Temporally-consistent koopman autoencoders for forecasting dynamical systems

Absence of sufficiently high-quality data often poses a key challenge in data-driven modeling of high-dimensional spatio-temporal dynamical systems. Koopman Autoencoders (KAEs) harness the expressivity of deep neural networks (DNNs), the dimension reduction capabilities of autoencoders, and the spec...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 22127 - 13
Main Authors: Nayak, Indranil, Chakrabarti, Ananda, Kumar, Mrinal, Teixeira, Fernando L., Goswami, Debdipta
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.07.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first