Spatiotemporal prediction of wildfire size extremes with Bayesian finite sample maxima

Wildfires are becoming more frequent in parts of the globe, but predicting where and when wildfires occur remains difficult. To predict wildfire extremes across the contiguous United States, we integrate a 30-yr wildfire record with meteorological and housing data in spatiotemporal Bayesian statisti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ecological applications Ročník 29; číslo 6; s. 1266 - 1281
Hlavní autori: Joseph, Maxwell B., Rossi, Matthew W., Mietkiewicz, Nathan P., L. Mahood, Adam, Cattau, Megan E., St. Denis, Lise Ann, Nagy, Chelsea R., Iglesias, Virginia, Abatzoglou, John T., Balch, Jennifer K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States John Wiley and Sons, Inc 01.09.2019
Ecological Society of America
John Wiley and Sons Inc
Predmet:
ISSN:1051-0761, 1939-5582
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Wildfires are becoming more frequent in parts of the globe, but predicting where and when wildfires occur remains difficult. To predict wildfire extremes across the contiguous United States, we integrate a 30-yr wildfire record with meteorological and housing data in spatiotemporal Bayesian statistical models with spatially varying nonlinear effects. We compared different distributions for the number and sizes of large fires to generate a posterior predictive distribution based on finite sample maxima for extreme events (the largest fires over bounded spatiotemporal domains). A zero-inflated negative binomial model for fire counts and a lognormal model for burned areas provided the best performance. This model attains 99% interval coverage for the number of fires and 93% coverage for fire sizes over a six year withheld data set. Dryness and air temperature strongly predict extreme wildfire probabilities. Housing density has a hump-shaped relationship with fire occurrence, with more fires occurring at intermediate housing densities. Statistically, these drivers affect the chance of an extreme wildfire in two ways: by altering fire size distributions, and by altering fire frequency, which influences sampling from the tails of fire size distributions. We conclude that recent extremes should not be surprising, and that the contiguous United States may be on the verge of even larger wildfire extremes.
AbstractList Wildfires are becoming more frequent in parts of the globe, but predicting where and when wildfires occur remains difficult. To predict wildfire extremes across the contiguous United States, we integrate a 30‐yr wildfire record with meteorological and housing data in spatiotemporal Bayesian statistical models with spatially varying nonlinear effects. We compared different distributions for the number and sizes of large fires to generate a posterior predictive distribution based on finite sample maxima for extreme events (the largest fires over bounded spatiotemporal domains). A zero‐inflated negative binomial model for fire counts and a lognormal model for burned areas provided the best performance. This model attains 99% interval coverage for the number of fires and 93% coverage for fire sizes over a six year withheld data set. Dryness and air temperature strongly predict extreme wildfire probabilities. Housing density has a hump‐shaped relationship with fire occurrence, with more fires occurring at intermediate housing densities. Statistically, these drivers affect the chance of an extreme wildfire in two ways: by altering fire size distributions, and by altering fire frequency, which influences sampling from the tails of fire size distributions. We conclude that recent extremes should not be surprising, and that the contiguous United States may be on the verge of even larger wildfire extremes.
Wildfires are becoming more frequent in parts of the globe, but predicting where and when wildfires occur remains difficult. To predict wildfire extremes across the contiguous United States, we integrate a 30-yr wildfire record with meteorological and housing data in spatiotemporal Bayesian statistical models with spatially varying nonlinear effects. We compared different distributions for the number and sizes of large fires to generate a posterior predictive distribution based on finite sample maxima for extreme events (the largest fires over bounded spatiotemporal domains). A zero-inflated negative binomial model for fire counts and a lognormal model for burned areas provided the best performance. This model attains 99% interval coverage for the number of fires and 93% coverage for fire sizes over a six year withheld data set. Dryness and air temperature strongly predict extreme wildfire probabilities. Housing density has a hump-shaped relationship with fire occurrence, with more fires occurring at intermediate housing densities. Statistically, these drivers affect the chance of an extreme wildfire in two ways: by altering fire size distributions, and by altering fire frequency, which influences sampling from the tails of fire size distributions. We conclude that recent extremes should not be surprising, and that the contiguous United States may be on the verge of even larger wildfire extremes.Wildfires are becoming more frequent in parts of the globe, but predicting where and when wildfires occur remains difficult. To predict wildfire extremes across the contiguous United States, we integrate a 30-yr wildfire record with meteorological and housing data in spatiotemporal Bayesian statistical models with spatially varying nonlinear effects. We compared different distributions for the number and sizes of large fires to generate a posterior predictive distribution based on finite sample maxima for extreme events (the largest fires over bounded spatiotemporal domains). A zero-inflated negative binomial model for fire counts and a lognormal model for burned areas provided the best performance. This model attains 99% interval coverage for the number of fires and 93% coverage for fire sizes over a six year withheld data set. Dryness and air temperature strongly predict extreme wildfire probabilities. Housing density has a hump-shaped relationship with fire occurrence, with more fires occurring at intermediate housing densities. Statistically, these drivers affect the chance of an extreme wildfire in two ways: by altering fire size distributions, and by altering fire frequency, which influences sampling from the tails of fire size distributions. We conclude that recent extremes should not be surprising, and that the contiguous United States may be on the verge of even larger wildfire extremes.
Author St. Denis, Lise Ann
Rossi, Matthew W.
Iglesias, Virginia
Nagy, Chelsea R.
Balch, Jennifer K.
Mietkiewicz, Nathan P.
Abatzoglou, John T.
Joseph, Maxwell B.
L. Mahood, Adam
Cattau, Megan E.
AuthorAffiliation 2 Department of Geography University of Idaho 875 Perimeter Drive, MS 3021 Moscow Idaho 83844‐3021 USA
1 Earth Lab University of Colorado Boulder 4001 Discovery Drive, Suite S348 611 UCB Boulder Colorado 80303 USA
AuthorAffiliation_xml – name: 2 Department of Geography University of Idaho 875 Perimeter Drive, MS 3021 Moscow Idaho 83844‐3021 USA
– name: 1 Earth Lab University of Colorado Boulder 4001 Discovery Drive, Suite S348 611 UCB Boulder Colorado 80303 USA
Author_xml – sequence: 1
  givenname: Maxwell B.
  surname: Joseph
  fullname: Joseph, Maxwell B.
– sequence: 2
  givenname: Matthew W.
  surname: Rossi
  fullname: Rossi, Matthew W.
– sequence: 3
  givenname: Nathan P.
  surname: Mietkiewicz
  fullname: Mietkiewicz, Nathan P.
– sequence: 4
  givenname: Adam
  surname: L. Mahood
  fullname: L. Mahood, Adam
– sequence: 5
  givenname: Megan E.
  surname: Cattau
  fullname: Cattau, Megan E.
– sequence: 6
  givenname: Lise Ann
  surname: St. Denis
  fullname: St. Denis, Lise Ann
– sequence: 7
  givenname: Chelsea R.
  surname: Nagy
  fullname: Nagy, Chelsea R.
– sequence: 8
  givenname: Virginia
  surname: Iglesias
  fullname: Iglesias, Virginia
– sequence: 9
  givenname: John T.
  surname: Abatzoglou
  fullname: Abatzoglou, John T.
– sequence: 10
  givenname: Jennifer K.
  surname: Balch
  fullname: Balch, Jennifer K.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30980779$$D View this record in MEDLINE/PubMed
BookMark eNqFkVtrFDEYhoNU7EHBP6AMeOPNrDlMTjdCLbUVCgoebkM288VmmZmMyWzb9debYbfrAcVASPjy5M375T1GB0McAKGnBC8IxvQV2HFBlFYP0BHRTNecK3pQ9piTGktBDtFxzitcBqX0ETpkWCsspT5CXz6Odgpxgn6MyXbVmKANrlSGKvrqNnStDwmqHL5DBXdTgh5yKU_X1Ru7gRzsUPkwhKkgth87qHp7F3r7GD30tsvwZLeeoM9vzz-dXdZX7y_enZ1e1a7RTNVeAGu98tQyQrhlUpRJuNJU4aXQ0jvPSNsQR0BTDVg30LbNsrXCecqsZifo9VZ3XC97aB0MU-nCjKl4SBsTbTC_nwzh2nyNN0YoTqSgReDlTiDFb2vIk-lDdtB1doC4zoYy2RCJtZD_R2nBMOe0KeiLP9BVXKeh_EShlOai4XJ--_mv5veu79MpwGILuBRzTuCNC9Mc19xL6AzBZo7flPjNHP9Pi_sL95p_QestWjKGzT85c376Ycc_2_KrPMW056mQigvN2A_36sho
CitedBy_id crossref_primary_10_1016_j_ijdrr_2024_104411
crossref_primary_10_3390_rs12162565
crossref_primary_10_3390_atmos14030559
crossref_primary_10_3390_f13071050
crossref_primary_10_1002_int_22475
crossref_primary_10_1007_s10687_022_00454_6
crossref_primary_10_1007_s10687_022_00458_2
crossref_primary_10_1016_j_scitotenv_2021_147057
crossref_primary_10_21105_joss_06739
crossref_primary_10_1002_eap_2610
crossref_primary_10_1038_s41893_022_00884_x
crossref_primary_10_1016_j_spasta_2024_100811
crossref_primary_10_1088_1748_9326_ac5c0c
crossref_primary_10_1002_eap_2316
crossref_primary_10_1371_journal_pone_0271904
crossref_primary_10_3390_f16040704
crossref_primary_10_1007_s10687_023_00462_0
crossref_primary_10_3390_f15010216
crossref_primary_10_1016_j_foreco_2021_119933
crossref_primary_10_3390_s21113694
crossref_primary_10_1016_j_asr_2025_01_050
crossref_primary_10_1088_1748_9326_ac03da
crossref_primary_10_1002_env_2873
crossref_primary_10_3390_fire7010033
crossref_primary_10_1007_s10687_022_00460_8
crossref_primary_10_1029_2024GL113576
crossref_primary_10_3390_f13071129
crossref_primary_10_1016_j_jhydrol_2023_130378
crossref_primary_10_3390_fire6080319
crossref_primary_10_1016_j_inffus_2024_102369
crossref_primary_10_1029_2022EF003182
crossref_primary_10_3390_fire5040095
crossref_primary_10_1029_2019EF001319
crossref_primary_10_3390_j7030018
crossref_primary_10_3390_app131911034
crossref_primary_10_1016_j_agrformet_2019_107789
crossref_primary_10_1007_s10687_023_00469_7
crossref_primary_10_3390_fire6070276
crossref_primary_10_1029_2024WR038640
crossref_primary_10_1016_j_envsoft_2021_105113
crossref_primary_10_1071_WF22086
crossref_primary_10_1126_science_adk5737
crossref_primary_10_1038_s41586_021_04325_1
crossref_primary_10_5194_essd_16_1395_2024
Cites_doi 10.1073/pnas.1713885114
10.1007/s10584-014-1229-6
10.1175/BAMS-D-14-00060.1
10.1002/env.2278
10.1198/073500107000000223
10.1007/BF02613934
10.2307/1269547
10.1177/1471082X1001100104
10.1098/rstb.2015.0178
10.1145/2723872.2723882
10.1890/ES11-00345.1
10.1029/2009JD011927
10.3390/fire1010018
10.1071/WF02005
10.5194/bgd-10-15735-2013
10.1007/s10651-013-0267-y
10.1111/j.1365-2486.2008.01679.x
10.1111/j.1365-2699.2011.02595.x
10.1002/2014GL059576
10.2307/1390675
10.18637/jss.v040.i03
10.1071/WF09030
10.1139/x11-102
10.1111/j.1467-8306.1987.tb00149.x
10.1016/S0022-1694(02)00353-0
10.1214/17-EJS1337SI
10.1007/s10651-008-0099-3
10.3390/fire1010009
10.1071/WF02061
10.2307/1937048
10.1002/joc.3413
10.1073/pnas.1607171113
10.18637/jss.v014.i06
10.1002/2016GL069445
10.1088/1748-9326/9/12/124009
10.1002/joc.1688
10.1073/pnas.1003669107
10.1214/17-BA1091
10.1016/S0304-3800(01)00483-5
10.5194/angeo-33-1495-2015
10.1073/pnas.1617394114
10.1371/journal.pone.0081188
10.1073/pnas.0911131107
10.1111/geb.12038
10.1175/JAM2513.1
10.1289/ehp.1409277
10.1371/journal.pone.0005102
10.1007/s10584-011-0329-9
10.1111/j.1541-0420.2008.01112.x
10.1016/S0378-4371(03)00019-0
10.1890/06-1128.1
10.1023/A:1021584519109
10.1201/b17115
10.1111/j.2517-6161.1990.tb01796.x
10.1073/pnas.1718850115
10.1071/WF07136
10.1038/ngeo313
10.1007/s00477-013-0823-x
10.32614/CRAN.package.tidyverse
10.1007/s00267-014-0364-1
10.1890/09-1843.1
10.3390/fire1010004
10.1071/WF09077
10.18637/jss.v063.i18
10.1016/S0304-3800(00)00368-9
10.1111/jtsa.12457
10.1214/lnms/1215091142
10.1007/978-1-4471-3675-0
10.1080/00401706.1987.10488243
10.1038/sdata.2017.1
10.1016/j.advwatres.2015.03.001
10.1016/j.csda.2004.10.011
10.1201/b16018
10.1016/j.foreco.2012.06.030
10.1016/j.foreco.2016.09.013
10.1071/WF08187
10.1201/9781315370279
10.1071/WF07044
10.1002/env.605
10.1214/ss/1177012761
ContentType Journal Article
Copyright 2019 The Authors
2019 The Authors. published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
2019 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
Copyright Ecological Society of America Sep 2019
Copyright_xml – notice: 2019 The Authors
– notice: 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
– notice: 2019 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
– notice: Copyright Ecological Society of America Sep 2019
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
7ST
7U7
8FD
C1K
FR3
M7N
P64
RC3
SOI
7X8
7S9
L.6
5PM
DOI 10.1002/eap.1898
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
MEDLINE - Academic
AGRICOLA

CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
DocumentTitleAlternate MAXWELL B. JOSEPH et al
EISSN 1939-5582
EndPage 1281
ExternalDocumentID PMC6851762
30980779
10_1002_eap_1898
EAP1898
26785693
Genre article
Journal Article
GeographicLocations United States
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
GroupedDBID ---
-ET
-~X
..I
0R~
1OC
2AX
33P
4.4
42X
53G
5GY
85S
8WZ
A6W
AAESR
AAHBH
AAHKG
AAHQN
AAIHA
AAIKC
AAISJ
AAKGQ
AAMMB
AAMNL
AAMNW
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABCUV
ABEFU
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACGFS
ACHIC
ACHJO
ACNCT
ACPOU
ACSTJ
ACUBG
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADNWM
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFFPM
AFGKR
AFWVQ
AFXHP
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ANHSF
AQVQM
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
CBGCD
CS3
CUYZI
DCZOG
DEVKO
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F5P
HGLYW
H~9
IAO
IEA
IGH
IOF
IPSME
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MV1
MXFUL
MXSTM
NXSMM
O9-
P2P
P2W
ROL
RSZ
SA0
SUPJJ
TN5
UKR
V62
WBKPD
WH7
WOHZO
WXSBR
XSW
YV5
YYM
YYP
Z0I
ZCA
ZO4
ZZTAW
~02
~KM
.-4
1OB
24P
29G
AAHHS
AAYJJ
ABYAD
ACCFJ
ACTWD
ADZOD
AEEZP
AEQDE
AEUQT
AI.
AIDAL
AIWBW
AJBDE
AS~
DDYGU
DOOOF
EQZMY
FVMVE
GTFYD
HGD
HQ2
HTVGU
HVGLF
IAG
IEP
ITC
JSODD
MVM
NHB
P0-
PALCI
RJQFR
SAMSI
VH1
VOH
VQA
XIH
Y6R
YXE
ZCG
AAYXX
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
7ST
7U7
8FD
C1K
FR3
M7N
P64
RC3
SOI
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4938-f6e3df8f2a3115a376a371589280b697fcf31d41c1e929e094edd4bda6cf23a93
IEDL.DBID 24P
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000483714500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-0761
IngestDate Tue Nov 04 02:01:14 EST 2025
Fri Sep 05 17:26:50 EDT 2025
Fri Sep 05 13:32:25 EDT 2025
Wed Aug 13 09:16:57 EDT 2025
Mon Jul 21 05:44:09 EDT 2025
Sat Nov 29 03:26:44 EST 2025
Tue Nov 18 19:39:41 EST 2025
Wed Jan 22 16:39:08 EST 2025
Thu Jul 03 22:16:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords fire
climate
spatiotemporal
extremes
wildfire
Bayesian
Language English
License Attribution
2019 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4938-f6e3df8f2a3115a376a371589280b697fcf31d41c1e929e094edd4bda6cf23a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Corresponding Editor: David S. Schimel.
ORCID 0000-0002-2287-0408
0000-0001-5732-3714
0000-0003-1846-5191
0000-0002-3983-7970
0000-0002-7745-9990
0000-0003-2164-3809
0000-0002-7168-3289
0000-0001-7599-9750
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feap.1898
PMID 30980779
PQID 2289564572
PQPubID 2048294
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6851762
proquest_miscellaneous_2374170967
proquest_miscellaneous_2209605524
proquest_journals_2289564572
pubmed_primary_30980779
crossref_citationtrail_10_1002_eap_1898
crossref_primary_10_1002_eap_1898
wiley_primary_10_1002_eap_1898_EAP1898
jstor_primary_26785693
PublicationCentury 2000
PublicationDate September 2019
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: Hoboken
PublicationTitle Ecological applications
PublicationTitleAlternate Ecol Appl
PublicationYear 2019
Publisher John Wiley and Sons, Inc
Ecological Society of America
John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons, Inc
– name: Ecological Society of America
– name: John Wiley and Sons Inc
References 2015; 79
2011; 116
1990; 52
2002; 17
1987; 77
2002; 150
2014b; 21
2017; 4
2000; 135
2013; 22
2010; 107
2010; 19
2010; 17
2015; 33
2002; 11
2003; 14
2011; 11
2014; 25
2017; 114
2009; 114
1978
2003; 273
2016; 381
1971; 54
2015; 49
2001
2013; 10
2017b
2018; 1
2017a
2008; 28
2016; 113
1982; JSTOR
2016; 43
2008; 26
2014; 15
1999; 51
1980
2014; 9
2003; 322
2009; 15
2014; 126
2009; 18
1996; 6
2014; 54
2014a; 28
2007; 17
2006; 50
2009; 65
2011; 2
2012
2002; 5
2015; 96
2011; 40
2009
2016; 124
2008
2004
2014; 41
2011; 38
2003; 30
1992; 34
1970; 16
2007; 58
1988; 3
1995; 82
2011; 109
2012; 3
2013; 33
2017; 11
2015; 63
2011; 92
2018; 115
2017; 13
2004; 13
2016; 20
2011; 41
2019
2018
2017
2015
2013; 294
2014
2013
2009; 4
1998; 7
2007; 46
1987; 29
2016; 371
2005; 14
e_1_2_6_114_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_110_1
e_1_2_6_19_1
Rogers B. M. (e_1_2_6_88_1) 2011; 116
e_1_2_6_11_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_113_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_65_1
Hoffman M. D. (e_1_2_6_45_1) 2014; 15
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_101_1
Gelman A. (e_1_2_6_37_1) 1996; 6
Woolford D. G. (e_1_2_6_112_1) 2011; 2
e_1_2_6_6_1
e_1_2_6_2_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
R Core Team (e_1_2_6_81_1) 2017
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_20_1
Quionero‐Candela J. (e_1_2_6_80_1) 2009
e_1_2_6_100_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
Eidenshink J. (e_1_2_6_34_1) 2007; 58
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
Pernin P. (e_1_2_6_75_1) 1971; 54
e_1_2_6_90_1
e_1_2_6_111_1
Besag J. (e_1_2_6_13_1) 1995; 82
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
Wiitala M. R. (e_1_2_6_108_1) 1999; 51
e_1_2_6_8_1
Guyette R. P. (e_1_2_6_41_1) 2002; 5
e_1_2_6_4_1
Cox D. R. (e_1_2_6_27_1) 1980
Carpenter B. (e_1_2_6_23_1) 2016; 20
e_1_2_6_25_1
e_1_2_6_48_1
R Core Team (e_1_2_6_82_1) 2018
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
Stallman R. M. (e_1_2_6_96_1) 2004
References_xml – volume: 33
  start-page: 121
  year: 2013
  end-page: 131
  article-title: Development of gridded surface meteorological data for ecological applications and modelling
  publication-title: International Journal of Climatology
– start-page: 79
  year: 2014
  end-page: 88
– volume: 20
  start-page: 1
  year: 2016
  end-page: 37
  article-title: Stan: a probabilistic programming language
  publication-title: Journal of Statistical Software
– volume: 18
  start-page: 483
  year: 2009
  end-page: 507
  article-title: Implications of changing climate for global wildland fire
  publication-title: International Journal of Wildland Fire
– volume: 43
  start-page: 8076
  year: 2016
  end-page: 8082
  article-title: On the emergence of rainfall extremes from ordinary events
  publication-title: Geophysical Research Letters
– volume: 9
  start-page: 124009
  year: 2014
  article-title: Modeling very large‐fire occurrences over the continental United States from weather and climate forcing
  publication-title: Environmental Research Letters
– volume: 13
  start-page: 917
  year: 2017
  end-page: 1007
– start-page: 568
  year: 2015
  end-page: 576
– year: 2017b
– volume: 2
  start-page: 2
  year: 2011
  end-page: 16
  article-title: A spatio‐temporal model for people‐caused forest fire occurrence in the Romeo Malette Forest
  publication-title: Journal of Environmental Statistics
– year: 2014
– volume: 16
  start-page: 27
  year: 1970
  end-page: 31
  article-title: Compound gamma, beta and F distributions
  publication-title: Metrika
– volume: 1
  start-page: 18
  year: 2018
  article-title: The 2017 North Bay and Southern California fires: a case study
  publication-title: Fire
– volume: 65
  start-page: 626
  year: 2009
  end-page: 634
  article-title: Variable selection and model choice in geoadditive regression models
  publication-title: Biometrics
– volume: 15
  start-page: 578
  year: 2009
  end-page: 600
  article-title: Assessing the response of area burned to changing climate in western boreal North America using a multivariate adaptive regression splines (Mars) approach
  publication-title: Global Change Biology
– volume: 18
  start-page: 983
  year: 2009
  end-page: 991
  article-title: Spatial and temporal extremes of wildfire sizes in Portugal (1984–2004)
  publication-title: International Journal of Wildland Fire
– volume: 7
  start-page: 434
  year: 1998
  end-page: 455
  article-title: General methods for monitoring convergence of iterative simulations
  publication-title: Journal of Computational and Graphical Statistics
– volume: 10
  start-page: 15735
  year: 2013
  end-page: 15778
  article-title: Impact of human population density on fire frequency at the global scale Impact of human population density on fire frequency at the global scale Impact of human population density on fire frequency at the global scale
  publication-title: Biogeosciences Discuss
– volume: 116
  year: 2011
  article-title: Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest
  publication-title: Journal of Geophysical Research Biogeosciences
– volume: 5
  start-page: 472
  year: 2002
  end-page: 486
  article-title: Dynamics of an anthropogenic fire regime
  publication-title: Ecosystems
– volume: 33
  start-page: 1495
  year: 2015
  end-page: 1506
  article-title: Statistical modelling of wildfire size and intensity: a step toward meteorological forecasting of summer extreme fire risk
  publication-title: Annales Geophysicae
– year: 2019
– volume: 19
  start-page: 325
  year: 2010
  end-page: 337
  article-title: A model for predicting human‐caused wildfire occurrence in the region of Madrid, Spain
  publication-title: International Journal of Wildland Fire
– volume: 371
  start-page: 20150178
  year: 2016
  article-title: Increasing Western US Forest Wildfire Activity: sensitivity to changes in the timing of spring
  publication-title: Philosophical Transactions of the Royal Society B
– volume: 28
  start-page: 1671
  year: 2014a
  end-page: 1684
  article-title: A spatio‐temporal Poisson hurdle point process to model wildfires
  publication-title: Stochastic Environmental Research and Risk Assessment
– volume: 3
  start-page: 425
  year: 1988
  end-page: 441
  article-title: Monotone regression splines in action
  publication-title: Statistical Science
– volume: 79
  start-page: 121
  year: 2015
  end-page: 126
  article-title: A metastatistical approach to rainfall extremes
  publication-title: Advances in Water Resources
– volume: 49
  start-page: 71
  year: 2015
  end-page: 79
  article-title: An introduction to Docker for reproducible research
  publication-title: ACM SIGOPS Operating Systems Review
– volume: 52
  start-page: 393
  year: 1990
  end-page: 442
  article-title: Models for exceedances over high thresholds
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– volume: 135
  start-page: 243
  year: 2000
  end-page: 263
  article-title: Simulating fire patterns in heterogeneous landscapes
  publication-title: Ecological Modelling
– volume: 3
  start-page: 1
  year: 2012
  end-page: 22
  article-title: Climate change and disruptions to global fire activity
  publication-title: Ecosphere
– volume: 126
  start-page: 455
  year: 2014
  end-page: 468
  article-title: Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States
  publication-title: Climatic Change
– volume: 273
  start-page: 35
  year: 2003
  end-page: 50
  article-title: A fully probabilistic approach to extreme rainfall modeling
  publication-title: Journal of Hydrology
– volume: 30
  start-page: 177
  year: 2003
  end-page: 196
  article-title: Risk assessment: a forest fire example
  publication-title: Lecture Notes‐Monograph Series
– volume: 1
  start-page: 4
  year: 2018
  article-title: Human‐related ignitions increase the number of large wildfires across US ecoregions
  publication-title: Fire
– volume: 107
  start-page: 940
  year: 2010
  end-page: 945
  article-title: Housing growth in and near United States protected areas limits their conservation value
  publication-title: Proceedings of the National Academy of Sciences
– volume: 28
  start-page: 2031
  year: 2008
  end-page: 2064
  article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States
  publication-title: International Journal of Climatology
– volume: 17
  start-page: 1
  year: 2010
  end-page: 28
  article-title: Spatial extremes of wildfire sizes: Bayesian hierarchical models for extremes
  publication-title: Environmental and Ecological Statistics
– volume: 40
  start-page: 1
  year: 2011
  end-page: 25
  article-title: Dates and times made easy with lubridate
  publication-title: Journal of Statistical Software
– volume: 1
  start-page: 9
  year: 2018
  article-title: Defining extreme wildfire events: difficulties, challenges, and impacts
  publication-title: Fire
– volume: 41
  start-page: 1836
  year: 2011
  end-page: 1851
  article-title: Extreme value analysis of wildfires in Canadian Boreal Forest Ecosystems
  publication-title: Canadian Journal of Forest Research
– volume: 114
  year: 2009
  article-title: Fire parameterization on a global scale
  publication-title: Journal of Geophysical Research
– volume: 21
  start-page: 531
  year: 2014b
  end-page: 563
  article-title: Spatio‐temporal log‐Gaussian Cox processes for modelling wildfire occurrence: the case of Catalonia, 1994–2008
  publication-title: Environmental and Ecological Statistics
– volume: 58
  start-page: 28
  year: 2007
  end-page: 34
  article-title: A project for monitoring trends in burn severity
  publication-title: Nutrition and Cancer
– volume: 17
  start-page: 1388
  year: 2007
  end-page: 1402
  article-title: Human influence on California fire regimes
  publication-title: Ecological Applications
– volume: 34
  start-page: 1
  year: 1992
  end-page: 14
  article-title: Zero‐inflated Poisson regression, with an application to defects in manufacturing
  publication-title: Technometrics
– year: 1978
– volume: 14
  start-page: 583
  year: 2003
  end-page: 592
  article-title: On the distribution of wildfire sizes
  publication-title: Environmetrics
– volume: 14
  start-page: 1
  year: 2005
  end-page: 27
  article-title: Zoo: S3 infrastructure for regular and irregular time series
  publication-title: Journal of Statistical Software
– year: 2013
– volume: 51
  start-page: 51
  year: 1999
  end-page: 57
  article-title: Assessing the risk of cumulative burned acreage using the Poisson probability model
  publication-title: Fire Economics, Planning, and Policy: Bottom Lines
– volume: 6
  start-page: 733
  year: 1996
  end-page: 760
  article-title: Posterior predictive assessment of model fitness via realized discrepancies
  publication-title: Statistica Sinica
– year: 2009
– volume: 113
  start-page: 11770
  year: 2016
  end-page: 11775
  article-title: Impact of anthropogenic climate change on wildfire across western US forests
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 22
  start-page: 900
  year: 2013
  end-page: 912
  article-title: A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes
  publication-title: Global Ecology and Biogeography
– year: 2017
  article-title: Human presence diminishes the importance of climate in driving fire activity across the United States
  publication-title: Proceedings of the National Academy of Sciences USA
– year: 2001
– volume: 381
  start-page: 360
  year: 2016
  end-page: 369
  article-title: Modeling fire size of wildfires in Castellon (Spain), using spatiotemporal marked point processes
  publication-title: Forest Ecology and Management
– volume: 115
  start-page: 3314
  year: 2018
  end-page: 3319
  article-title: Rapid growth of the US Wildland‐urban interface raises wildfire risk
  publication-title: Proceedings of the National Academy of Sciences
– year: 2018
– volume: JSTOR
  start-page: 246
  year: 1982
  end-page: 248
  article-title: Effects of wildfire on a Sonoran Desert Plant Community
  publication-title: Ecology
– volume: 4
  start-page: e5102
  year: 2009
  article-title: Global pyrogeography: the current and future distribution of wildfire
  publication-title: PLoS ONE
– volume: 13
  start-page: 133
  year: 2004
  end-page: 142
  article-title: Probability based models for estimation of wildfire risk
  publication-title: International Journal of Wildland Fire
– volume: 124
  start-page: 1334
  year: 2016
  article-title: Critical review of health impacts of wildfire smoke exposure
  publication-title: Environmental Health Perspectives
– volume: 82
  start-page: 733
  year: 1995
  end-page: 746
  article-title: On conditional and intrinsic autoregressions
  publication-title: Biometrika
– volume: 26
  start-page: 90
  year: 2008
  end-page: 104
  article-title: Monotonic regression based on Bayesian P‐Splines: an application to estimating price response functions from store‐level scanner data
  publication-title: Journal of Business & Economic Statistics
– volume: 96
  start-page: 229
  year: 2015
  end-page: 247
  article-title: The 2013 Rim Fire: implications for predicting extreme fire spread, pyroconvection, and smoke emissions
  publication-title: Bulletin of the American Meteorological Society
– volume: 15
  start-page: 1593
  year: 2014
  end-page: 1623
  article-title: The No‐U‐Turn Sampler: adaptively setting path lengths in Hamiltonian Monte Carlo
  publication-title: Journal of Machine Learning Research
– year: 2004
– volume: 19
  start-page: 803
  year: 2010
  end-page: 817
  article-title: The economic cost of adverse health effects from wildfire‐smoke exposure: a review
  publication-title: International Journal of Wildland Fire
– year: 2017a
– volume: 4
  start-page: 170001
  year: 2017
  article-title: High resolution global gridded data for use in population studies
  publication-title: Scientific Data
– volume: 17
  start-page: 539
  year: 2002
  end-page: 557
  article-title: Landscape‐scale controls over 20th century fire occurrence in two large Rocky Mountain (USA) wilderness areas
  publication-title: Landscape Ecology
– volume: 77
  start-page: 118
  year: 1987
  end-page: 125
  article-title: Ecoregions of the Conterminous United States
  publication-title: Annals of the Association of American Geographers
– volume: 322
  start-page: 267
  year: 2003
  end-page: 275
  article-title: Superstatistics
  publication-title: Physica A: Statistical Mechanics and Its Applications
– volume: 54
  start-page: 1249
  year: 2014
  end-page: 1266
  article-title: Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework
  publication-title: Environmental Management
– volume: 294
  start-page: 4
  year: 2013
  end-page: 10
  article-title: Exploring the onset of high‐impact mega‐fires through a forest land management prism
  publication-title: Forest Ecology and Management
– volume: 107
  start-page: 19167
  year: 2010
  end-page: 19170
  article-title: Driving forces of global wildfires over the past millennium and the forthcoming century
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 50
  start-page: 967
  year: 2006
  end-page: 991
  article-title: Generalized structured additive regression based on Bayesian P‐Splines
  publication-title: Computational Statistics & Data Analysis
– volume: 29
  start-page: 339
  year: 1987
  end-page: 349
  article-title: Parameter and quantile estimation for the generalized Pareto distribution
  publication-title: Technometrics
– volume: 11
  start-page: 205
  year: 2002
  end-page: 211
  article-title: Modification of the Fosberg fire weather index to include drought
  publication-title: International Journal of Wildland Fire
– volume: 109
  start-page: 445
  year: 2011
  end-page: 463
  article-title: Climate change and growth scenarios for California wildfire
  publication-title: Climatic Change
– year: 2008
  article-title: Climate and human influences on global biomass burning over the past two millennia
  publication-title: Nature Geoscience
– year: 2012
– volume: 18
  start-page: 640
  year: 2009
  article-title: Artificial neural network approach for modeling the impact of population density and weather parameters on forest fire risk
  publication-title: International Journal of Wildland Fire
– volume: 25
  start-page: 406
  year: 2014
  end-page: 416
  article-title: Lightning‐caused forest fire risk in northwestern Ontario, Canada, Is increasing and associated with anomalies in fire weather
  publication-title: Environmetrics
– volume: 38
  start-page: 2223
  year: 2011
  end-page: 2236
  article-title: The human dimension of fire regimes on Earth
  publication-title: Journal of Biogeography
– year: 1980
– volume: 54
  start-page: 246
  year: 1971
  end-page: 272
  article-title: The Great Peshtigo fire: an eyewitness account
  publication-title: Wisconsin Magazine of History
– volume: 46
  start-page: 1020
  year: 2007
  end-page: 1030
  article-title: Statistical model for forecasting monthly large wildfire events in Western United States
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 41
  start-page: 2928
  year: 2014
  end-page: 2933
  article-title: Large wildfire trends in the Western United States, 1984–2011
  publication-title: Geophysical Research Letters
– year: 2017
– volume: 63
  start-page: 1
  year: 2015
  end-page: 36
  article-title: Comparing implementations of estimation methods for spatial econometrics
  publication-title: Journal of Statistical Software
– volume: 114
  start-page: 2946
  year: 2017
  end-page: 2951
  article-title: Human‐started wildfires expand the fire niche across the United States
  publication-title: Proceedings of the National Academy of Sciences USA
– year: 2013
  article-title: Relationships between human population density and burned area at continental and global scales
  publication-title: PLoS ONE
– volume: 11
  start-page: 49
  year: 2011
  end-page: 69
  article-title: P‐Spline Anova‐type interaction models for spatio‐temporal smoothing
  publication-title: Statistical Modelling
– volume: 92
  start-page: 121
  year: 2011
  end-page: 132
  article-title: Constraints on global fire activity vary across a resource gradient
  publication-title: Ecology
– volume: 11
  start-page: 5018
  year: 2017
  end-page: 5051
  article-title: Sparsity information and regularization in the horseshoe and other shrinkage priors
  publication-title: Electronic Journal of Statistics
– volume: 150
  start-page: 239
  year: 2002
  end-page: 254
  article-title: Power‐law behaviour and parametric models for the size‐distribution of forest fires
  publication-title: Ecological Modelling
– ident: e_1_2_6_100_1
  doi: 10.1073/pnas.1713885114
– ident: e_1_2_6_31_1
– ident: e_1_2_6_98_1
  doi: 10.1007/s10584-014-1229-6
– ident: e_1_2_6_76_1
  doi: 10.1175/BAMS-D-14-00060.1
– ident: e_1_2_6_113_1
  doi: 10.1002/env.2278
– ident: e_1_2_6_102_1
– ident: e_1_2_6_20_1
  doi: 10.1198/073500107000000223
– ident: e_1_2_6_33_1
  doi: 10.1007/BF02613934
– ident: e_1_2_6_55_1
  doi: 10.2307/1269547
– ident: e_1_2_6_56_1
  doi: 10.1177/1471082X1001100104
– ident: e_1_2_6_104_1
  doi: 10.1098/rstb.2015.0178
– ident: e_1_2_6_94_1
– ident: e_1_2_6_17_1
  doi: 10.1145/2723872.2723882
– volume: 82
  start-page: 733
  year: 1995
  ident: e_1_2_6_13_1
  article-title: On conditional and intrinsic autoregressions
  publication-title: Biometrika
– ident: e_1_2_6_44_1
– ident: e_1_2_6_64_1
  doi: 10.1890/ES11-00345.1
– ident: e_1_2_6_71_1
  doi: 10.1029/2009JD011927
– ident: e_1_2_6_66_1
  doi: 10.3390/fire1010018
– ident: e_1_2_6_39_1
  doi: 10.1071/WF02005
– ident: e_1_2_6_50_1
  doi: 10.5194/bgd-10-15735-2013
– ident: e_1_2_6_92_1
  doi: 10.1007/s10651-013-0267-y
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1365-2486.2008.01679.x
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1365-2699.2011.02595.x
– ident: e_1_2_6_30_1
  doi: 10.1002/2014GL059576
– ident: e_1_2_6_22_1
  doi: 10.2307/1390675
– volume-title: Point processes
  year: 1980
  ident: e_1_2_6_27_1
– ident: e_1_2_6_40_1
  doi: 10.18637/jss.v040.i03
– ident: e_1_2_6_103_1
  doi: 10.1071/WF09030
– volume: 58
  start-page: 28
  year: 2007
  ident: e_1_2_6_34_1
  article-title: A project for monitoring trends in burn severity
  publication-title: Nutrition and Cancer
– ident: e_1_2_6_47_1
  doi: 10.1139/x11-102
– ident: e_1_2_6_74_1
– ident: e_1_2_6_68_1
  doi: 10.1111/j.1467-8306.1987.tb00149.x
– ident: e_1_2_6_26_1
  doi: 10.1016/S0022-1694(02)00353-0
– volume: 15
  start-page: 1593
  year: 2014
  ident: e_1_2_6_45_1
  article-title: The No‐U‐Turn Sampler: adaptively setting path lengths in Hamiltonian Monte Carlo
  publication-title: Journal of Machine Learning Research
– volume: 2
  start-page: 2
  year: 2011
  ident: e_1_2_6_112_1
  article-title: A spatio‐temporal model for people‐caused forest fire occurrence in the Romeo Malette Forest
  publication-title: Journal of Environmental Statistics
– volume-title: GNU Make: a program for directing recompilation, for Version 3.81
  year: 2004
  ident: e_1_2_6_96_1
– ident: e_1_2_6_97_1
– ident: e_1_2_6_5_1
– ident: e_1_2_6_77_1
  doi: 10.1214/17-EJS1337SI
– ident: e_1_2_6_63_1
  doi: 10.1007/s10651-008-0099-3
– ident: e_1_2_6_101_1
  doi: 10.3390/fire1010009
– ident: e_1_2_6_79_1
  doi: 10.1071/WF02061
– ident: e_1_2_6_24_1
– ident: e_1_2_6_61_1
  doi: 10.2307/1937048
– ident: e_1_2_6_2_1
  doi: 10.1002/joc.3413
– ident: e_1_2_6_3_1
  doi: 10.1073/pnas.1607171113
– ident: e_1_2_6_115_1
  doi: 10.18637/jss.v014.i06
– ident: e_1_2_6_116_1
  doi: 10.1002/2016GL069445
– ident: e_1_2_6_9_1
  doi: 10.1088/1748-9326/9/12/124009
– ident: e_1_2_6_28_1
  doi: 10.1002/joc.1688
– ident: e_1_2_6_72_1
  doi: 10.1073/pnas.1003669107
– ident: e_1_2_6_114_1
  doi: 10.1214/17-BA1091
– ident: e_1_2_6_86_1
  doi: 10.1016/S0304-3800(01)00483-5
– volume-title: R: a language and environment for statistical computing
  year: 2017
  ident: e_1_2_6_81_1
– ident: e_1_2_6_43_1
  doi: 10.5194/angeo-33-1495-2015
– ident: e_1_2_6_6_1
  doi: 10.1073/pnas.1617394114
– ident: e_1_2_6_67_1
– ident: e_1_2_6_36_1
– ident: e_1_2_6_4_1
– ident: e_1_2_6_14_1
  doi: 10.1371/journal.pone.0081188
– volume-title: R: a language and environment for statistical computing
  year: 2018
  ident: e_1_2_6_82_1
– volume: 20
  start-page: 1
  year: 2016
  ident: e_1_2_6_23_1
  article-title: Stan: a probabilistic programming language
  publication-title: Journal of Statistical Software
– ident: e_1_2_6_83_1
  doi: 10.1073/pnas.0911131107
– ident: e_1_2_6_62_1
  doi: 10.1111/geb.12038
– ident: e_1_2_6_78_1
  doi: 10.1175/JAM2513.1
– ident: e_1_2_6_87_1
  doi: 10.1289/ehp.1409277
– volume: 6
  start-page: 733
  year: 1996
  ident: e_1_2_6_37_1
  article-title: Posterior predictive assessment of model fitness via realized discrepancies
  publication-title: Statistica Sinica
– ident: e_1_2_6_53_1
  doi: 10.1371/journal.pone.0005102
– ident: e_1_2_6_105_1
  doi: 10.1007/s10584-011-0329-9
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1541-0420.2008.01112.x
– ident: e_1_2_6_11_1
  doi: 10.1016/S0378-4371(03)00019-0
– ident: e_1_2_6_99_1
  doi: 10.1890/06-1128.1
– volume: 5
  start-page: 472
  year: 2002
  ident: e_1_2_6_41_1
  article-title: Dynamics of an anthropogenic fire regime
  publication-title: Ecosystems
– ident: e_1_2_6_89_1
  doi: 10.1023/A:1021584519109
– ident: e_1_2_6_8_1
  doi: 10.1201/b17115
– ident: e_1_2_6_109_1
– ident: e_1_2_6_106_1
– ident: e_1_2_6_29_1
  doi: 10.1111/j.2517-6161.1990.tb01796.x
– ident: e_1_2_6_84_1
  doi: 10.1073/pnas.1718850115
– ident: e_1_2_6_57_1
  doi: 10.1071/WF07136
– ident: e_1_2_6_60_1
  doi: 10.1038/ngeo313
– ident: e_1_2_6_91_1
  doi: 10.1007/s00477-013-0823-x
– volume: 116
  year: 2011
  ident: e_1_2_6_88_1
  article-title: Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest
  publication-title: Journal of Geophysical Research Biogeosciences
– ident: e_1_2_6_107_1
  doi: 10.32614/CRAN.package.tidyverse
– ident: e_1_2_6_69_1
  doi: 10.1007/s00267-014-0364-1
– ident: e_1_2_6_52_1
  doi: 10.1890/09-1843.1
– ident: e_1_2_6_65_1
  doi: 10.3390/fire1010004
– ident: e_1_2_6_48_1
– ident: e_1_2_6_51_1
  doi: 10.1071/WF09077
– ident: e_1_2_6_15_1
  doi: 10.18637/jss.v063.i18
– ident: e_1_2_6_42_1
  doi: 10.1016/S0304-3800(00)00368-9
– ident: e_1_2_6_93_1
  doi: 10.1111/jtsa.12457
– ident: e_1_2_6_21_1
  doi: 10.1214/lnms/1215091142
– ident: e_1_2_6_25_1
  doi: 10.1007/978-1-4471-3675-0
– ident: e_1_2_6_46_1
  doi: 10.1080/00401706.1987.10488243
– ident: e_1_2_6_58_1
  doi: 10.1038/sdata.2017.1
– volume-title: Dataset shift in machine learning
  year: 2009
  ident: e_1_2_6_80_1
– ident: e_1_2_6_10_1
– ident: e_1_2_6_59_1
  doi: 10.1016/j.advwatres.2015.03.001
– volume: 54
  start-page: 246
  year: 1971
  ident: e_1_2_6_75_1
  article-title: The Great Peshtigo fire: an eyewitness account
  publication-title: Wisconsin Magazine of History
– ident: e_1_2_6_19_1
  doi: 10.1016/j.csda.2004.10.011
– ident: e_1_2_6_16_1
– ident: e_1_2_6_38_1
  doi: 10.1201/b16018
– ident: e_1_2_6_110_1
  doi: 10.1016/j.foreco.2012.06.030
– ident: e_1_2_6_32_1
  doi: 10.1016/j.foreco.2016.09.013
– ident: e_1_2_6_35_1
  doi: 10.1071/WF08187
– ident: e_1_2_6_95_1
– volume: 51
  start-page: 51
  year: 1999
  ident: e_1_2_6_108_1
  article-title: Assessing the risk of cumulative burned acreage using the Poisson probability model
  publication-title: Fire Economics, Planning, and Policy: Bottom Lines
– ident: e_1_2_6_111_1
  doi: 10.1201/9781315370279
– ident: e_1_2_6_12_1
  doi: 10.1071/WF07044
– ident: e_1_2_6_90_1
  doi: 10.1002/env.605
– ident: e_1_2_6_70_1
– ident: e_1_2_6_54_1
– ident: e_1_2_6_85_1
  doi: 10.1214/ss/1177012761
– ident: e_1_2_6_73_1
SSID ssj0000222
Score 2.5372677
Snippet Wildfires are becoming more frequent in parts of the globe, but predicting where and when wildfires occur remains difficult. To predict wildfire extremes...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1266
SubjectTerms Air temperature
Atmospheric models
Bayes Theorem
Bayesian
Bayesian analysis
Bayesian theory
climate
data collection
Domains
extremes
fire
fire frequency
Fires
Forest & brush fires
Housing
Mathematical models
Models, Statistical
prediction
Predictions
spatiotemporal
Statistical analysis
Statistical models
United States
wildfire
Wildfires
Title Spatiotemporal prediction of wildfire size extremes with Bayesian finite sample maxima
URI https://www.jstor.org/stable/26785693
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feap.1898
https://www.ncbi.nlm.nih.gov/pubmed/30980779
https://www.proquest.com/docview/2289564572
https://www.proquest.com/docview/2209605524
https://www.proquest.com/docview/2374170967
https://pubmed.ncbi.nlm.nih.gov/PMC6851762
Volume 29
WOSCitedRecordID wos000483714500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1939-5582
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000222
  issn: 1051-0761
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BCxIXymshbamMhOAUGjsv-9jCrjhU1Qoo2lvk-KFGarOrTYsov56ZJJtlRUFIKMpDythyYs_4G3v8GeC1z4QqrbWhtL5EB0WasPSZDdNEe46HjkxLmX-Sn57K2UxN-6hKWgvT8UMMA26kGa29JgXXZXO4Jg11evGOSyXvwjbnsaRtG0QyXVvhbgYB4QO6y-irr4hnI3G4SrnRFXXRiLfhzN_DJX-FsW0_NNn5ny94BA979MmOuubyGO64-gnc7_ajvMGnsemfRuP1AjhM0FuA5il8_dyGYPeMVhdssaSZHqpdNvcMy2E9GlHWVD8cQ7tPo48No8FedqxvHK3YZL4inMsaTcTE7FJ_ry71MzibjL-8_xj2ezOEJlFoI33mYuulF5roejSaKTx5KpWQUZmp3Bsfc5twwx0CMIdOpLM2Ka3OjBexVvEItup57V4AI0jkMU90VXViHS-F58pwnXCfECIJ4O2qmgrTE5fT_hkXRUe5LAr8kQX9yABeDZKLjqzjFplRW9ODgMDuOs1UHMD-quqLXo-bQqA_Snw7ucC8h9eogTStoms3vyYZcgPTVCR_kYkRueUolwfwvGtNQwHiSMkoz1UA-UY7GwSIAXzzTV2dt0zgGeJl7M0CeNO2sz9-dDE-mtJ9918F9-ABIsM-mG4ftq6W1-4l3DPfrqpmedBqGl7zmTyA7Q-fJmcnPwGvvzAw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UquiL99Vo1RFEn9LuTCaXwacqWyquy4JV-hYmc8FAm102rVh_vefkti5WESSEDOQkZDLn8p25fAPw0idCFdbaMLO-wAQlM2HhExvGUnuOhx6bhjJ_ms5m2fGxmm_Bm34tTMsPMXS4kWU0_poMnDqk99asoU4vd3mmsitwVWKQISUXcr52w-0QAuIHzJcxWe-ZZ8dir39yIxa10xEvA5q_z5f8Fcc2gejg9n9V4Q7c6vAn228V5i5sueoeXG93pLzA0sR0pdFkvQQOH-h8QH0fvnxqJmF3nFYnbLmisR5qX7bwDD_EenSjrC5_OIaen_ofa0bdveytvnC0ZpP5kpAuqzVRE7NT_b081Q_g88Hk6N1h2O3OEBqp0Ev6xEXWZ15oIuzR6Kjw5HGmRDYuEpV64yNuJTfcIQRzmEY6a2VhdWK8iLSKRrBdLSr3CBiBIo_vxGRVS-t4ITxXhmvJvSRMEsDrvp1y01GX0w4aJ3lLuixy_JE5_cgAXgySy5au4xKZUdPUg4DAgB0nKgpgp2_7vLPkOheYkRLjTirw3cNttEEaWNGVW5yTDCWCcSzkX2QixG4pyqUBPGzVafiAaKyycZqqANINRRsEiAN8805Vfm24wBNEzBjPAnjVKNofK51P9ud0ffyvgs_hxuHRx2k-fT_78ARuIk7sptbtwPbZ6tw9hWvm21lZr541ZvcTCTcxkw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZaxRBEC7iRiUv3mtGo7Yg-jTJds_Z-BTNLorLsqiRvA09feBAMrvsJGL89VbNtS5GEWQYpqFrmr6q-qs-vgZ44WIhc2OMnxqXo4OSaj93sfGjUDmOjxrpmjJ_msxm6cmJnG_B6-4sTMMP0U-4kWbU9poU3C6NO1izhlq13OepTK_Bdkh3yAxg--jj5Hi6NsTNIgIiCPSY0V3vuGdH4qD7d2M0ajYkXgU1f98x-SuSrYeiye3_KsQduNUiUHbYdJm7sGXLe3CjuZPyEkNj3YaG4_UhOPyhtQLVffjyqd6G3bJanbLlilZ7qIXZwjHMiHFoSFlV_LAMbT_NQFaMJnzZG3Vp6dQmcwVhXVYpIidmZ-p7caYewPFk_PntO7-9n8HXoUQ76WIbGJc6oYiyR6GpwpdHqRTpKI9l4rQLuAm55hZBmEVH0hoT5kbF2olAyWAIg3JR2l1gBIscponuqgqN5blwXGquQu5CQiUevOraKdMteTndoXGaNbTLIsOKzKgiPXjeSy4bwo4rZIZ1U_cCAofsKJaBB3td22etLleZQJ-UOHcSgWn30aiFtLSiSru4IBlyBaNIhH-RCRC9JSiXePCw6U59BoKRTEdJIj1INjpaL0As4JsxZfG1ZgOPETPjiObBy7qj_bHQ2fhwTt9H_yr4DG7OjybZ9P3sw2PYQaDY7q3bg8H56sI-gev623lRrZ62evcT0ykyqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+prediction+of+wildfire+size+extremes+with+Bayesian+finite+sample+maxima&rft.jtitle=Ecological+applications&rft.au=Joseph%2C+Maxwell+B&rft.au=Rossi%2C+Matthew+W&rft.au=Mietkiewicz%2C+Nathan+P&rft.au=Mahood%2C+Adam+L&rft.date=2019-09-01&rft.pub=Ecological+Society+of+America&rft.issn=1051-0761&rft.eissn=1939-5582&rft.volume=29&rft.issue=6&rft.spage=1266&rft_id=info:doi/10.1002%2Feap.1898&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-0761&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-0761&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-0761&client=summon