_jcm12237378 crossref_primary_10_1016_j_joen_2021_06_003 crossref_primary_10_1111_aej_12822 crossref_primary_10_3390_s22197370 crossref_primary_10_1007_s40496_024_00372_5 |
| Cites_doi | 10.1016/j.oooo.2019.05.014 10.1016/j.patrec.2009.10.016 10.1109/JBHI.2017.2731873 10.1371/journal.pone.0178992 10.1186/s13550-017-0260-9 10.1038/s41598-019-44839-3 10.1016/j.joen.2013.08.031 10.1259/dmfr.20190019 10.2214/AJR.18.20490 10.1007/s11282-018-0363-7 10.1259/dmfr.20180218 10.1016/j.oooo.2018.04.005 10.1016/j.joen.2019.03.016 10.3126/kumj.v12i3.13724 10.1590/1678-77572016-0332 10.1016/j.joen.2017.09.013 10.4103/0970-9290.176927 10.1109/TNNLS.2018.2876865 10.1111/iej.12490 10.1016/j.media.2016.07.007 10.1016/j.jdent.2013.11.024 10.1016/S1079-2104(99)70041-7 10.1111/iej.12209 10.1016/j.adaj.2016.11.014 10.1016/j.joen.2018.07.003 10.1259/dmfr.20170344 10.1067/moe.2001.117262 10.1038/s41598-019-45487-3 10.1016/j.joen.2010.05.003 10.1007/s11548-016-1438-8 10.1259/dmfr.20150419 10.1016/j.jdent.2018.07.015 10.1067/moe.2000.107445 10.5624/isd.2011.41.1.1 10.1259/dmfr.20180051 10.1038/s41598-019-40414-y 10.1259/dmfr.20170400 10.1007/s11548-012-0800-8 |
| ContentType | Journal Article |
| Copyright | Japanese Society for Oral and Maxillofacial Radiology and Springer Nature Singapore Pte Ltd. 2019 Oral Radiology is a copyright of Springer, (2019). All Rights Reserved. Japanese Society for Oral and Maxillofacial Radiology and Springer Nature Singapore Pte Ltd. 2019. |
| Copyright_xml | – notice: Japanese Society for Oral and Maxillofacial Radiology and Springer Nature Singapore Pte Ltd. 2019 – notice: Oral Radiology is a copyright of Springer, (2019). All Rights Reserved. – notice: Japanese Society for Oral and Maxillofacial Radiology and Springer Nature Singapore Pte Ltd. 2019. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1007/s11282-019-00409-x |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7RV name: ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Dentistry |
| EISSN | 1613-9674 |
| EndPage | 343 |
| ExternalDocumentID | 31535278 10_1007_s11282_019_00409_x |
| Genre | Journal Article |
| GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7RV 7X7 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BKEYQ BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 ESBYG EX3 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JMI JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M4Y M7P MA- MOJWN N2Q N9A NAPCQ NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9S PF0 PQQKQ PROAC PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZ9 SZN T13 T16 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 ZMTXR ZOVNA ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION M1P PHGZM PHGZT PJZUB PPXIY PQGLB PSQYO CGR CUY CVF ECM EIF NPM 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-c493t-1eeb160b64243e0ea43e50710cf742a97c459218a2dfd476ddc04b762d3a348a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 168 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000568836200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0911-6028 1613-9674 |
| IngestDate | Thu Oct 02 06:12:36 EDT 2025 Sat Nov 29 14:40:45 EST 2025 Sat Nov 29 14:51:45 EST 2025 Wed Feb 19 02:26:50 EST 2025 Sat Nov 29 03:05:29 EST 2025 Tue Nov 18 22:25:53 EST 2025 Fri Feb 21 02:40:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Deep learning Vertical root fracture Panoramic radiography Artificial intelligence Object detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c493t-1eeb160b64243e0ea43e50710cf742a97c459218a2dfd476ddc04b762d3a348a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0285-5008 |
| PMID | 31535278 |
| PQID | 2292434374 |
| PQPubID | 326263 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2293980512 proquest_journals_2441292979 proquest_journals_2292434374 pubmed_primary_31535278 crossref_citationtrail_10_1007_s11282_019_00409_x crossref_primary_10_1007_s11282_019_00409_x springer_journals_10_1007_s11282_019_00409_x |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Japan – name: Tokyo |
| PublicationTitle | Oral radiology |
| PublicationTitleAbbrev | Oral Radiol |
| PublicationTitleAlternate | Oral Radiol |
| PublicationYear | 2020 |
| Publisher | Springer Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
| References | Ariji, Yanashita, Kutsuna, Muramatsu, Fukuda, Kise (CR11) 2019 Tamse, Fuss, Lustig, Ganor, Kaffe (CR43) 1999; 88 Hiraiwa, Ariji, Fukuda, Kise, Nakata, Katsumata (CR10) 2019; 48 Hekmatian, Karbasi Kheir, Fathollahzade, Sheikhi (CR22) 2018; 109 Ekert, Krois, Meinhold, Elhennawy, Emara, Golla (CR14) 2019; 45 Nardi, Calistri, Grazzini, Desideri, Lorini, Occhipinti (CR2) 2018; 44 Ma, Ge, Li (CR27) 2016; 49 Powers (CR37) 2011; 2 Vinayahalingam, Xi, Bergé, Maal, de Jong (CR15) 2019; 9 England, Cheng (CR36) 2019; 212 Muramatsu, Matsumoto, Hayashi, Hara, Katsumata, Zhou (CR4) 2013; 8 Kise, Ikeda, Fujii, Fukuda, Ariji, Fujita (CR17) 2019 Safi, Aghdasi, Ezoddini-Ardakani, Beiraghi, Vasegh (CR21) 2015; 10 Llena-Puy, Forner-Navarro, Barbero-Navarro (CR23) 2001; 92 Özdemir, Aksoy, Eckert, Pesaresi, Ehrlich (CR35) 2010; 31 Zhao, Zheng, Xu, Wu (CR18) 2019 Ardakani, Razavi, Tabrizizadeh (CR20) 2015; 10 Prithviraj, Bhalla, Vashisht, Regish, Suresh (CR24) 2014; 12 Choi (CR1) 2011; 41 Wang, Zhou, Li, Chen, Lu, Wang (CR34) 2017; 7 Lee, Kim, Jeong, Choi (CR8) 2018; 77 Kobayashi-Velasco, Salineiro, Gialain, Cavalcanti (CR31) 2017; 25 Muramatsu, Horiba, Hayashi, Fukui, Hara, Katsumata (CR5) 2016; 11 Tuzoff, Tuzova, Bornstein, Krasnov, Kharchenko, Nikolenko (CR12) 2019; 48 Lustig, Tamse, Fuss (CR44) 2000; 90 Maia, Medeiros, Pereira, Lima, Oliveira (CR6) 2018; 126 Krois, Ekert, Meinhold, Golla, Kharbot, Wittemeier (CR16) 2019; 9 Salineiro, Kobayashi-Velasco, Braga, Cavalcanti (CR26) 2017; 46 Junqueira, Verner, Campos, Devito, do Carmo (CR30) 2013; 39 Suksaphar, Banomyong, Jirathanyanatt, Ngoenwiwatkul (CR41) 2018; 44 Xue, Zhang, Deng, Chen, Jiang (CR33) 2017; 12 Yap, Pons, Marti, Ganau, Sentis, Zwiggelaar (CR38) 2018; 22 Lee, Adhikari, Liu, Jeong, Kim, Yoon (CR13) 2018; 48 Long, Zhou, Ye, Liao, Jian, Wang (CR28) 2014; 42 Chen, Zhang, Lyu, Li, Zhang, Wu (CR7) 2019; 9 Brady, Mannocci, Brown, Wilson, Patel (CR29) 2014; 47 Walton (CR42) 2017; 148 Takeshita, Chicarelli, Iwaki (CR32) 2015; 26 Murata, Ariji, Ohashi, Kawai, Fukuda, Funakoshi (CR9) 2018 Kooi, Litjens, van Ginneken, Gubern-Mérida, Sánchez, Mann (CR19) 2017; 35 Popescu, Diaconu, Scrieciu, Marinescu, Drăghici, Truşcă (CR40) 2017; 58 Tsesis, Rosen, Tamse, Taschieri, Kfir (CR25) 2010; 36 Ohashi, Ariji, Katsumata, Fujita, Nakayama, Fukuda (CR3) 2016; 45 Garg, Garg (CR39) 2019 DR Prithviraj (409_CR24) 2014; 12 FCS Salineiro (409_CR26) 2017; 46 E Brady (409_CR29) 2014; 47 Y Ariji (409_CR11) 2019 DMW Powers (409_CR37) 2011; 2 ZQ Zhao (409_CR18) 2019 T Kooi (409_CR19) 2017; 35 WM Takeshita (409_CR32) 2015; 26 H Long (409_CR28) 2014; 42 MH Yap (409_CR38) 2018; 22 C Nardi (409_CR2) 2018; 44 C Muramatsu (409_CR4) 2013; 8 PRL Maia (409_CR6) 2018; 126 E Hekmatian (409_CR22) 2018; 109 T Ekert (409_CR14) 2019; 45 J Krois (409_CR16) 2019; 9 Y Safi (409_CR21) 2015; 10 B Özdemir (409_CR35) 2010; 31 I Tsesis (409_CR25) 2010; 36 JW Choi (409_CR1) 2011; 41 JR England (409_CR36) 2019; 212 Y Kise (409_CR17) 2019 C Muramatsu (409_CR5) 2016; 11 N Garg (409_CR39) 2019 RB Junqueira (409_CR30) 2013; 39 A Tamse (409_CR43) 1999; 88 JH Lee (409_CR8) 2018; 77 W Suksaphar (409_CR41) 2018; 44 JS Lee (409_CR13) 2018; 48 RE Walton (409_CR42) 2017; 148 S Vinayahalingam (409_CR15) 2019; 9 RH Ma (409_CR27) 2016; 49 DV Tuzoff (409_CR12) 2019; 48 FE Ardakani (409_CR20) 2015; 10 SM Popescu (409_CR40) 2017; 58 H Chen (409_CR7) 2019; 9 Y Ohashi (409_CR3) 2016; 45 M Murata (409_CR9) 2018 Y Xue (409_CR33) 2017; 12 H Wang (409_CR34) 2017; 7 JP Lustig (409_CR44) 2000; 90 MC Llena-Puy (409_CR23) 2001; 92 T Hiraiwa (409_CR10) 2019; 48 S Kobayashi-Velasco (409_CR31) 2017; 25 |
| References_xml | – year: 2019 ident: CR11 article-title: Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol doi: 10.1016/j.oooo.2019.05.014 – volume: 31 start-page: 1128 year: 2010 end-page: 1137 ident: CR35 article-title: Performance measures for object detection evaluation publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2009.10.016 – volume: 22 start-page: 1218 issue: 4 year: 2018 end-page: 1226 ident: CR38 article-title: Automated breast ultrasound lesions detection using convolutional neural networks publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2731873 – volume: 12 start-page: e0178992 year: 2017 ident: CR33 article-title: A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis publication-title: PLoS ONE doi: 10.1371/journal.pone.0178992 – volume: 7 start-page: 11 year: 2017 ident: CR34 article-title: Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images publication-title: EJNMMI Res doi: 10.1186/s13550-017-0260-9 – volume: 10 start-page: 193 year: 2015 end-page: 198 ident: CR21 article-title: Effect of metal artifacts on detection of vertical root fractures using two cone beam computed tomography systems publication-title: Iran Endod J – volume: 9 start-page: 8495 issue: 1 year: 2019 ident: CR16 article-title: Deep learning for the radiographic detection of periodontal bone loss publication-title: Sci Rep doi: 10.1038/s41598-019-44839-3 – volume: 39 start-page: 1620 year: 2013 end-page: 1624 ident: CR30 article-title: Detection of vertical root fractures in the presence of intracanal metallic post: a comparison between periapical radiography and cone-beam computed tomography publication-title: J Endod doi: 10.1016/j.joen.2013.08.031 – year: 2019 ident: CR17 article-title: Preliminary study on the application of deep learning system to diagnosis of Sjögren's syndrome on CT images publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20190019 – volume: 212 start-page: 513 issue: 3 year: 2019 end-page: 519 ident: CR36 article-title: Artificial intelligence for medical image analysis: a guide for authors and reviewers publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.18.20490 – year: 2018 ident: CR9 article-title: Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography publication-title: Oral Radiol doi: 10.1007/s11282-018-0363-7 – volume: 48 start-page: 20180218 year: 2019 ident: CR10 article-title: A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20180218 – year: 2019 ident: CR39 publication-title: Textbook of endodontics – volume: 126 start-page: 198 year: 2018 end-page: 204 ident: CR6 article-title: Presence and associated factors of carotid artery calcification detected by digital panoramic radiography in patients with chronic kidney disease undergoing hemodialysis publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol doi: 10.1016/j.oooo.2018.04.005 – volume: 45 start-page: 917 issue: 7 year: 2019 end-page: 922.e5 ident: CR14 article-title: Deep learning for the radiographic detection of apical lesions publication-title: J Endod doi: 10.1016/j.joen.2019.03.016 – volume: 12 start-page: 222 year: 2014 end-page: 230 ident: CR24 article-title: An overview of management of root fractures publication-title: Kathmandu Univ Med J doi: 10.3126/kumj.v12i3.13724 – volume: 25 start-page: 227 year: 2017 end-page: 233 ident: CR31 article-title: Diagnosis of alveolar and root fractures: an in vitro study comparing CBCT imaging with periapical radiographs publication-title: J Appl Oral Sci doi: 10.1590/1678-77572016-0332 – volume: 44 start-page: 233 year: 2018 end-page: 238 ident: CR41 article-title: Survival rates from fracture of endodontically treated premolars restored with full-coverage crowns or direct resin composite restorations: a retrospective study publication-title: J Endod doi: 10.1016/j.joen.2017.09.013 – volume: 26 start-page: 619 year: 2015 end-page: 626 ident: CR32 article-title: Comparison of diagnostic accuracy of root perforation, external resorption and fractures using cone-beam computed tomography, panoramic radiography and conventional and digital periapical radiography publication-title: Indian J Dent Res doi: 10.4103/0970-9290.176927 – volume: 58 start-page: 501 year: 2017 end-page: 506 ident: CR40 article-title: Root fractures: epidemiological, clinical and radiographic aspects publication-title: Rom J Morphol Embryol – year: 2019 ident: CR18 article-title: Object detection with deep learning: a review publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2876865 – volume: 49 start-page: 646 year: 2016 end-page: 654 ident: CR27 article-title: Detection accuracy of root fractures in cone-beam computed tomography images: a systematic review and meta-analysis publication-title: Int Endod J doi: 10.1111/iej.12490 – volume: 109 start-page: 1920946 year: 2018 ident: CR22 article-title: Detection of vertical root fractures using cone-beam computed tomography in the presence and absence of gutta-percha publication-title: Sci World J – volume: 35 start-page: 303 year: 2017 end-page: 312 ident: CR19 article-title: Large scale deep learning for computer aided detection of mammographic lesions publication-title: Med Image Anal doi: 10.1016/j.media.2016.07.007 – volume: 42 start-page: 240 year: 2014 end-page: 248 ident: CR28 article-title: Diagnostic accuracy of CBCT for tooth fractures: a meta-analysis publication-title: J Dent doi: 10.1016/j.jdent.2013.11.024 – volume: 88 start-page: 348 year: 1999 end-page: 352 ident: CR43 article-title: Radiographic features of vertically fractured, endodontically treated maxillary premolars publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod doi: 10.1016/S1079-2104(99)70041-7 – volume: 47 start-page: 735 year: 2014 end-page: 746 ident: CR29 article-title: A comparison of cone beam computed tomography and periapical radiography for the detection of vertical root fractures in nonendodontically treated teeth publication-title: Int Endod J doi: 10.1111/iej.12209 – volume: 148 start-page: 100 year: 2017 end-page: 105 ident: CR42 article-title: Vertical root fracture: factors related to identification publication-title: J Am Dent Assoc doi: 10.1016/j.adaj.2016.11.014 – volume: 44 start-page: 1500 year: 2018 end-page: 1508 ident: CR2 article-title: Is Panoramic radiography an accurate imaging technique for the detection of endodontically treated asymptomatic apical periodontitis? publication-title: J Endod doi: 10.1016/j.joen.2018.07.003 – volume: 10 start-page: 122 year: 2015 end-page: 126 ident: CR20 article-title: Diagnostic value of cone-beam computed tomography and periapical radiography in detection of vertical root fracture publication-title: Iran Endod J – volume: 48 start-page: 20170344 year: 2018 ident: CR13 article-title: Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis system: a preliminary study publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20170344 – volume: 92 start-page: 553 year: 2001 end-page: 555 ident: CR23 article-title: Vertical root fracture in endodontically treated teeth: a review of 25 cases publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod doi: 10.1067/moe.2001.117262 – volume: 9 start-page: 9007 issue: 1 year: 2019 ident: CR15 article-title: Automated detection of third molars and mandibular nerve by deep learning publication-title: Sci Rep doi: 10.1038/s41598-019-45487-3 – volume: 36 start-page: 1455 year: 2010 end-page: 1458 ident: CR25 article-title: Diagnosis of vertical root fractures in endodontically treated teeth based on clinical and radiographic indices: a systematic review publication-title: J Endod doi: 10.1016/j.joen.2010.05.003 – volume: 11 start-page: 2021 year: 2016 end-page: 2032 ident: CR5 article-title: Quantitative assessment of mandibular cortical erosion on dental panoramic radiographs for screening osteoporosis publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-016-1438-8 – volume: 2 start-page: 37 year: 2011 end-page: 63 ident: CR37 article-title: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation publication-title: J Mach Learning Technol – volume: 45 start-page: 20150419 year: 2016 ident: CR3 article-title: Utilization of computer-aided detection system in diagnosing unilateral maxillary sinusitis on panoramic radiographs publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20150419 – volume: 77 start-page: 106 year: 2018 end-page: 111 ident: CR8 article-title: Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm publication-title: J Dent doi: 10.1016/j.jdent.2018.07.015 – volume: 90 start-page: 224 year: 2000 end-page: 227 ident: CR44 article-title: Pattern of bone resorption in vertically fractured, endodontically treated teeth publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod doi: 10.1067/moe.2000.107445 – volume: 41 start-page: 1 year: 2011 end-page: 6 ident: CR1 article-title: Assessment of panoramic radiography as a national oral examination tool: review of the literature publication-title: Imaging Sci Dent doi: 10.5624/isd.2011.41.1.1 – volume: 48 start-page: 20180051 year: 2019 ident: CR12 article-title: Tooth detection and numbering in panoramic radiographs using convolutional neural networks publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20180051 – volume: 9 start-page: 3840 issue: 1 year: 2019 ident: CR7 article-title: A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films publication-title: Sci Rep doi: 10.1038/s41598-019-40414-y – volume: 46 start-page: 20170400 year: 2017 ident: CR26 article-title: Radiographic diagnosis of root fractures: a systematic review, meta-analyses and sources of heterogeneity publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20170400 – volume: 8 start-page: 877 year: 2013 end-page: 885 ident: CR4 article-title: Automated measurement of mandibular cortical width on dental panoramic radiographs publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-012-0800-8 – volume: 45 start-page: 917 issue: 7 year: 2019 ident: 409_CR14 publication-title: J Endod doi: 10.1016/j.joen.2019.03.016 – volume: 77 start-page: 106 year: 2018 ident: 409_CR8 publication-title: J Dent doi: 10.1016/j.jdent.2018.07.015 – volume: 45 start-page: 20150419 year: 2016 ident: 409_CR3 publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20150419 – volume: 35 start-page: 303 year: 2017 ident: 409_CR19 publication-title: Med Image Anal doi: 10.1016/j.media.2016.07.007 – volume: 22 start-page: 1218 issue: 4 year: 2018 ident: 409_CR38 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2731873 – year: 2019 ident: 409_CR11 publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol doi: 10.1016/j.oooo.2019.05.014 – volume: 46 start-page: 20170400 year: 2017 ident: 409_CR26 publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20170400 – volume: 126 start-page: 198 year: 2018 ident: 409_CR6 publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol doi: 10.1016/j.oooo.2018.04.005 – year: 2019 ident: 409_CR17 publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20190019 – volume: 12 start-page: 222 year: 2014 ident: 409_CR24 publication-title: Kathmandu Univ Med J doi: 10.3126/kumj.v12i3.13724 – volume: 48 start-page: 20180218 year: 2019 ident: 409_CR10 publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20180218 – volume-title: Textbook of endodontics year: 2019 ident: 409_CR39 – volume: 26 start-page: 619 year: 2015 ident: 409_CR32 publication-title: Indian J Dent Res doi: 10.4103/0970-9290.176927 – volume: 12 start-page: e0178992 year: 2017 ident: 409_CR33 publication-title: PLoS ONE doi: 10.1371/journal.pone.0178992 – volume: 90 start-page: 224 year: 2000 ident: 409_CR44 publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod doi: 10.1067/moe.2000.107445 – volume: 109 start-page: 1920946 year: 2018 ident: 409_CR22 publication-title: Sci World J – volume: 148 start-page: 100 year: 2017 ident: 409_CR42 publication-title: J Am Dent Assoc doi: 10.1016/j.adaj.2016.11.014 – volume: 39 start-page: 1620 year: 2013 ident: 409_CR30 publication-title: J Endod doi: 10.1016/j.joen.2013.08.031 – year: 2019 ident: 409_CR18 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2876865 – volume: 48 start-page: 20170344 year: 2018 ident: 409_CR13 publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20170344 – volume: 41 start-page: 1 year: 2011 ident: 409_CR1 publication-title: Imaging Sci Dent doi: 10.5624/isd.2011.41.1.1 – volume: 31 start-page: 1128 year: 2010 ident: 409_CR35 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2009.10.016 – volume: 9 start-page: 3840 issue: 1 year: 2019 ident: 409_CR7 publication-title: Sci Rep doi: 10.1038/s41598-019-40414-y – volume: 44 start-page: 233 year: 2018 ident: 409_CR41 publication-title: J Endod doi: 10.1016/j.joen.2017.09.013 – volume: 10 start-page: 193 year: 2015 ident: 409_CR21 publication-title: Iran Endod J – volume: 11 start-page: 2021 year: 2016 ident: 409_CR5 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-016-1438-8 – volume: 49 start-page: 646 year: 2016 ident: 409_CR27 publication-title: Int Endod J doi: 10.1111/iej.12490 – volume: 47 start-page: 735 year: 2014 ident: 409_CR29 publication-title: Int Endod J doi: 10.1111/iej.12209 – volume: 42 start-page: 240 year: 2014 ident: 409_CR28 publication-title: J Dent doi: 10.1016/j.jdent.2013.11.024 – volume: 212 start-page: 513 issue: 3 year: 2019 ident: 409_CR36 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.18.20490 – volume: 8 start-page: 877 year: 2013 ident: 409_CR4 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-012-0800-8 – volume: 92 start-page: 553 year: 2001 ident: 409_CR23 publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod doi: 10.1067/moe.2001.117262 – volume: 48 start-page: 20180051 year: 2019 ident: 409_CR12 publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20180051 – volume: 10 start-page: 122 year: 2015 ident: 409_CR20 publication-title: Iran Endod J – volume: 2 start-page: 37 year: 2011 ident: 409_CR37 publication-title: J Mach Learning Technol – volume: 58 start-page: 501 year: 2017 ident: 409_CR40 publication-title: Rom J Morphol Embryol – volume: 25 start-page: 227 year: 2017 ident: 409_CR31 publication-title: J Appl Oral Sci doi: 10.1590/1678-77572016-0332 – volume: 7 start-page: 11 year: 2017 ident: 409_CR34 publication-title: EJNMMI Res doi: 10.1186/s13550-017-0260-9 – volume: 88 start-page: 348 year: 1999 ident: 409_CR43 publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod doi: 10.1016/S1079-2104(99)70041-7 – volume: 44 start-page: 1500 year: 2018 ident: 409_CR2 publication-title: J Endod doi: 10.1016/j.joen.2018.07.003 – year: 2018 ident: 409_CR9 publication-title: Oral Radiol doi: 10.1007/s11282-018-0363-7 – volume: 9 start-page: 9007 issue: 1 year: 2019 ident: 409_CR15 publication-title: Sci Rep doi: 10.1038/s41598-019-45487-3 – volume: 9 start-page: 8495 issue: 1 year: 2019 ident: 409_CR16 publication-title: Sci Rep doi: 10.1038/s41598-019-44839-3 – volume: 36 start-page: 1455 year: 2010 ident: 409_CR25 publication-title: J Endod doi: 10.1016/j.joen.2010.05.003 |
| SSID | ssj0029448 |
| Score | 2.5509553 |
| Snippet | Objectives
The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic... The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic... ObjectivesThe aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 337 |
| SubjectTerms | Artificial Intelligence Cone-Beam Computed Tomography Deep learning Dentistry Humans Imaging Medicine Neural networks Oral and Maxillofacial Surgery Original Article Radiography Radiography, Panoramic Radiology Reproducibility of Results Teeth Tooth Fractures - diagnostic imaging Tooth Root - diagnostic imaging |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tXcRyWWBhdwMFGYkbWCS2m9QntIJWXKh6AKm3yLUdqRKbLH2s-vN3xnFTUGEvXHJJYo00D894xt8H8E4Sc7Gncw1hJVfoE-RzKRfS-MzOU2NzG8gmislkOJvpaTxwW8Wxyl1MDIHaNZbOyD8KgZWCVLJQn25-cWKNou5qpNB4AMeEkiDD6N60K7i0CuxZuCVmPMeNNF6aaa_OYWCmoQTNyY413_65MR1kmwed0rABjZ_8r-hP4TSmnuyqtZVncOTrMzj5QuNCxPh2Bo--xUb7c7gedSjgrKmYqRmZWIs2wRa_wXiyFgqaYe7LnKeOBArPAskzap9hXr5mFd3E2iw9w8Uw-KDRXS8sWxq3iHjZL-DHePT981cemRm4VVqueeYxxOfpHIsXJX3qDT4psUxthaW20YVVA43JgxGucqrInbOpmmPcddJINTTyHHp1U_tLYFgiC-tMNRfFQGXVQOeEsF85jz8InxYJZDu1lDbClhN7xs9yD7hMqixRlWVQZblN4H33z00L2nHv1_2d2srowKtyr7O_v8YsEr_QhU7gbfcaPZPaLab2zSYsIfUQg55I4KI1ok4amRGsTjFM4MPOqvaL_1vUl_eL-goeCzoOCLOGfeitlxv_Gh7aW7Sj5ZvgG3fIaBMe priority: 102 providerName: ProQuest |
| Title | Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography |
| URI | https://link.springer.com/article/10.1007/s11282-019-00409-x https://www.ncbi.nlm.nih.gov/pubmed/31535278 https://www.proquest.com/docview/2292434374 https://www.proquest.com/docview/2441292979 https://www.proquest.com/docview/2293980512 |
| Volume | 36 |
| WOSCitedRecordID | wos000568836200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1613-9674 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029448 issn: 0911-6028 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JaxsxFH40C0kvbba20yZGhdySgRlJHo2OXRx6qTFOG3wbZEkDhmRcHDv05_c9zeKULNBedNGCkN6q9_Q9gFNBlYs9vWtwK2KJPEE8l8RcGJ_aaWJsZkOxCTUc5pOJHjWfwm7bbPc2JBkk9fqzG4pSSiPQMVGejtFy3EJ1lxM7ji-vOjdLy1AzCxVhGmeoPpuvMo-v8bc6emBjPoiPBrVz8fr_NrwHrxozk32q6WIfXvjqAHa_UmoQVXc7gJ3vTVD9EG4GHeI3m5fMVIzIqUaWYLN7kJ2shn1maOcy5yn6gNthoaAz3jRDG3zJSvp1tVp4houhoEECu5lZtjBu1mBjH8HPi8GPL9_ipgpDbKUWyzj1KM6zZIqOihQ-8QZbMiITW6JbbbSysq_RUDDclU6qzDmbyCnKWCeMkLkRb2Czmlf-HTB0h7l1ppxy1Zdp2dcZoemXzuME7hMVQdpeRmEbiHKqlHFdrMGV6UwLPNMinGnxO4Kzbs6vGqDj2dHH7R0XDbPeFpyjEyqkUPLxbrQYcYRWOoKPXTdyIYVWTOXnq7CE0DkKOB7B25p0ut2IlCB0VB7BeUsn68Wf3ur7fxv-AV5yegoIeYbHsLlcrPwJbNs7pKtFDzbU-IraiQpt3oOtz4PhaNyjZNdRL3DQH73SD0A |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAzEu_BhsBAYYCU5gLbHdOD4ghNimTdsqDkPqLbi2I1Xa0tG1bPun-Bt5z0la0GC3Hbj0ksRyk-_9sp-_D-CNJOXiQOsawkmu0CbI5lIupA2ZG6bW5S6KTeh-vxgMzJcl-NmdhaG2ys4nRkftx47WyDeFwEpBKqnVx9PvnFSjaHe1k9BoYLEfLs-xZDv7sLeF3_etEDvbR593easqwJ0ycsqzgO4pT4eYeCsZ0mDxl5Ki1FVYJlqjneoZDHxW-MornXvvUjVEn-GllaqwEse9BbfRj2tqIdODRYFnVFTrwhCc8RwDd3tIpzmqh4GAmiAMJ7sx_OLPQHglu72yMxsD3s6D_-1VPYT7bWrNPjW28AiWQr0KK1vUDkWKdqtw97BtJHgMJ9tzlnM2rpitGZlQw6bBRr_RlLKG6pphbs98oB0XfFksilgjuhnWHVNW0Umz2SQwHAydKxrVycixifWjlg_8CXy9kT--Bsv1uA5PgUlZCOdtNRS6p7KqZ3JSEKh8wAdESHUCWQeD0rW07KQOclwuCKUJOiVCp4zQKS8SeDd_5rQhJbn27o0OJmXroM7KBUb-fhmzZLzDaJPA6_ll9Dy0nWTrMJ7FIaQp0KmLBNYb0M5nIzOiDdJFAu87FC8G__dUn10_1Vewsnt0eFAe7PX3n8M9QUsfsa9yA5ank1l4AXfcD8TU5GW0SwbfbhrdvwBXbW7k |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9N3VT2AluBkbEPI_EGURPbTepHRFttAqpKwNS3yLUdqRJNq9Ii_nzunDQdaoeE9pIXf-hk32fO9zuAt4I6Fzv6r8GNCCXKBMlcFHKhXWwmkTaJ8c0m0uGwOx6r0b0qfv_afZOSLGsaCKWpWLUXNm9vC99QrdKTAhUSF6oQvchDSU2DKF7_eleHXEr6_lloFOMwQVNalc3s3-Nv07Tjb-7kSr0JGjx7PPEn8LRyP9mHkl9O4cAVLXjSoydD1PWtBc0vVbL9Ocz6NRI4m-dMF4zYrEScYNN7UJ6shINm6P8y6ygrgaQx3-gZOYChb75iOVVjrZeO4WaogJDxZlPDltpOK8zsF_B90P_28SasujOERiqxCmOHaj6JJhjASOEip_FLzmVkcgy3tUqN7Ch0IDS3uZVpYq2J5AR1rxVayK4WL6FRzAv3ChiGydxYnU942pFx3lEJoezn1uEC7qI0gHhzMZmpoMupg8aPbAu6TGea4Zlm_kyz3wG8q9csSuCOf86-2Nx3Vgnxz4xzDE6FFKncP4yeJM5QqQrgTT2M0kkpF124-dpvIVQXFR8P4Kxko5oaERO0TtoN4P2GZ7abP0zq-f9Nv4bmqDfIPt8OP72GY05_C_xTxAtorJZrdwlH5hey2PLKC84fua0Vqg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+an+artificial+intelligence+system+for+detecting+vertical+root+fracture+on+panoramic+radiography&rft.jtitle=Oral+radiology&rft.au=Fukuda%2C+Motoki&rft.au=Inamoto%2C+Kyoko&rft.au=Shibata%2C+Naoki&rft.au=Ariji%2C+Yoshiko&rft.date=2020-10-01&rft.eissn=1613-9674&rft.volume=36&rft.issue=4&rft.spage=337&rft_id=info:doi/10.1007%2Fs11282-019-00409-x&rft_id=info%3Apmid%2F31535278&rft.externalDocID=31535278 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0911-6028&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0911-6028&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0911-6028&client=summon |