Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography

Objectives The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic radiography. Methods Three hundred panoramic images containing a total of 330 VRF teeth with clearly visible fracture lines were selected fr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Oral radiology Ročník 36; číslo 4; s. 337 - 343
Hlavní autoři: Fukuda, Motoki, Inamoto, Kyoko, Shibata, Naoki, Ariji, Yoshiko, Yanashita, Yudai, Kutsuna, Shota, Nakata, Kazuhiko, Katsumata, Akitoshi, Fujita, Hiroshi, Ariji, Eiichiro
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Singapore 01.10.2020
Springer Nature B.V
Témata:
ISSN:0911-6028, 1613-9674, 1613-9674
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Objectives The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic radiography. Methods Three hundred panoramic images containing a total of 330 VRF teeth with clearly visible fracture lines were selected from our hospital imaging database. Confirmation of VRF lines was performed by two radiologists and one endodontist. Eighty percent (240 images) of the 300 images were assigned to a training set and 20% (60 images) to a test set. A CNN-based deep learning model for the detection of VRFs was built using DetectNet with DIGITS version 5.0. To defend test data selection bias and increase reliability, fivefold cross-validation was performed. Diagnostic performance was evaluated using recall, precision, and F measure. Results Of the 330 VRFs, 267 were detected. Twenty teeth without fractures were falsely detected. Recall was 0.75, precision 0.93, and F measure 0.83. Conclusions The CNN learning model has shown promise as a tool to detect VRFs on panoramic images and to function as a CAD tool.
AbstractList Objectives The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic radiography. Methods Three hundred panoramic images containing a total of 330 VRF teeth with clearly visible fracture lines were selected from our hospital imaging database. Confirmation of VRF lines was performed by two radiologists and one endodontist. Eighty percent (240 images) of the 300 images were assigned to a training set and 20% (60 images) to a test set. A CNN-based deep learning model for the detection of VRFs was built using DetectNet with DIGITS version 5.0. To defend test data selection bias and increase reliability, fivefold cross-validation was performed. Diagnostic performance was evaluated using recall, precision, and F measure. Results Of the 330 VRFs, 267 were detected. Twenty teeth without fractures were falsely detected. Recall was 0.75, precision 0.93, and F measure 0.83. Conclusions The CNN learning model has shown promise as a tool to detect VRFs on panoramic images and to function as a CAD tool.
ObjectivesThe aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic radiography.MethodsThree hundred panoramic images containing a total of 330 VRF teeth with clearly visible fracture lines were selected from our hospital imaging database. Confirmation of VRF lines was performed by two radiologists and one endodontist. Eighty percent (240 images) of the 300 images were assigned to a training set and 20% (60 images) to a test set. A CNN-based deep learning model for the detection of VRFs was built using DetectNet with DIGITS version 5.0. To defend test data selection bias and increase reliability, fivefold cross-validation was performed. Diagnostic performance was evaluated using recall, precision, and F measure.ResultsOf the 330 VRFs, 267 were detected. Twenty teeth without fractures were falsely detected. Recall was 0.75, precision 0.93, and F measure 0.83.ConclusionsThe CNN learning model has shown promise as a tool to detect VRFs on panoramic images and to function as a CAD tool.
The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic radiography. Three hundred panoramic images containing a total of 330 VRF teeth with clearly visible fracture lines were selected from our hospital imaging database. Confirmation of VRF lines was performed by two radiologists and one endodontist. Eighty percent (240 images) of the 300 images were assigned to a training set and 20% (60 images) to a test set. A CNN-based deep learning model for the detection of VRFs was built using DetectNet with DIGITS version 5.0. To defend test data selection bias and increase reliability, fivefold cross-validation was performed. Diagnostic performance was evaluated using recall, precision, and F measure. Of the 330 VRFs, 267 were detected. Twenty teeth without fractures were falsely detected. Recall was 0.75, precision 0.93, and F measure 0.83. The CNN learning model has shown promise as a tool to detect VRFs on panoramic images and to function as a CAD tool.
The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic radiography.OBJECTIVESThe aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic radiography.Three hundred panoramic images containing a total of 330 VRF teeth with clearly visible fracture lines were selected from our hospital imaging database. Confirmation of VRF lines was performed by two radiologists and one endodontist. Eighty percent (240 images) of the 300 images were assigned to a training set and 20% (60 images) to a test set. A CNN-based deep learning model for the detection of VRFs was built using DetectNet with DIGITS version 5.0. To defend test data selection bias and increase reliability, fivefold cross-validation was performed. Diagnostic performance was evaluated using recall, precision, and F measure.METHODSThree hundred panoramic images containing a total of 330 VRF teeth with clearly visible fracture lines were selected from our hospital imaging database. Confirmation of VRF lines was performed by two radiologists and one endodontist. Eighty percent (240 images) of the 300 images were assigned to a training set and 20% (60 images) to a test set. A CNN-based deep learning model for the detection of VRFs was built using DetectNet with DIGITS version 5.0. To defend test data selection bias and increase reliability, fivefold cross-validation was performed. Diagnostic performance was evaluated using recall, precision, and F measure.Of the 330 VRFs, 267 were detected. Twenty teeth without fractures were falsely detected. Recall was 0.75, precision 0.93, and F measure 0.83.RESULTSOf the 330 VRFs, 267 were detected. Twenty teeth without fractures were falsely detected. Recall was 0.75, precision 0.93, and F measure 0.83.The CNN learning model has shown promise as a tool to detect VRFs on panoramic images and to function as a CAD tool.CONCLUSIONSThe CNN learning model has shown promise as a tool to detect VRFs on panoramic images and to function as a CAD tool.
Author Katsumata, Akitoshi
Kutsuna, Shota
Inamoto, Kyoko
Nakata, Kazuhiko
Ariji, Eiichiro
Fujita, Hiroshi
Yanashita, Yudai
Fukuda, Motoki
Shibata, Naoki
Ariji, Yoshiko
Author_xml – sequence: 1
  givenname: Motoki
  orcidid: 0000-0002-0285-5008
  surname: Fukuda
  fullname: Fukuda, Motoki
  email: halpop@dpc.agu.ac.jp
  organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry
– sequence: 2
  givenname: Kyoko
  surname: Inamoto
  fullname: Inamoto, Kyoko
  organization: Department of Endodontics, Aichi-Gakuin University School of Dentistry
– sequence: 3
  givenname: Naoki
  surname: Shibata
  fullname: Shibata, Naoki
  organization: Department of Endodontics, Aichi-Gakuin University School of Dentistry
– sequence: 4
  givenname: Yoshiko
  surname: Ariji
  fullname: Ariji, Yoshiko
  organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry
– sequence: 5
  givenname: Yudai
  surname: Yanashita
  fullname: Yanashita, Yudai
  organization: Department of Electrical, Electronic and Computer Faculty of Engineering, Gifu University
– sequence: 6
  givenname: Shota
  surname: Kutsuna
  fullname: Kutsuna, Shota
  organization: Department of Electrical, Electronic and Computer Faculty of Engineering, Gifu University
– sequence: 7
  givenname: Kazuhiko
  surname: Nakata
  fullname: Nakata, Kazuhiko
  organization: Department of Endodontics, Aichi-Gakuin University School of Dentistry
– sequence: 8
  givenname: Akitoshi
  surname: Katsumata
  fullname: Katsumata, Akitoshi
  organization: Department of Oral Radiology, Asahi University
– sequence: 9
  givenname: Hiroshi
  surname: Fujita
  fullname: Fujita, Hiroshi
  organization: Department of Electrical, Electronic and Computer Faculty of Engineering, Gifu University
– sequence: 10
  givenname: Eiichiro
  surname: Ariji
  fullname: Ariji, Eiichiro
  organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31535278$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1PHDEQhq2IKBwkf4AispQmzRJ_7XpdRggCEhJNUltz3tmL0a59sb2I-_c4HAiJ4hpP8zyvxvOekKMQAxJyxtk5Z0z_yJyLXjSMm4YxxUzz-IGseMdlYzqtjsiKGc6bjon-mJzkfM-YMEr1n8ix5K1she5XZL58gGmB4mOgcaQQKKTiR-88TNSHgtPkNxgc0rzLBWc6xkQHLOiKDxv6gJV2FU0xFjomcGVJSGvYFkJMMHtHEww-bhJs_-4-k48jTBm_vMxT8ufq8vfFdXN79-vm4udt45SRpeGIa96xdaeEksgQ6tsyzZkbtRJgtFOtEbwHMYyD0t0wOKbWuhODBKl6kKfk-z53m-K_BXOxs8-u_gUCxiVbIYw0PWu5qOi3d-h9XFKo21mhFBdGGG0OUhVRUkmtKvX1hVrWMw52m_wMaWdfz12Bfg-4FHNOOFrny_PxSwI_Wc7s_2btvllbm7XPzdrHqop36mv6QUnupVzhsMH0tvYB6wmz-rYn
CitedBy_id crossref_primary_10_21802_artm_2025_2_34_101
crossref_primary_10_4103_njcp_njcp_394_22
crossref_primary_10_1186_s12903_024_04721_9
crossref_primary_10_1016_j_identj_2024_11_009
crossref_primary_10_1016_j_jormas_2023_101524
crossref_primary_10_3390_app12020877
crossref_primary_10_1016_j_bspc_2023_105082
crossref_primary_10_1016_j_sdentj_2022_04_004
crossref_primary_10_1051_e3sconf_202129701074
crossref_primary_10_1186_s12880_024_01338_w
crossref_primary_10_1016_j_heliyon_2024_e41137
crossref_primary_10_4103_jpbs_jpbs_1341_24
crossref_primary_10_1259_dmfr_20200611
crossref_primary_10_52037_eads_2025_0002
crossref_primary_10_1016_j_oooo_2020_04_813
crossref_primary_10_1007_s00784_024_05999_3
crossref_primary_10_3390_ijerph17103716
crossref_primary_10_1155_2021_6659133
crossref_primary_10_1186_s12903_024_04786_6
crossref_primary_10_1038_s41405_025_00336_6
crossref_primary_10_4103_jpcdoh_jpcdoh_9_25
crossref_primary_10_1080_09540091_2025_2522706
crossref_primary_10_1259_dmfr_20220345
crossref_primary_10_1016_j_ijmedinf_2023_105170
crossref_primary_10_3390_app15179790
crossref_primary_10_1093_dmfr_twae014
crossref_primary_10_3390_bioengineering11121267
crossref_primary_10_4103_sej_sej_199_23
crossref_primary_10_1016_j_joen_2021_09_009
crossref_primary_10_1186_s12903_022_02422_9
crossref_primary_10_1007_s11282_023_00677_8
crossref_primary_10_1007_s10278_024_00972_8
crossref_primary_10_1007_s12663_025_02664_4
crossref_primary_10_7759_cureus_27405
crossref_primary_10_1007_s11282_020_00449_8
crossref_primary_10_3390_diagnostics15030314
crossref_primary_10_1007_s11604_024_01702_4
crossref_primary_10_1038_s41598_024_82378_8
crossref_primary_10_2298_SJEE2502279P
crossref_primary_10_3390_diagnostics11081477
crossref_primary_10_1007_s00784_024_05566_w
crossref_primary_10_1007_s11282_024_00765_3
crossref_primary_10_1155_2023_4415970
crossref_primary_10_1038_s41598_021_95653_9
crossref_primary_10_1109_ACCESS_2024_3472012
crossref_primary_10_1111_edt_13027
crossref_primary_10_1259_dmfr_20220335
crossref_primary_10_1007_s11282_021_00577_9
crossref_primary_10_1016_j_oooo_2020_04_005
crossref_primary_10_1016_j_dib_2024_111152
crossref_primary_10_1109_ACCESS_2024_3523816
crossref_primary_10_3390_diagnostics14202336
crossref_primary_10_3390_healthcare10071269
crossref_primary_10_3389_froh_2025_1572665
crossref_primary_10_1016_j_oooo_2023_09_011
crossref_primary_10_1111_iej_14128
crossref_primary_10_1007_s42044_024_00226_4
crossref_primary_10_1259_dmfr_20200513
crossref_primary_10_1259_dmfr_20220122
crossref_primary_10_1016_j_oooo_2021_08_010
crossref_primary_10_1038_s41598_021_94093_9
crossref_primary_10_3390_diagnostics12051029
crossref_primary_10_3390_healthcare10112188
crossref_primary_10_4103_jpbs_jpbs_1106_24
crossref_primary_10_1155_2023_7049360
crossref_primary_10_33808_clinexphealthsci_1466714
crossref_primary_10_3390_asi8010007
crossref_primary_10_1016_j_compbiomed_2024_109262
crossref_primary_10_33295_1992_576X_2024_5_72
crossref_primary_10_1007_s10278_022_00766_w
crossref_primary_10_1016_j_ajoms_2022_02_004
crossref_primary_10_1186_s12903_024_03896_5
crossref_primary_10_1007_s00784_024_06049_8
crossref_primary_10_7759_cureus_88515
crossref_primary_10_1108_IJICC_08_2023_0230
crossref_primary_10_1016_j_jebdp_2025_102164
crossref_primary_10_1111_exsy_13326
crossref_primary_10_1007_s00784_020_03544_6
crossref_primary_10_1111_eje_13028
crossref_primary_10_1259_dmfr_20210436
crossref_primary_10_3390_app14104093
crossref_primary_10_1007_s11042_024_19920_3
crossref_primary_10_7759_cureus_51825
crossref_primary_10_4103_CTD_CTD_11_24
crossref_primary_10_3390_diagnostics14121260
crossref_primary_10_1007_s00784_022_04477_y
crossref_primary_10_1007_s11282_022_00622_1
crossref_primary_10_1007_s10278_021_00481_y
crossref_primary_10_1177_20552076241291345
crossref_primary_10_1259_dmfr_20210185
crossref_primary_10_17694_bajece_1457754
crossref_primary_10_1007_s44163_025_00371_0
crossref_primary_10_1016_j_identj_2025_02_005
crossref_primary_10_3390_diagnostics13152512
crossref_primary_10_1016_j_oooo_2022_05_014
crossref_primary_10_1155_2022_3500552
crossref_primary_10_1016_j_joen_2021_11_007
crossref_primary_10_1016_j_media_2025_103709
crossref_primary_10_1080_00016357_2020_1840624
crossref_primary_10_3390_diagnostics14212442
crossref_primary_10_1002_cre2_70035
crossref_primary_10_7759_cureus_85062
crossref_primary_10_1016_j_joen_2024_05_015
crossref_primary_10_1109_JBHI_2021_3117575
crossref_primary_10_1016_j_eswa_2022_116968
crossref_primary_10_2174_0118742106349183250131062154
crossref_primary_10_1371_journal_pone_0310925
crossref_primary_10_1007_s11282_020_00485_4
crossref_primary_10_1111_eje_13042
crossref_primary_10_1016_j_compbiomed_2024_108910
crossref_primary_10_1016_j_compbiomed_2024_108755
crossref_primary_10_1186_s12903_025_05431_6
crossref_primary_10_3390_bioengineering12050447
crossref_primary_10_1016_j_prosdent_2021_08_003
crossref_primary_10_1007_s40368_025_01063_0
crossref_primary_10_3390_app10082856
crossref_primary_10_4103_njcp_njcp_624_22
crossref_primary_10_3390_jcm12030937
crossref_primary_10_3390_app15063295
crossref_primary_10_1259_dmfr_20210002
crossref_primary_10_3390_diagnostics11020233
crossref_primary_10_1111_iej_14163
crossref_primary_10_3390_diagnostics13121995
crossref_primary_10_1016_j_jdent_2025_106066
crossref_primary_10_1259_dmfr_20220209
crossref_primary_10_1007_s11282_022_00644_9
crossref_primary_10_1007_s10266_023_00864_3
crossref_primary_10_1016_j_compbiomed_2024_108800
crossref_primary_10_1186_s12880_021_00656_7
crossref_primary_10_1007_s10278_024_01113_x
crossref_primary_10_1016_j_jdent_2023_104768
crossref_primary_10_1007_s10517_021_05133_3
crossref_primary_10_1259_dmfr_20210246
crossref_primary_10_3389_fcell_2024_1497457
crossref_primary_10_3390_diagnostics13172742
crossref_primary_10_7717_peerj_11451
crossref_primary_10_12944_EDJ_06_SI01_03
crossref_primary_10_1016_j_cden_2025_05_007
crossref_primary_10_1159_000527145
crossref_primary_10_1155_2022_6384905
crossref_primary_10_3390_diagnostics13030414
crossref_primary_10_1093_dmfr_twaf011
crossref_primary_10_1007_s10278_024_01218_3
crossref_primary_10_3390_life13071441
crossref_primary_10_1093_dmfr_twaf004
crossref_primary_10_1259_dmfr_20210197
crossref_primary_10_1259_dmfr_20200171
crossref_primary_10_1259_dmfr_20200172
crossref_primary_10_1007_s11282_022_00634_x
crossref_primary_10_7759_cureus_75300
crossref_primary_10_1007_s11282_021_00572_0
crossref_primary_10_1093_ejo_cjaf054
crossref_primary_10_1016_j_jds_2023_03_020
crossref_primary_10_1186_s12874_024_02183_9
crossref_primary_10_1016_j_bspc_2024_107059
crossref_primary_10_1016_j_jdent_2025_105648
crossref_primary_10_3390_bioengineering11050431
crossref_primary_10_3389_fdmed_2023_1085251
crossref_primary_10_3390_jcm12237378
crossref_primary_10_1016_j_joen_2021_06_003
crossref_primary_10_1111_aej_12822
crossref_primary_10_3390_s22197370
crossref_primary_10_1007_s40496_024_00372_5
Cites_doi 10.1016/j.oooo.2019.05.014
10.1016/j.patrec.2009.10.016
10.1109/JBHI.2017.2731873
10.1371/journal.pone.0178992
10.1186/s13550-017-0260-9
10.1038/s41598-019-44839-3
10.1016/j.joen.2013.08.031
10.1259/dmfr.20190019
10.2214/AJR.18.20490
10.1007/s11282-018-0363-7
10.1259/dmfr.20180218
10.1016/j.oooo.2018.04.005
10.1016/j.joen.2019.03.016
10.3126/kumj.v12i3.13724
10.1590/1678-77572016-0332
10.1016/j.joen.2017.09.013
10.4103/0970-9290.176927
10.1109/TNNLS.2018.2876865
10.1111/iej.12490
10.1016/j.media.2016.07.007
10.1016/j.jdent.2013.11.024
10.1016/S1079-2104(99)70041-7
10.1111/iej.12209
10.1016/j.adaj.2016.11.014
10.1016/j.joen.2018.07.003
10.1259/dmfr.20170344
10.1067/moe.2001.117262
10.1038/s41598-019-45487-3
10.1016/j.joen.2010.05.003
10.1007/s11548-016-1438-8
10.1259/dmfr.20150419
10.1016/j.jdent.2018.07.015
10.1067/moe.2000.107445
10.5624/isd.2011.41.1.1
10.1259/dmfr.20180051
10.1038/s41598-019-40414-y
10.1259/dmfr.20170400
10.1007/s11548-012-0800-8
ContentType Journal Article
Copyright Japanese Society for Oral and Maxillofacial Radiology and Springer Nature Singapore Pte Ltd. 2019
Oral Radiology is a copyright of Springer, (2019). All Rights Reserved.
Japanese Society for Oral and Maxillofacial Radiology and Springer Nature Singapore Pte Ltd. 2019.
Copyright_xml – notice: Japanese Society for Oral and Maxillofacial Radiology and Springer Nature Singapore Pte Ltd. 2019
– notice: Oral Radiology is a copyright of Springer, (2019). All Rights Reserved.
– notice: Japanese Society for Oral and Maxillofacial Radiology and Springer Nature Singapore Pte Ltd. 2019.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s11282-019-00409-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Central Student
MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Dentistry
EISSN 1613-9674
EndPage 343
ExternalDocumentID 31535278
10_1007_s11282_019_00409_x
Genre Journal Article
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7RV
7X7
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKEYQ
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
EX3
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JMI
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M4Y
M7P
MA-
MOJWN
N2Q
N9A
NAPCQ
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9S
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZ9
SZN
T13
T16
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
ZMTXR
ZOVNA
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
M1P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PSQYO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c493t-1eeb160b64243e0ea43e50710cf742a97c459218a2dfd476ddc04b762d3a348a3
IEDL.DBID M7P
ISICitedReferencesCount 168
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000568836200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0911-6028
1613-9674
IngestDate Thu Oct 02 06:12:36 EDT 2025
Sat Nov 29 14:40:45 EST 2025
Sat Nov 29 14:51:45 EST 2025
Wed Feb 19 02:26:50 EST 2025
Sat Nov 29 03:05:29 EST 2025
Tue Nov 18 22:25:53 EST 2025
Fri Feb 21 02:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Vertical root fracture
Panoramic radiography
Artificial intelligence
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-1eeb160b64243e0ea43e50710cf742a97c459218a2dfd476ddc04b762d3a348a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0285-5008
PMID 31535278
PQID 2292434374
PQPubID 326263
PageCount 7
ParticipantIDs proquest_miscellaneous_2293980512
proquest_journals_2441292979
proquest_journals_2292434374
pubmed_primary_31535278
crossref_citationtrail_10_1007_s11282_019_00409_x
crossref_primary_10_1007_s11282_019_00409_x
springer_journals_10_1007_s11282_019_00409_x
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Japan
– name: Tokyo
PublicationTitle Oral radiology
PublicationTitleAbbrev Oral Radiol
PublicationTitleAlternate Oral Radiol
PublicationYear 2020
Publisher Springer Singapore
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
References Ariji, Yanashita, Kutsuna, Muramatsu, Fukuda, Kise (CR11) 2019
Tamse, Fuss, Lustig, Ganor, Kaffe (CR43) 1999; 88
Hiraiwa, Ariji, Fukuda, Kise, Nakata, Katsumata (CR10) 2019; 48
Hekmatian, Karbasi Kheir, Fathollahzade, Sheikhi (CR22) 2018; 109
Ekert, Krois, Meinhold, Elhennawy, Emara, Golla (CR14) 2019; 45
Nardi, Calistri, Grazzini, Desideri, Lorini, Occhipinti (CR2) 2018; 44
Ma, Ge, Li (CR27) 2016; 49
Powers (CR37) 2011; 2
Vinayahalingam, Xi, Bergé, Maal, de Jong (CR15) 2019; 9
England, Cheng (CR36) 2019; 212
Muramatsu, Matsumoto, Hayashi, Hara, Katsumata, Zhou (CR4) 2013; 8
Kise, Ikeda, Fujii, Fukuda, Ariji, Fujita (CR17) 2019
Safi, Aghdasi, Ezoddini-Ardakani, Beiraghi, Vasegh (CR21) 2015; 10
Llena-Puy, Forner-Navarro, Barbero-Navarro (CR23) 2001; 92
Özdemir, Aksoy, Eckert, Pesaresi, Ehrlich (CR35) 2010; 31
Zhao, Zheng, Xu, Wu (CR18) 2019
Ardakani, Razavi, Tabrizizadeh (CR20) 2015; 10
Prithviraj, Bhalla, Vashisht, Regish, Suresh (CR24) 2014; 12
Choi (CR1) 2011; 41
Wang, Zhou, Li, Chen, Lu, Wang (CR34) 2017; 7
Lee, Kim, Jeong, Choi (CR8) 2018; 77
Kobayashi-Velasco, Salineiro, Gialain, Cavalcanti (CR31) 2017; 25
Muramatsu, Horiba, Hayashi, Fukui, Hara, Katsumata (CR5) 2016; 11
Tuzoff, Tuzova, Bornstein, Krasnov, Kharchenko, Nikolenko (CR12) 2019; 48
Lustig, Tamse, Fuss (CR44) 2000; 90
Maia, Medeiros, Pereira, Lima, Oliveira (CR6) 2018; 126
Krois, Ekert, Meinhold, Golla, Kharbot, Wittemeier (CR16) 2019; 9
Salineiro, Kobayashi-Velasco, Braga, Cavalcanti (CR26) 2017; 46
Junqueira, Verner, Campos, Devito, do Carmo (CR30) 2013; 39
Suksaphar, Banomyong, Jirathanyanatt, Ngoenwiwatkul (CR41) 2018; 44
Xue, Zhang, Deng, Chen, Jiang (CR33) 2017; 12
Yap, Pons, Marti, Ganau, Sentis, Zwiggelaar (CR38) 2018; 22
Lee, Adhikari, Liu, Jeong, Kim, Yoon (CR13) 2018; 48
Long, Zhou, Ye, Liao, Jian, Wang (CR28) 2014; 42
Chen, Zhang, Lyu, Li, Zhang, Wu (CR7) 2019; 9
Brady, Mannocci, Brown, Wilson, Patel (CR29) 2014; 47
Walton (CR42) 2017; 148
Takeshita, Chicarelli, Iwaki (CR32) 2015; 26
Murata, Ariji, Ohashi, Kawai, Fukuda, Funakoshi (CR9) 2018
Kooi, Litjens, van Ginneken, Gubern-Mérida, Sánchez, Mann (CR19) 2017; 35
Popescu, Diaconu, Scrieciu, Marinescu, Drăghici, Truşcă (CR40) 2017; 58
Tsesis, Rosen, Tamse, Taschieri, Kfir (CR25) 2010; 36
Ohashi, Ariji, Katsumata, Fujita, Nakayama, Fukuda (CR3) 2016; 45
Garg, Garg (CR39) 2019
DR Prithviraj (409_CR24) 2014; 12
FCS Salineiro (409_CR26) 2017; 46
E Brady (409_CR29) 2014; 47
Y Ariji (409_CR11) 2019
DMW Powers (409_CR37) 2011; 2
ZQ Zhao (409_CR18) 2019
T Kooi (409_CR19) 2017; 35
WM Takeshita (409_CR32) 2015; 26
H Long (409_CR28) 2014; 42
MH Yap (409_CR38) 2018; 22
C Nardi (409_CR2) 2018; 44
C Muramatsu (409_CR4) 2013; 8
PRL Maia (409_CR6) 2018; 126
E Hekmatian (409_CR22) 2018; 109
T Ekert (409_CR14) 2019; 45
J Krois (409_CR16) 2019; 9
Y Safi (409_CR21) 2015; 10
B Özdemir (409_CR35) 2010; 31
I Tsesis (409_CR25) 2010; 36
JW Choi (409_CR1) 2011; 41
JR England (409_CR36) 2019; 212
Y Kise (409_CR17) 2019
C Muramatsu (409_CR5) 2016; 11
N Garg (409_CR39) 2019
RB Junqueira (409_CR30) 2013; 39
A Tamse (409_CR43) 1999; 88
JH Lee (409_CR8) 2018; 77
W Suksaphar (409_CR41) 2018; 44
JS Lee (409_CR13) 2018; 48
RE Walton (409_CR42) 2017; 148
S Vinayahalingam (409_CR15) 2019; 9
RH Ma (409_CR27) 2016; 49
DV Tuzoff (409_CR12) 2019; 48
FE Ardakani (409_CR20) 2015; 10
SM Popescu (409_CR40) 2017; 58
H Chen (409_CR7) 2019; 9
Y Ohashi (409_CR3) 2016; 45
M Murata (409_CR9) 2018
Y Xue (409_CR33) 2017; 12
H Wang (409_CR34) 2017; 7
JP Lustig (409_CR44) 2000; 90
MC Llena-Puy (409_CR23) 2001; 92
T Hiraiwa (409_CR10) 2019; 48
S Kobayashi-Velasco (409_CR31) 2017; 25
References_xml – year: 2019
  ident: CR11
  article-title: Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol
  doi: 10.1016/j.oooo.2019.05.014
– volume: 31
  start-page: 1128
  year: 2010
  end-page: 1137
  ident: CR35
  article-title: Performance measures for object detection evaluation
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2009.10.016
– volume: 22
  start-page: 1218
  issue: 4
  year: 2018
  end-page: 1226
  ident: CR38
  article-title: Automated breast ultrasound lesions detection using convolutional neural networks
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2731873
– volume: 12
  start-page: e0178992
  year: 2017
  ident: CR33
  article-title: A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0178992
– volume: 7
  start-page: 11
  year: 2017
  ident: CR34
  article-title: Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images
  publication-title: EJNMMI Res
  doi: 10.1186/s13550-017-0260-9
– volume: 10
  start-page: 193
  year: 2015
  end-page: 198
  ident: CR21
  article-title: Effect of metal artifacts on detection of vertical root fractures using two cone beam computed tomography systems
  publication-title: Iran Endod J
– volume: 9
  start-page: 8495
  issue: 1
  year: 2019
  ident: CR16
  article-title: Deep learning for the radiographic detection of periodontal bone loss
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-44839-3
– volume: 39
  start-page: 1620
  year: 2013
  end-page: 1624
  ident: CR30
  article-title: Detection of vertical root fractures in the presence of intracanal metallic post: a comparison between periapical radiography and cone-beam computed tomography
  publication-title: J Endod
  doi: 10.1016/j.joen.2013.08.031
– year: 2019
  ident: CR17
  article-title: Preliminary study on the application of deep learning system to diagnosis of Sjögren's syndrome on CT images
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20190019
– volume: 212
  start-page: 513
  issue: 3
  year: 2019
  end-page: 519
  ident: CR36
  article-title: Artificial intelligence for medical image analysis: a guide for authors and reviewers
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.18.20490
– year: 2018
  ident: CR9
  article-title: Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography
  publication-title: Oral Radiol
  doi: 10.1007/s11282-018-0363-7
– volume: 48
  start-page: 20180218
  year: 2019
  ident: CR10
  article-title: A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20180218
– year: 2019
  ident: CR39
  publication-title: Textbook of endodontics
– volume: 126
  start-page: 198
  year: 2018
  end-page: 204
  ident: CR6
  article-title: Presence and associated factors of carotid artery calcification detected by digital panoramic radiography in patients with chronic kidney disease undergoing hemodialysis
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol
  doi: 10.1016/j.oooo.2018.04.005
– volume: 45
  start-page: 917
  issue: 7
  year: 2019
  end-page: 922.e5
  ident: CR14
  article-title: Deep learning for the radiographic detection of apical lesions
  publication-title: J Endod
  doi: 10.1016/j.joen.2019.03.016
– volume: 12
  start-page: 222
  year: 2014
  end-page: 230
  ident: CR24
  article-title: An overview of management of root fractures
  publication-title: Kathmandu Univ Med J
  doi: 10.3126/kumj.v12i3.13724
– volume: 25
  start-page: 227
  year: 2017
  end-page: 233
  ident: CR31
  article-title: Diagnosis of alveolar and root fractures: an in vitro study comparing CBCT imaging with periapical radiographs
  publication-title: J Appl Oral Sci
  doi: 10.1590/1678-77572016-0332
– volume: 44
  start-page: 233
  year: 2018
  end-page: 238
  ident: CR41
  article-title: Survival rates from fracture of endodontically treated premolars restored with full-coverage crowns or direct resin composite restorations: a retrospective study
  publication-title: J Endod
  doi: 10.1016/j.joen.2017.09.013
– volume: 26
  start-page: 619
  year: 2015
  end-page: 626
  ident: CR32
  article-title: Comparison of diagnostic accuracy of root perforation, external resorption and fractures using cone-beam computed tomography, panoramic radiography and conventional and digital periapical radiography
  publication-title: Indian J Dent Res
  doi: 10.4103/0970-9290.176927
– volume: 58
  start-page: 501
  year: 2017
  end-page: 506
  ident: CR40
  article-title: Root fractures: epidemiological, clinical and radiographic aspects
  publication-title: Rom J Morphol Embryol
– year: 2019
  ident: CR18
  article-title: Object detection with deep learning: a review
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2876865
– volume: 49
  start-page: 646
  year: 2016
  end-page: 654
  ident: CR27
  article-title: Detection accuracy of root fractures in cone-beam computed tomography images: a systematic review and meta-analysis
  publication-title: Int Endod J
  doi: 10.1111/iej.12490
– volume: 109
  start-page: 1920946
  year: 2018
  ident: CR22
  article-title: Detection of vertical root fractures using cone-beam computed tomography in the presence and absence of gutta-percha
  publication-title: Sci World J
– volume: 35
  start-page: 303
  year: 2017
  end-page: 312
  ident: CR19
  article-title: Large scale deep learning for computer aided detection of mammographic lesions
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.07.007
– volume: 42
  start-page: 240
  year: 2014
  end-page: 248
  ident: CR28
  article-title: Diagnostic accuracy of CBCT for tooth fractures: a meta-analysis
  publication-title: J Dent
  doi: 10.1016/j.jdent.2013.11.024
– volume: 88
  start-page: 348
  year: 1999
  end-page: 352
  ident: CR43
  article-title: Radiographic features of vertically fractured, endodontically treated maxillary premolars
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod
  doi: 10.1016/S1079-2104(99)70041-7
– volume: 47
  start-page: 735
  year: 2014
  end-page: 746
  ident: CR29
  article-title: A comparison of cone beam computed tomography and periapical radiography for the detection of vertical root fractures in nonendodontically treated teeth
  publication-title: Int Endod J
  doi: 10.1111/iej.12209
– volume: 148
  start-page: 100
  year: 2017
  end-page: 105
  ident: CR42
  article-title: Vertical root fracture: factors related to identification
  publication-title: J Am Dent Assoc
  doi: 10.1016/j.adaj.2016.11.014
– volume: 44
  start-page: 1500
  year: 2018
  end-page: 1508
  ident: CR2
  article-title: Is Panoramic radiography an accurate imaging technique for the detection of endodontically treated asymptomatic apical periodontitis?
  publication-title: J Endod
  doi: 10.1016/j.joen.2018.07.003
– volume: 10
  start-page: 122
  year: 2015
  end-page: 126
  ident: CR20
  article-title: Diagnostic value of cone-beam computed tomography and periapical radiography in detection of vertical root fracture
  publication-title: Iran Endod J
– volume: 48
  start-page: 20170344
  year: 2018
  ident: CR13
  article-title: Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis system: a preliminary study
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20170344
– volume: 92
  start-page: 553
  year: 2001
  end-page: 555
  ident: CR23
  article-title: Vertical root fracture in endodontically treated teeth: a review of 25 cases
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod
  doi: 10.1067/moe.2001.117262
– volume: 9
  start-page: 9007
  issue: 1
  year: 2019
  ident: CR15
  article-title: Automated detection of third molars and mandibular nerve by deep learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-45487-3
– volume: 36
  start-page: 1455
  year: 2010
  end-page: 1458
  ident: CR25
  article-title: Diagnosis of vertical root fractures in endodontically treated teeth based on clinical and radiographic indices: a systematic review
  publication-title: J Endod
  doi: 10.1016/j.joen.2010.05.003
– volume: 11
  start-page: 2021
  year: 2016
  end-page: 2032
  ident: CR5
  article-title: Quantitative assessment of mandibular cortical erosion on dental panoramic radiographs for screening osteoporosis
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-016-1438-8
– volume: 2
  start-page: 37
  year: 2011
  end-page: 63
  ident: CR37
  article-title: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation
  publication-title: J Mach Learning Technol
– volume: 45
  start-page: 20150419
  year: 2016
  ident: CR3
  article-title: Utilization of computer-aided detection system in diagnosing unilateral maxillary sinusitis on panoramic radiographs
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20150419
– volume: 77
  start-page: 106
  year: 2018
  end-page: 111
  ident: CR8
  article-title: Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm
  publication-title: J Dent
  doi: 10.1016/j.jdent.2018.07.015
– volume: 90
  start-page: 224
  year: 2000
  end-page: 227
  ident: CR44
  article-title: Pattern of bone resorption in vertically fractured, endodontically treated teeth
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod
  doi: 10.1067/moe.2000.107445
– volume: 41
  start-page: 1
  year: 2011
  end-page: 6
  ident: CR1
  article-title: Assessment of panoramic radiography as a national oral examination tool: review of the literature
  publication-title: Imaging Sci Dent
  doi: 10.5624/isd.2011.41.1.1
– volume: 48
  start-page: 20180051
  year: 2019
  ident: CR12
  article-title: Tooth detection and numbering in panoramic radiographs using convolutional neural networks
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20180051
– volume: 9
  start-page: 3840
  issue: 1
  year: 2019
  ident: CR7
  article-title: A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-40414-y
– volume: 46
  start-page: 20170400
  year: 2017
  ident: CR26
  article-title: Radiographic diagnosis of root fractures: a systematic review, meta-analyses and sources of heterogeneity
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20170400
– volume: 8
  start-page: 877
  year: 2013
  end-page: 885
  ident: CR4
  article-title: Automated measurement of mandibular cortical width on dental panoramic radiographs
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-012-0800-8
– volume: 45
  start-page: 917
  issue: 7
  year: 2019
  ident: 409_CR14
  publication-title: J Endod
  doi: 10.1016/j.joen.2019.03.016
– volume: 77
  start-page: 106
  year: 2018
  ident: 409_CR8
  publication-title: J Dent
  doi: 10.1016/j.jdent.2018.07.015
– volume: 45
  start-page: 20150419
  year: 2016
  ident: 409_CR3
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20150419
– volume: 35
  start-page: 303
  year: 2017
  ident: 409_CR19
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.07.007
– volume: 22
  start-page: 1218
  issue: 4
  year: 2018
  ident: 409_CR38
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2731873
– year: 2019
  ident: 409_CR11
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol
  doi: 10.1016/j.oooo.2019.05.014
– volume: 46
  start-page: 20170400
  year: 2017
  ident: 409_CR26
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20170400
– volume: 126
  start-page: 198
  year: 2018
  ident: 409_CR6
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol
  doi: 10.1016/j.oooo.2018.04.005
– year: 2019
  ident: 409_CR17
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20190019
– volume: 12
  start-page: 222
  year: 2014
  ident: 409_CR24
  publication-title: Kathmandu Univ Med J
  doi: 10.3126/kumj.v12i3.13724
– volume: 48
  start-page: 20180218
  year: 2019
  ident: 409_CR10
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20180218
– volume-title: Textbook of endodontics
  year: 2019
  ident: 409_CR39
– volume: 26
  start-page: 619
  year: 2015
  ident: 409_CR32
  publication-title: Indian J Dent Res
  doi: 10.4103/0970-9290.176927
– volume: 12
  start-page: e0178992
  year: 2017
  ident: 409_CR33
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0178992
– volume: 90
  start-page: 224
  year: 2000
  ident: 409_CR44
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod
  doi: 10.1067/moe.2000.107445
– volume: 109
  start-page: 1920946
  year: 2018
  ident: 409_CR22
  publication-title: Sci World J
– volume: 148
  start-page: 100
  year: 2017
  ident: 409_CR42
  publication-title: J Am Dent Assoc
  doi: 10.1016/j.adaj.2016.11.014
– volume: 39
  start-page: 1620
  year: 2013
  ident: 409_CR30
  publication-title: J Endod
  doi: 10.1016/j.joen.2013.08.031
– year: 2019
  ident: 409_CR18
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2876865
– volume: 48
  start-page: 20170344
  year: 2018
  ident: 409_CR13
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20170344
– volume: 41
  start-page: 1
  year: 2011
  ident: 409_CR1
  publication-title: Imaging Sci Dent
  doi: 10.5624/isd.2011.41.1.1
– volume: 31
  start-page: 1128
  year: 2010
  ident: 409_CR35
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2009.10.016
– volume: 9
  start-page: 3840
  issue: 1
  year: 2019
  ident: 409_CR7
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-40414-y
– volume: 44
  start-page: 233
  year: 2018
  ident: 409_CR41
  publication-title: J Endod
  doi: 10.1016/j.joen.2017.09.013
– volume: 10
  start-page: 193
  year: 2015
  ident: 409_CR21
  publication-title: Iran Endod J
– volume: 11
  start-page: 2021
  year: 2016
  ident: 409_CR5
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-016-1438-8
– volume: 49
  start-page: 646
  year: 2016
  ident: 409_CR27
  publication-title: Int Endod J
  doi: 10.1111/iej.12490
– volume: 47
  start-page: 735
  year: 2014
  ident: 409_CR29
  publication-title: Int Endod J
  doi: 10.1111/iej.12209
– volume: 42
  start-page: 240
  year: 2014
  ident: 409_CR28
  publication-title: J Dent
  doi: 10.1016/j.jdent.2013.11.024
– volume: 212
  start-page: 513
  issue: 3
  year: 2019
  ident: 409_CR36
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.18.20490
– volume: 8
  start-page: 877
  year: 2013
  ident: 409_CR4
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-012-0800-8
– volume: 92
  start-page: 553
  year: 2001
  ident: 409_CR23
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod
  doi: 10.1067/moe.2001.117262
– volume: 48
  start-page: 20180051
  year: 2019
  ident: 409_CR12
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20180051
– volume: 10
  start-page: 122
  year: 2015
  ident: 409_CR20
  publication-title: Iran Endod J
– volume: 2
  start-page: 37
  year: 2011
  ident: 409_CR37
  publication-title: J Mach Learning Technol
– volume: 58
  start-page: 501
  year: 2017
  ident: 409_CR40
  publication-title: Rom J Morphol Embryol
– volume: 25
  start-page: 227
  year: 2017
  ident: 409_CR31
  publication-title: J Appl Oral Sci
  doi: 10.1590/1678-77572016-0332
– volume: 7
  start-page: 11
  year: 2017
  ident: 409_CR34
  publication-title: EJNMMI Res
  doi: 10.1186/s13550-017-0260-9
– volume: 88
  start-page: 348
  year: 1999
  ident: 409_CR43
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod
  doi: 10.1016/S1079-2104(99)70041-7
– volume: 44
  start-page: 1500
  year: 2018
  ident: 409_CR2
  publication-title: J Endod
  doi: 10.1016/j.joen.2018.07.003
– year: 2018
  ident: 409_CR9
  publication-title: Oral Radiol
  doi: 10.1007/s11282-018-0363-7
– volume: 9
  start-page: 9007
  issue: 1
  year: 2019
  ident: 409_CR15
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-45487-3
– volume: 9
  start-page: 8495
  issue: 1
  year: 2019
  ident: 409_CR16
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-44839-3
– volume: 36
  start-page: 1455
  year: 2010
  ident: 409_CR25
  publication-title: J Endod
  doi: 10.1016/j.joen.2010.05.003
SSID ssj0029448
Score 2.5509553
Snippet Objectives The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic...
The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic...
ObjectivesThe aim of this study was to evaluate the use of a convolutional neural network (CNN) system for detecting vertical root fracture (VRF) on panoramic...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 337
SubjectTerms Artificial Intelligence
Cone-Beam Computed Tomography
Deep learning
Dentistry
Humans
Imaging
Medicine
Neural networks
Oral and Maxillofacial Surgery
Original Article
Radiography
Radiography, Panoramic
Radiology
Reproducibility of Results
Teeth
Tooth Fractures - diagnostic imaging
Tooth Root - diagnostic imaging
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT90wEB4hQLQX9rYpULkSN7CUxM7iY8UiDvBUFYq4RY7tSE_i5VVvQfz8zjjLK2KR6CUXO5Zlz-qZ-QbgMEEtTAEiXuZJxaVFVlRVWPHQKCNUKVXlK7xvL7PBIL-7Uz_borBpl-3ehSS9pF4Uu6EopTQCxYnyFEfLcQXVXU7s-Ov6tnezlPQ9s1ARRjxF9dmWyry8xlN19MzGfBYf9WrnfOP_NrwJ662ZyX40dLEFS67ehg-nlBpE3d22Ye2qDarvwOisR_xm44rpmhE5NcgSbPgPZCdrYJ8Z2rnMOoo-4HaYb-iMN83QBp-xiqqu5hPHcDEUNEhgo6FhE22HLTb2Lvw-P7s5ueBtFwZupBIzHjkU52lYoqMihQudxi8ZkaGp0K3WKjMyUWgo6NhWVmaptSaUJcpYK7SQuRafYLke1-4LMHo-SayWCbmhZZqVzmqTJkmKXpOTkQsg6i6jMC1EOXXKuC8W4Mp0pgWeaeHPtHgM4Kj_508D0PHm7P3ujouWWadFHKMTKqTI5MvDaDHiDJWpAL73w8iFFFrRtRvP_RJC5Sjg4gA-N6TT70ZEBKGT5QEcd3SyWPz1rX593_Q9-BjTU4DPM9yH5dlk7g5g1TwgXU2-eQ75C3t9CdM
  priority: 102
  providerName: Springer Nature
Title Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography
URI https://link.springer.com/article/10.1007/s11282-019-00409-x
https://www.ncbi.nlm.nih.gov/pubmed/31535278
https://www.proquest.com/docview/2292434374
https://www.proquest.com/docview/2441292979
https://www.proquest.com/docview/2293980512
Volume 36
WOSCitedRecordID wos000568836200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1613-9674
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029448
  issn: 0911-6028
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RFtFeeBRKF0pkJG5gsbv2PnxCPFJxgCgKEOW28tpeKVK7adME9ecz43U2oEIvXHzxrjXSjOfhmfkG4FWGVpgSRLwus4ZLi1dRNXHDY6OMULVUje_wnn4pRqNyNlPj8OB2FcoqNzrRK2q7MPRG_jZNMVIQUhTy3cUlp6lRlF0NIzR2YI9QEoQv3Rv3AZeSfnoWmsSE52hIQ9NM1zqHipmKEhQnOVb8-k_DdMPbvJEp9Qbo9MH_kv4Q7gfXk73vZOUR3HHtIex_onIhmvh2CPe-hkT7Yzgf9ijgbNEw3TISsQ5tgs1_g_FkHRQ0Q9-XWUcZCSSe-SHPyH2GfvmKNdSJtV46hoeh8kGhO58bttR2HvCyn8CP0-H3j595mMzAjVRixROHKj6PawxepHCx07iSYxmbBkNtrQojM4XOg05tY2WRW2tiWaPetUILWWpxBLvtonXHwOhJJbNaZhSa1nlRO6tNnmU5RlJOJi6CZMOWygTYcpqecVZtAZeJlRWysvKsrK4jeN3_c9GBdtz69cmGbVW4wFfVlmd_30YvEr9QhYrgZb-NN5PSLbp1i7U_QqgSlV4awdNOiHpqREKwOkUZwZuNVG0P_zepz24n9TkcpPQc4GsNT2B3tVy7F3DX_EQ5Wg5gp5hMaZ0Vfi0HsPdhOBpPBv7W4Dr5Nv0FyV4YlA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgigXHgVKoICR4AQWSezE8QEhRFu16nbFoaC9pY7tSCu12bLdhfKn-I3MOMkuqNBbD1xySdZyst-8PDPfALzM0ApTgohXRVZz6VAUdR3XPLbaCl1JXYcO7y8DNRwWo5H-tAI_-14YKqvsdWJQ1G5i6Yz8bZpipCCkUPL96VdOU6Mou9qP0Ghhse9_fMeQ7ezd3hb-v6_SdGf78OMu76YKcCu1mPHEo3rK4wodbyl87A1eySmKbY1hotHKykyj4TOpq51UuXM2lhXqDCeMkIURuO41uI56XFEJmRotAzwtw7QuNMEJz9Fwd006baseGgIqgtCc5Ebz8z8N4QXv9kJmNhi8nTv_26e6C7c715p9aGXhHqz4Zh3WtqgciibarcPNg66Q4D6cbC9YztmkZqZhJEItmwYb_0ZTylqqa4a-PXOeMi74sVgYYo3oZhh3zFhNnWbzqWe4GCpXFKqTsWVT48YdH_gD-HwlL_4QVptJ4x8BoyOjzBmZUehd5aryztg8y3KMFL1MfARJD4PSdrTsNB3kuFwSShN0SoROGaBTnkfwevGb05aU5NKnN3uYlJ2COiuXGPn7bfSS8QmtdAQvFrdR81A6yTR-Mg9LCF2gUk8j2GhBu9iNSIg2SBURvOlRvFz831t9fPlWn8Pa7uHBoBzsDfefwK2Ujj5CXeUmrM6mc_8UbthviKnpsyCXDI6uGt2_AMN3btU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB-KFu2LrdbWVVtT6FsN7m6yH3mU6tGiHkJb8W3J5gMO6p6cd-Kf70x2b8-iLUhf9iXZYUgm85HJ_Abgc4ZWmBJEvC4zz6XFo6h87HlslBGqlsqHCu-L02I4LC8v1fmDKv7w2n2ekmxrGgilqZkeXFt_sCh8Q7VKTwoUJylUHL3IZUlNgyhe_3HRh1xKhv5ZaBQTnqMp7cpmnqbxp2l65G8-ypUGEzR4_f_Mv4G1zv1kh628rMML12zA6hE9GaKubxuwctYl29_C1XGPBM7GnumGkZi1iBNs9ADKk7Vw0Az9X2YdZSWQNRYaPaMEMPTNp8xTNdZs4hgSQwWEgnc1Mmyi7ajDzN6EX4Pjn1-_8a47AzdSiSlPHKr5PK4xgJHCxU7jl5zL2HgMt7UqjMwUOhA6td7KIrfWxLJG3WuFFrLU4h0sNePGbQGja5XMaplReFrnRe2sNnmW5RhNOZm4CJL5xlSmgy6nDhq_qwXoMq1phWtahTWt7iL40v9z3QJ3_HP27ny_q-4Q31RpisGpkKKQTw-jJ4kzVKEi-NQP4-mklItu3HgWSAhVouJLI3jfilHPjUgIWqcoI9ify8yC-N9Z3X7e9D1YOT8aVKffhyc78Cql24LwFHEXlqaTmfsAL80titjkYzg49wTiFZs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+an+artificial+intelligence+system+for+detecting+vertical+root+fracture+on+panoramic+radiography&rft.jtitle=Oral+radiology&rft.au=Fukuda%2C+Motoki&rft.au=Inamoto%2C+Kyoko&rft.au=Shibata%2C+Naoki&rft.au=Ariji%2C+Yoshiko&rft.date=2020-10-01&rft.issn=1613-9674&rft.eissn=1613-9674&rft.volume=36&rft.issue=4&rft.spage=337&rft_id=info:doi/10.1007%2Fs11282-019-00409-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0911-6028&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0911-6028&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0911-6028&client=summon