Modeling avian full annual cycle distribution and population trends with citizen science data

Information on species’ distributions, abundances, and how they change over time is central to the study of the ecology and conservation of animal populations. This information is challenging to obtain at landscape scales across range-wide extents for two main reasons. First, landscape-scale process...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ecological applications Ročník 30; číslo 3; s. 1 - 16
Hlavní autori: Fink, Daniel, Auer, Tom, Johnston, Alison, Ruiz-Gutierrez, Viviana, Hochachka, Wesley M., Kelling, Steve
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States John Wiley and Sons, Inc 01.04.2020
Ecological Society of America
John Wiley and Sons Inc
Predmet:
ISSN:1051-0761, 1939-5582
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Information on species’ distributions, abundances, and how they change over time is central to the study of the ecology and conservation of animal populations. This information is challenging to obtain at landscape scales across range-wide extents for two main reasons. First, landscape-scale processes that affect populations vary throughout the year and across species’ ranges, requiring high-resolution, year-round data across broad, sometimes hemispheric, spatial extents. Second, while citizen science projects can collect data at these resolutions and extents, using these data requires appropriate analysis to address known sources of bias. Here, we present an analytical framework to address these challenges and generate year-round, range-wide distributional information using citizen science data. To illustrate this approach, we apply the framework to Wood Thrush (Hylocichla mustelina), a long-distance Neotropical migrant and species of conservation concern, using data from the citizen science project eBird. We estimate occurrence and abundance across a range of spatial scales throughout the annual cycle. Additionally, we generate intra-annual estimates of the range, intraannual estimates of the associations between species and characteristics of the landscape, and interannual trends in abundance for breeding and non-breeding seasons. The range-wide population trajectories for Wood Thrush show a close correspondence between breeding and nonbreeding seasons with steep declines between 2010 and 2013 followed by shallower rates of decline from 2013 to 2016. The breeding season range-wide population trajectory based on the independently collected and analyzed North American Breeding Bird Survey data also shows this pattern. The information provided here fills important knowledge gaps for Wood Thrush, especially during the less studied migration and non-breeding periods. More generally, the modeling framework presented here can be used to accurately capture landscape scale intra- and interannual distributional dynamics for broadly distributed, highly mobile species.
AbstractList Information on species’ distributions, abundances, and how they change over time is central to the study of the ecology and conservation of animal populations. This information is challenging to obtain at landscape scales across range‐wide extents for two main reasons. First, landscape‐scale processes that affect populations vary throughout the year and across species’ ranges, requiring high‐resolution, year‐round data across broad, sometimes hemispheric, spatial extents. Second, while citizen science projects can collect data at these resolutions and extents, using these data requires appropriate analysis to address known sources of bias. Here, we present an analytical framework to address these challenges and generate year‐round, range‐wide distributional information using citizen science data. To illustrate this approach, we apply the framework to Wood Thrush (Hylocichla mustelina), a long‐distance Neotropical migrant and species of conservation concern, using data from the citizen science project eBird. We estimate occurrence and abundance across a range of spatial scales throughout the annual cycle. Additionally, we generate intra‐annual estimates of the range, intra‐annual estimates of the associations between species and characteristics of the landscape, and interannual trends in abundance for breeding and non‐breeding seasons. The range‐wide population trajectories for Wood Thrush show a close correspondence between breeding and non‐breeding seasons with steep declines between 2010 and 2013 followed by shallower rates of decline from 2013 to 2016. The breeding season range‐wide population trajectory based on the independently collected and analyzed North American Breeding Bird Survey data also shows this pattern. The information provided here fills important knowledge gaps for Wood Thrush, especially during the less studied migration and non‐breeding periods. More generally, the modeling framework presented here can be used to accurately capture landscape scale intra‐ and interannual distributional dynamics for broadly distributed, highly mobile species.
Information on species’ distributions, abundances, and how they change over time is central to the study of the ecology and conservation of animal populations. This information is challenging to obtain at landscape scales across range‐wide extents for two main reasons. First, landscape‐scale processes that affect populations vary throughout the year and across species’ ranges, requiring high‐resolution, year‐round data across broad, sometimes hemispheric, spatial extents. Second, while citizen science projects can collect data at these resolutions and extents, using these data requires appropriate analysis to address known sources of bias. Here, we present an analytical framework to address these challenges and generate year‐round, range‐wide distributional information using citizen science data. To illustrate this approach, we apply the framework to Wood Thrush ( Hylocichla mustelina ), a long‐distance Neotropical migrant and species of conservation concern, using data from the citizen science project eB ird. We estimate occurrence and abundance across a range of spatial scales throughout the annual cycle. Additionally, we generate intra‐annual estimates of the range, intra‐annual estimates of the associations between species and characteristics of the landscape, and interannual trends in abundance for breeding and non‐breeding seasons. The range‐wide population trajectories for Wood Thrush show a close correspondence between breeding and non‐breeding seasons with steep declines between 2010 and 2013 followed by shallower rates of decline from 2013 to 2016. The breeding season range‐wide population trajectory based on the independently collected and analyzed North American Breeding Bird Survey data also shows this pattern. The information provided here fills important knowledge gaps for Wood Thrush, especially during the less studied migration and non‐breeding periods. More generally, the modeling framework presented here can be used to accurately capture landscape scale intra‐ and interannual distributional dynamics for broadly distributed, highly mobile species.
Information on species' distributions, abundances, and how they change over time is central to the study of the ecology and conservation of animal populations. This information is challenging to obtain at landscape scales across range-wide extents for two main reasons. First, landscape-scale processes that affect populations vary throughout the year and across species' ranges, requiring high-resolution, year-round data across broad, sometimes hemispheric, spatial extents. Second, while citizen science projects can collect data at these resolutions and extents, using these data requires appropriate analysis to address known sources of bias. Here, we present an analytical framework to address these challenges and generate year-round, range-wide distributional information using citizen science data. To illustrate this approach, we apply the framework to Wood Thrush (Hylocichla mustelina), a long-distance Neotropical migrant and species of conservation concern, using data from the citizen science project eBird. We estimate occurrence and abundance across a range of spatial scales throughout the annual cycle. Additionally, we generate intra-annual estimates of the range, intra-annual estimates of the associations between species and characteristics of the landscape, and interannual trends in abundance for breeding and non-breeding seasons. The range-wide population trajectories for Wood Thrush show a close correspondence between breeding and non-breeding seasons with steep declines between 2010 and 2013 followed by shallower rates of decline from 2013 to 2016. The breeding season range-wide population trajectory based on the independently collected and analyzed North American Breeding Bird Survey data also shows this pattern. The information provided here fills important knowledge gaps for Wood Thrush, especially during the less studied migration and non-breeding periods. More generally, the modeling framework presented here can be used to accurately capture landscape scale intra- and interannual distributional dynamics for broadly distributed, highly mobile species.Information on species' distributions, abundances, and how they change over time is central to the study of the ecology and conservation of animal populations. This information is challenging to obtain at landscape scales across range-wide extents for two main reasons. First, landscape-scale processes that affect populations vary throughout the year and across species' ranges, requiring high-resolution, year-round data across broad, sometimes hemispheric, spatial extents. Second, while citizen science projects can collect data at these resolutions and extents, using these data requires appropriate analysis to address known sources of bias. Here, we present an analytical framework to address these challenges and generate year-round, range-wide distributional information using citizen science data. To illustrate this approach, we apply the framework to Wood Thrush (Hylocichla mustelina), a long-distance Neotropical migrant and species of conservation concern, using data from the citizen science project eBird. We estimate occurrence and abundance across a range of spatial scales throughout the annual cycle. Additionally, we generate intra-annual estimates of the range, intra-annual estimates of the associations between species and characteristics of the landscape, and interannual trends in abundance for breeding and non-breeding seasons. The range-wide population trajectories for Wood Thrush show a close correspondence between breeding and non-breeding seasons with steep declines between 2010 and 2013 followed by shallower rates of decline from 2013 to 2016. The breeding season range-wide population trajectory based on the independently collected and analyzed North American Breeding Bird Survey data also shows this pattern. The information provided here fills important knowledge gaps for Wood Thrush, especially during the less studied migration and non-breeding periods. More generally, the modeling framework presented here can be used to accurately capture landscape scale intra- and interannual distributional dynamics for broadly distributed, highly mobile species.
Information on species’ distributions, abundances, and how they change over time is central to the study of the ecology and conservation of animal populations. This information is challenging to obtain at landscape scales across range-wide extents for two main reasons. First, landscape-scale processes that affect populations vary throughout the year and across species’ ranges, requiring high-resolution, year-round data across broad, sometimes hemispheric, spatial extents. Second, while citizen science projects can collect data at these resolutions and extents, using these data requires appropriate analysis to address known sources of bias. Here, we present an analytical framework to address these challenges and generate year-round, range-wide distributional information using citizen science data. To illustrate this approach, we apply the framework to Wood Thrush (Hylocichla mustelina), a long-distance Neotropical migrant and species of conservation concern, using data from the citizen science project eBird. We estimate occurrence and abundance across a range of spatial scales throughout the annual cycle. Additionally, we generate intra-annual estimates of the range, intraannual estimates of the associations between species and characteristics of the landscape, and interannual trends in abundance for breeding and non-breeding seasons. The range-wide population trajectories for Wood Thrush show a close correspondence between breeding and nonbreeding seasons with steep declines between 2010 and 2013 followed by shallower rates of decline from 2013 to 2016. The breeding season range-wide population trajectory based on the independently collected and analyzed North American Breeding Bird Survey data also shows this pattern. The information provided here fills important knowledge gaps for Wood Thrush, especially during the less studied migration and non-breeding periods. More generally, the modeling framework presented here can be used to accurately capture landscape scale intra- and interannual distributional dynamics for broadly distributed, highly mobile species.
Author Johnston, Alison
Ruiz-Gutierrez, Viviana
Kelling, Steve
Hochachka, Wesley M.
Fink, Daniel
Auer, Tom
AuthorAffiliation 1 Cornell Lab of Ornithology Cornell University Ithaca New York 14853 USA
AuthorAffiliation_xml – name: 1 Cornell Lab of Ornithology Cornell University Ithaca New York 14853 USA
Author_xml – sequence: 1
  givenname: Daniel
  surname: Fink
  fullname: Fink, Daniel
– sequence: 2
  givenname: Tom
  surname: Auer
  fullname: Auer, Tom
– sequence: 3
  givenname: Alison
  surname: Johnston
  fullname: Johnston, Alison
– sequence: 4
  givenname: Viviana
  surname: Ruiz-Gutierrez
  fullname: Ruiz-Gutierrez, Viviana
– sequence: 5
  givenname: Wesley M.
  surname: Hochachka
  fullname: Hochachka, Wesley M.
– sequence: 6
  givenname: Steve
  surname: Kelling
  fullname: Kelling, Steve
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31837058$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhgep2A8F_4Ay4I03s-Z7khuhlPoBFb3QSwlnkkybJZusyUzL-utNu-uqRTE3STjP--acvMfNQUzRNc1TjBYYIfLKwXpBEBcPmiOsqOo4l-SgnhHHHeoFPmyOS1miugghj5pDiiXtEZdHzdcPybrg42UL1x5iO84htBDjDKE1GxNca32Zsh_myadYK7Zdp_Uc4O46ZRdtaW_8dNUaP_nvLrbFeBdN1cEEj5uHI4Tinuz2k-bLm_PPZ--6i49v35-dXnSGKSo6wQXrQVpACo1OYCugF3WeYbAWSWkUANieI2mdwnZAGGQvDaEjKC6G0dKT5vXWdz0PK2eNi1OGoNfZryBvdAKv_6xEf6Uv07Xusewx49Xg5c4gp2-zK5Ne-WJcCBBdmosmnGPFGevl_1FKmVCCUlXRF_fQZZpzrD9RKcU4Q0SQSj3_vfl91z9D-vWiyamU7MY9gpG-zV_X_PVt_hVd3ENrLHdZ1bF9-Jug2wpufHCbfxrr89NPO_7Zll-WKeU9T4SihBFGfwD1Xsq_
CitedBy_id crossref_primary_10_1038_s41598_024_80838_9
crossref_primary_10_1111_ddi_13259
crossref_primary_10_1002_eap_2510
crossref_primary_10_1016_j_biocon_2020_108653
crossref_primary_10_1016_j_ecolind_2022_109244
crossref_primary_10_1080_00063657_2022_2026876
crossref_primary_10_1111_ddi_13499
crossref_primary_10_1093_evolut_qpae058
crossref_primary_10_1002_ecy_4256
crossref_primary_10_1073_pnas_2220980120
crossref_primary_10_1111_ibi_13321
crossref_primary_10_1016_j_cub_2023_01_066
crossref_primary_10_1111_ddi_13785
crossref_primary_10_1111_cobi_14346
crossref_primary_10_58843_ornneo_v35i2_657
crossref_primary_10_1016_j_avrs_2025_100281
crossref_primary_10_1093_jrsssa_qnae108
crossref_primary_10_1016_j_biocon_2020_108826
crossref_primary_10_3390_d17080557
crossref_primary_10_1111_csp2_13281
crossref_primary_10_1111_gcb_16492
crossref_primary_10_1111_ecog_06378
crossref_primary_10_1080_21564574_2021_2019838
crossref_primary_10_1093_ornithapp_duaf030
crossref_primary_10_1093_ornithapp_duad011
crossref_primary_10_1016_j_agee_2025_109616
crossref_primary_10_3390_s24082597
crossref_primary_10_1016_j_ecoser_2025_101733
crossref_primary_10_2903_sp_efsa_2024_EN_9000
crossref_primary_10_3390_d15030404
crossref_primary_10_1016_j_cub_2023_03_024
crossref_primary_10_1016_j_biocon_2022_109523
crossref_primary_10_6339_24_JDS1152
crossref_primary_10_1002_eap_2815
crossref_primary_10_1016_j_avrs_2023_100140
crossref_primary_10_1155_2024_3022927
crossref_primary_10_1007_s10980_024_01813_3
crossref_primary_10_1111_gcb_16443
crossref_primary_10_1111_geb_70052
crossref_primary_10_1111_1365_2664_13971
crossref_primary_10_1111_jbi_14093
crossref_primary_10_1038_s41893_024_01365_z
crossref_primary_10_1111_2041_210X_14272
crossref_primary_10_1007_s10651_021_00508_1
crossref_primary_10_1088_2752_664X_ac7eb5
crossref_primary_10_1111_geb_13767
crossref_primary_10_1038_s41598_022_23603_0
crossref_primary_10_3389_fenvs_2021_710396
crossref_primary_10_1080_15230406_2023_2293891
crossref_primary_10_1016_j_jenvman_2025_124838
crossref_primary_10_1111_tgis_12901
crossref_primary_10_1002_fee_70003
crossref_primary_10_1016_j_tree_2023_05_001
crossref_primary_10_1016_j_jtherbio_2023_103472
crossref_primary_10_1093_evolut_qpad112
crossref_primary_10_1111_csp2_12772
crossref_primary_10_3390_birds4040028
crossref_primary_10_1038_s41598_024_64912_w
crossref_primary_10_1002_ecs2_3994
crossref_primary_10_1093_ornithapp_duaa064
crossref_primary_10_1111_cobi_14376
crossref_primary_10_1016_j_biocon_2021_108974
crossref_primary_10_1017_S0959270924000121
crossref_primary_10_1016_j_pecon_2023_02_001
crossref_primary_10_1002_eap_2679
crossref_primary_10_1002_jwmg_22324
crossref_primary_10_1016_j_jnc_2025_126970
crossref_primary_10_2903_sp_efsa_2022_EN_7762
crossref_primary_10_1371_journal_pone_0321496
crossref_primary_10_1111_geb_13070
crossref_primary_10_1016_j_jhydrol_2024_132264
crossref_primary_10_1111_ecog_05495
crossref_primary_10_1038_s41597_022_01635_5
crossref_primary_10_1016_j_cub_2023_11_033
crossref_primary_10_1126_science_adn4381
crossref_primary_10_1093_ornithapp_duae030
crossref_primary_10_1002_ecy_4175
crossref_primary_10_1038_s41467_023_43046_z
crossref_primary_10_1093_ornithapp_duaf001
crossref_primary_10_1111_2041_210X_14052
crossref_primary_10_3389_fevo_2021_568278
crossref_primary_10_1111_cobi_13698
crossref_primary_10_1038_s41598_025_06961_3
crossref_primary_10_1016_j_biocon_2022_109556
crossref_primary_10_1016_j_ecoinf_2022_101629
crossref_primary_10_1016_j_scitotenv_2021_152173
crossref_primary_10_1111_ecog_06735
crossref_primary_10_1111_ele_14496
crossref_primary_10_1111_ecog_06219
crossref_primary_10_1002_wsb_1313
crossref_primary_10_1111_1365_2664_70108
crossref_primary_10_1186_s40462_021_00294_2
crossref_primary_10_1111_1365_2664_14251
crossref_primary_10_3390_ani14162404
crossref_primary_10_1111_geb_13460
crossref_primary_10_1002_eap_2058
crossref_primary_10_2903_sp_efsa_2025_EN_9423
crossref_primary_10_1111_ddi_13634
crossref_primary_10_3390_ijgi11010055
crossref_primary_10_1111_ecog_06769
crossref_primary_10_3390_ani11123426
crossref_primary_10_1111_jbi_14847
crossref_primary_10_1002_ece3_9866
crossref_primary_10_1371_journal_pone_0257226
crossref_primary_10_1007_s10980_025_02081_5
crossref_primary_10_1016_j_avrs_2022_100064
crossref_primary_10_1002_ecs2_4011
crossref_primary_10_1002_inc3_53
crossref_primary_10_3390_d14110905
crossref_primary_10_1002_ecy_4430
crossref_primary_10_1676_21_00024
crossref_primary_10_1016_j_biocon_2024_110801
crossref_primary_10_1111_ele_13817
crossref_primary_10_1093_ornithapp_duaf024
crossref_primary_10_1111_2041_210X_14189
crossref_primary_10_1007_s11252_024_01625_y
crossref_primary_10_1093_ornithapp_duac015
crossref_primary_10_1093_ornithapp_duaf025
crossref_primary_10_1111_2041_210X_14186
crossref_primary_10_1016_j_eiar_2025_108029
crossref_primary_10_1038_s41598_022_26586_0
crossref_primary_10_1111_eva_13600
crossref_primary_10_1016_j_cub_2024_12_033
crossref_primary_10_1111_csp2_12975
crossref_primary_10_1111_geb_13567
crossref_primary_10_1111_1365_2664_14077
crossref_primary_10_1038_s41598_023_40626_3
crossref_primary_10_1111_oik_08215
crossref_primary_10_1002_ecs2_3790
crossref_primary_10_1111_1365_2664_14512
crossref_primary_10_1111_ele_13706
crossref_primary_10_1073_pnas_2203511120
crossref_primary_10_1093_auk_ukaa048
crossref_primary_10_3389_fenvs_2025_1461601
crossref_primary_10_1111_2041_210X_14110
crossref_primary_10_1111_brv_13127
Cites_doi 10.1371/journal.pone.0139600
10.1111/ddi.12428
10.2307/2529310
10.1525/auk.2010.09220
10.1073/pnas.1718985115
10.1371/journal.pone.0095565
10.1016/j.biocon.2018.02.027
10.1126/science.aac9180
10.1016/j.biocon.2013.11.003
10.1093/oxfordjournals.pan.a004868
10.1111/j.1469-185X.2011.00216.x
10.1890/14-1826.1
10.1111/brv.12359
10.1609/aimag.v35i2.2533
10.1016/j.biocon.2009.05.006
10.1111/ele.12048
10.1177/001316446002000104
10.1111/ecog.02881
10.1145/2934664
10.1017/S0376892997000088
10.1016/j.rse.2009.08.016
10.1371/journal.pone.0081867
10.1016/j.biocon.2015.06.009
10.1111/ecog.01034
10.1016/j.biocon.2016.09.004
10.1111/gcb.13794
10.1111/2041-210X.12838
10.1002/eap.1918
10.1016/j.biocon.2013.07.037
10.1111/cobi.12956
10.1080/01621459.2013.823775
10.1890/130017
10.1038/s41559-019-0826-1
10.1111/ddi.12698
10.1098/rsbl.2015.0552
10.1146/annurev-ecolsys-112414-054400
10.1073/pnas.1708574114
10.1002/ecs2.2707
10.11613/BM.2012.031
10.1093/ptj/85.3.257
10.1111/j.1365-2699.2010.02345.x
10.1146/annurev-ecolsys-102209-144636
10.1016/j.biocon.2013.12.020
10.1080/01621459.2017.1319839
10.1038/sdata.2018.40
10.1080/014311600210209
10.2307/1941447
10.1111/j.1466-8238.2007.00358.x
10.1145/356924.356930
10.1890/14-1410
10.1609/aaai.v27i1.8484
10.1023/A:1010933404324
10.1038/s41598-019-48851-5
10.1093/biosci/biz010
10.1080/01621459.1996.10476660
10.1016/j.tree.2011.11.006
10.1201/9781315370279
10.1007/978-0-387-84858-7
10.1002/ecy.1967
10.1111/j.2041-210X.2010.00060.x
10.1214/14-AOS1220
10.1890/09-1340.1
10.1093/auk/124.1.96
10.18637/jss.v023.i11
ContentType Journal Article
Copyright 2019 The Authors
2019 The Authors. published by Wiley Periodicals, Inc. on behalf of Ecological Society of America
2019 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
Copyright Ecological Society of America Apr 2020
Copyright_xml – notice: 2019 The Authors
– notice: 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of Ecological Society of America
– notice: 2019 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
– notice: Copyright Ecological Society of America Apr 2020
DBID 24P
AAYXX
CITATION
NPM
7QG
7SN
7SS
7ST
7U7
8FD
C1K
FR3
M7N
P64
RC3
SOI
7X8
7S9
L.6
5PM
DOI 10.1002/eap.2056
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic

PubMed
AGRICOLA
Entomology Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
DocumentTitleAlternate Daniel Fink et al
EISSN 1939-5582
EndPage 16
ExternalDocumentID PMC7187145
31837058
10_1002_eap_2056
EAP2056
26932424
Genre article
Journal Article
GrantInformation_xml – fundername: NASA
  funderid: NNH12ZDA001N‐ECOF
– fundername: AWS Cloud Credits for Research program
– fundername: The Wolf Creek Foundation
– fundername: Leon Levy Foundation
– fundername: NASA
  grantid: NNH12ZDA001N-ECOF
– fundername: ;
– fundername: ;
  grantid: NNH12ZDA001N‐ECOF
GroupedDBID ---
-ET
-~X
..I
0R~
1OB
1OC
2AX
33P
4.4
42X
53G
5GY
85S
8WZ
A6W
AAESR
AAHBH
AAHKG
AAHQN
AAIHA
AAIKC
AAISJ
AAKGQ
AAMMB
AAMNL
AAMNW
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABCUV
ABEFU
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACGFS
ACHIC
ACHJO
ACNCT
ACPOU
ACSTJ
ACUBG
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADNWM
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFFPM
AFGKR
AFWVQ
AFXHP
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
ANHSF
AQVQM
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
CBGCD
CS3
CUYZI
DCZOG
DEVKO
DRFUL
DRSTM
DU5
EBS
ECGQY
F5P
HGLYW
H~9
IAO
IEA
IGH
IOF
IPSME
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
L7B
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MV1
MXFUL
MXSTM
NXSMM
O9-
P2P
P2W
ROL
RSZ
SA0
SUPJJ
TN5
UKR
V62
WBKPD
WH7
WOHZO
WXSBR
XSW
YV5
YYM
YYP
Z0I
ZCA
ZO4
ZZTAW
~02
~KM
.-4
24P
29G
AAHHS
AAYJJ
ABYAD
ACCFJ
ACTWD
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AI.
AIDAL
AIWBW
AJBDE
ALUQN
AS~
DDYGU
DOOOF
EJD
EQZMY
FVMVE
GTFYD
HGD
HQ2
HTVGU
HVGLF
IAG
IEP
ITC
JSODD
MVM
NHB
P0-
PALCI
RJQFR
SAMSI
VH1
VOH
VQA
XIH
Y6R
YXE
ZCG
AAYXX
AIQQE
CITATION
NPM
7QG
7SN
7SS
7ST
7U7
8FD
C1K
FR3
M7N
P64
RC3
SOI
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4936-65647a8da090fe61d6a76205bbdd088c9aaad7508de91db01a878c23fa956bfd3
IEDL.DBID 24P
ISICitedReferencesCount 139
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506075700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-0761
IngestDate Tue Nov 04 01:57:19 EST 2025
Fri Sep 05 17:21:50 EDT 2025
Thu Oct 02 10:00:15 EDT 2025
Wed Aug 13 11:01:41 EDT 2025
Thu Apr 03 06:58:35 EDT 2025
Sat Nov 29 03:26:44 EST 2025
Tue Nov 18 22:31:18 EST 2025
Wed Jan 22 16:35:59 EST 2025
Wed Nov 19 01:46:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords eBird
bird distributions
biodiversity monitoring
population trends
abundance
citizen science
full annual cycle
area of occurrence
bird migration
Wood Thrush
Language English
License Attribution-NonCommercial
2019 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4936-65647a8da090fe61d6a76205bbdd088c9aaad7508de91db01a878c23fa956bfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Corresponding Editor: John M. Marzluff.
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feap.2056
PMID 31837058
PQID 2394540262
PQPubID 2048294
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7187145
proquest_miscellaneous_2551954478
proquest_miscellaneous_2334696339
proquest_journals_2394540262
pubmed_primary_31837058
crossref_primary_10_1002_eap_2056
crossref_citationtrail_10_1002_eap_2056
wiley_primary_10_1002_eap_2056_EAP2056
jstor_primary_26932424
PublicationCentury 2000
PublicationDate April 2020
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: Hoboken
PublicationTitle Ecological applications
PublicationTitleAlternate Ecol Appl
PublicationYear 2020
Publisher John Wiley and Sons, Inc
Ecological Society of America
John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons, Inc
– name: Ecological Society of America
– name: John Wiley and Sons Inc
References 2017; 40
2015; 38
2019; 10
2014; 173
2014; 171
2013; 8
2001; 45
2017; 114
2015; 46
2017; 31
2018; 9
2010; 20
2018; 5
2013; 16
2011; 128
1984; 16
2010; 114
2019; 69
2008; 23
2019; 29
1977; 33
2012; 27
2014; 9
2012; 22
1992; 2
2014; 12
2014; 169
2018; 221
2007; 124
2019; 9
2019; 3
2010; 37
2011; 2
2012
2011
2000; 21
1997; 24
2015; 11
2017; 24
2015; 10
2017; 23
2008; 17
2009
2005; 85
1996; 91
2016; 17
2017; 213
2016; 59
2010; 41
1992; 73
2014; 42
2015; 350
2015; 25
2015; 191
2014; 109
2017; 93
1960; 20
2018; 113
2017; 98
2001; 9
2018; 115
2019
2014; 35
2017
2016
2015
2014
2013
2009; 142
2016; 26
2012; 87
2016; 22
e_1_2_7_5_1
R Development Core Team (e_1_2_7_55_1) 2017
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
Johnston A. (e_1_2_7_37_1) 2019
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Evans M. (e_1_2_7_18_1) 2011
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_39_1
Mentch L. (e_1_2_7_53_1) 2016; 17
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
Cleveland W. S. (e_1_2_7_11_1) 1992; 2
e_1_2_7_29_1
Kéry M. (e_1_2_7_40_1) 2015
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – year: 2011
– volume: 142
  start-page: 2282
  year: 2009
  end-page: 2292
  article-title: eBird: A citizen‐based bird observation network in the biological sciences
  publication-title: Biological Conservation
– year: 2009
– volume: 40
  start-page: 913
  year: 2017
  end-page: 929
  article-title: Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure
  publication-title: Ecography
– volume: 124
  start-page: 96
  year: 2007
  end-page: 106
  article-title: Incorporating availability for detection in estimates of bird abundance
  publication-title: Auk
– volume: 24
  start-page: 460
  year: 2017
  end-page: 472
  article-title: Correcting for bias in distribution modeling for rare species using citizen science data
  publication-title: Diversity and Distributions
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educational and Psychological Measurement
– volume: 20
  start-page: 2131
  year: 2010
  end-page: 2147
  article-title: Spatiotemporal exploratory models for broad_scale survey data
  publication-title: Ecological Applications
– volume: 22
  start-page: 717
  year: 2016
  end-page: 730
  article-title: Novel seasonal land cover associations for eastern North American forest birds identified through dynamic species distribution modelling
  publication-title: Diversity and Distributions
– volume: 41
  start-page: 149
  year: 2010
  end-page: 172
  article-title: Citizen science as an ecological research tool: challenges and benefits
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 10
  start-page: e02707
  year: 2019
  article-title: Spatial modeling of Audubon Christmas Bird Counts reveals fine‐scale patterns and drivers of relative abundance trends
  publication-title: Ecosphere
– volume: 25
  start-page: 1749
  year: 2015
  end-page: 1756
  article-title: Abundance models improve spatial and temporal prioritization of conservation resources
  publication-title: Ecological Applications
– volume: 2
  start-page: 143
  year: 2011
  end-page: 154
  article-title: Comparing spatially‐varying coefficients models for analysis of ecological data with non‐stationary and anisotropic residual dependence
  publication-title: Methods in Ecology and Evolution
– volume: 9
  start-page: 137
  year: 2001
  end-page: 163
  article-title: Logistic regression in rare events data
  publication-title: Political Analysis
– volume: 5
  start-page: 180040
  year: 2018
  article-title: A suite of global, cross‐scale topographic variables for environmental and biodiversity modeling
  publication-title: Scientific Data
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– year: 2014
– volume: 42
  start-page: 1693
  year: 2014
  article-title: Local case‐control sampling: efficient subsampling in imbalanced data sets
  publication-title: Annals of Statistics
– volume: 12
  start-page: 5
  year: 2014
  end-page: 14
  article-title: Macrosystems ecology: understanding ecological patterns and processes at continental scales
  publication-title: Frontiers in Ecology and the Environment
– volume: 3
  start-page: 539
  year: 2019
  article-title: Essential biodiversity variables for mapping and monitoring species populations
  publication-title: Nature Ecology & Evolution
– volume: 213
  start-page: 280
  year: 2017
  end-page: 294
  article-title: Contribution of citizen science towards international biodiversity monitoring
  publication-title: Biological Conservation
– volume: 26
  start-page: 424
  year: 2016
  end-page: 437
  article-title: Effects of breeding versus winter habitat loss and fragmentation on the population dynamics of a migratory songbird
  publication-title: Ecological Applications
– volume: 171
  start-page: 1
  year: 2014
  end-page: 8
  article-title: Using citizen science to estimate lichen diversity
  publication-title: Biological Conservation
– volume: 31
  start-page: 1350
  year: 2017
  end-page: 1361
  article-title: Using citizen science butterfly counts to predict species population trends
  publication-title: Conservation Biology
– volume: 93
  start-page: 600
  year: 2017
  end-page: 625
  article-title: Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale
  publication-title: Biological Reviews
– volume: 350
  start-page: 1255
  year: 2015
  end-page: 1258
  article-title: Protected areas and global conservation of migratory birds
  publication-title: Science
– volume: 59
  start-page: 56
  year: 2016
  end-page: 65
  article-title: Apache Spark: a unified engine for big data processing
  publication-title: Communications of the ACM
– volume: 87
  start-page: 661
  year: 2012
  end-page: 685
  article-title: Landscape moderation of biodiversity patterns and processes‐eight hypotheses
  publication-title: Biological Reviews
– volume: 114
  start-page: 168
  year: 2010
  end-page: 182
  article-title: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets
  publication-title: Remote Sensing of Environment
– volume: 8
  start-page: e81867
  year: 2013
  article-title: Modeling trends from North American Breeding Bird Survey data: a spatially explicit approach
  publication-title: PLoS ONE
– volume: 38
  start-page: 358
  year: 2015
  end-page: 369
  article-title: Towards a taxonomy of spatial scale‐dependence
  publication-title: Ecography
– volume: 37
  start-page: 1851
  year: 2010
  end-page: 1862
  article-title: Predicting species distributions from checklist data using site‐occupancy models
  publication-title: Journal of Biogeography
– volume: 98
  start-page: 2837
  year: 2017
  end-page: 2850
  article-title: Spatial and temporal drivers of avian population dynamics across the annual cycle
  publication-title: Ecology
– year: 2015
– volume: 169
  start-page: 31
  year: 2014
  end-page: 40
  article-title: The eBird enterprise: an integrated approach to development and application of citizen science
  publication-title: Biological Conservation
– volume: 11
  start-page: 20150552
  year: 2015
  article-title: A call for full annual cycle research in animal ecology
  publication-title: Biology Letters
– volume: 115
  start-page: E3192
  year: 2018
  end-page: E3200
  article-title: Population trends in Vermivora warblers are linked to strong migratory connectivity
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 91
  start-page: 14
  year: 1996
  end-page: 28
  article-title: Statistics in epidemiology: the case‐control study
  publication-title: Journal of the American Statistical Association
– volume: 73
  start-page: 1943
  year: 1992
  end-page: 1967
  article-title: The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture
  publication-title: Ecology
– volume: 9
  start-page: 1
  year: 2019
  end-page: 9
  article-title: Modeling spatially and temporally complex range dynamics when detection is imperfect
  publication-title: Scientific Reports
– volume: 29
  start-page: e01918
  year: 2019
  article-title: The power to detect regional declines in common bird populations using continental monitoring data
  publication-title: Ecological Applications
– volume: 24
  start-page: 38
  year: 1997
  end-page: 49
  article-title: A review of methods for the assessment of prediction errors in conservation presence/absence models
  publication-title: Environmental Conservation
– volume: 46
  start-page: 523
  year: 2015
  end-page: 549
  article-title: Seven shortfalls that beset large‐scale knowledge of biodiversity
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 114
  start-page: 11175
  year: 2017
  end-page: 11180
  article-title: High‐intensity urban light installation dramatically alters nocturnal bird migration
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 191
  start-page: 38
  year: 2015
  end-page: 49
  article-title: A novel citizen science approach for large‐scale standardised monitoring of bat activity and distribution, evaluated in eastern England
  publication-title: Biological Conservation
– volume: 128
  start-page: 87
  year: 2011
  end-page: 98
  article-title: Analysis of the North American breeding bird survey using hierarchical models
  publication-title: Auk
– start-page: 574392
  year: 2019
  article-title: Best practices for making reliable inferences from citizen science data: case study using eBird to estimate species distributions
  publication-title: bioRxiv
– volume: 33
  start-page: 159
  year: 1977
  end-page: 174
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 2
  start-page: 309
  year: 1992
  end-page: 376
  article-title: Local regression models
  publication-title: Statistical Models in S
– year: 2016
– volume: 9
  start-page: 88
  year: 2018
  end-page: 97
  article-title: Accounting for observer expertise improves ecological inference from citizen science data
  publication-title: Methods in Ecology and Evolution
– volume: 109
  start-page: 991
  year: 2014
  end-page: 1007
  article-title: Estimation and accuracy after model selection
  publication-title: Journal of the American Statistical Association
– volume: 69
  start-page: 170
  year: 2019
  end-page: 179
  article-title: Using semistructured surveys to improve citizen science data for monitoring biodiversity
  publication-title: BioScience
– year: 2012
– volume: 16
  start-page: 187
  year: 1984
  end-page: 260
  article-title: The quadtree and related hierarchical data structures
  publication-title: ACM Computing Surveys (CSUR)
– volume: 16
  start-page: 4
  year: 2013
  end-page: 16
  article-title: The problem of pattern and scale in ecology: what have we learned in 20 years?
  publication-title: Ecology Letters
– volume: 17
  start-page: 145
  year: 2008
  end-page: 151
  article-title: AUC: a misleading measure of the performance of predictive distribution models
  publication-title: Global Ecology and Biogeography
– volume: 35
  start-page: 19
  year: 2014
  end-page: 30
  article-title: Crowdsourcing meets ecology: hemisphere‐wide spatiotemporal species distribution models
  publication-title: AI Magazine
– volume: 27
  start-page: 130
  year: 2012
  end-page: 137
  article-title: Data‐intensive science applied to broad‐scale citizen science
  publication-title: Trends in Ecology & Evolution
– volume: 85
  start-page: 257
  year: 2005
  end-page: 268
  article-title: The kappa statistic in reliability studies: use, interpretation, and sample size requirements
  publication-title: Physical Therapy
– volume: 173
  start-page: 144
  year: 2014
  end-page: 154
  article-title: Statistical solutions for error and bias in global citizen science datasets
  publication-title: Biological Conservation
– volume: 21
  start-page: 1331
  year: 2000
  end-page: 1364
  article-title: Global land cover classification at the 1 km spatial resolution using a classification tree approach
  publication-title: International Journal of Remote Sensing
– volume: 10
  start-page: e0139600
  year: 2015
  article-title: Can observation skills of citizen scientists be estimated using species accumulation curves?
  publication-title: PLoS ONE
– volume: 22
  start-page: 276
  year: 2012
  end-page: 282
  article-title: Interrater reliability: the kappa statistic
  publication-title: Biochemia Medica
– volume: 23
  start-page: 5284
  year: 2017
  end-page: 5296
  article-title: Global change and the distributional dynamics of migratory bird populations wintering in Central America
  publication-title: Global Change Biology
– volume: 221
  start-page: 151
  year: 2018
  end-page: 159
  article-title: Using opportunistic citizen science data to estimate avian population trends
  publication-title: Biological Conservation
– volume: 23
  start-page: 1
  year: 2008
  end-page: 31
  article-title: PresenceAbsence: An R package for presence‐absence model analysis
  publication-title: Journal of Statistical Software
– volume: 9
  start-page: e95565
  year: 2014
  article-title: Acoustic telemetry validates a citizen science approach for monitoring sharks on coral reefs
  publication-title: PLoS ONE
– year: 2017
– volume: 17
  start-page: 841
  year: 2016
  end-page: 881
  article-title: Quantifying uncertainty in random forests via confidence intervals and hypothesis tests
  publication-title: Journal of Machine Learning Research
– volume: 113
  start-page: 1228
  year: 2018
  end-page: 1242
  article-title: Estimation and inference of heterogeneous treatment effects using random forests
  publication-title: Journal of the American Statistical Association
– year: 2013
– ident: e_1_2_7_38_1
  doi: 10.1371/journal.pone.0139600
– volume-title: R: A language and environment for statistical computing
  year: 2017
  ident: e_1_2_7_55_1
– ident: e_1_2_7_77_1
  doi: 10.1111/ddi.12428
– ident: e_1_2_7_46_1
  doi: 10.2307/2529310
– volume: 2
  start-page: 309
  year: 1992
  ident: e_1_2_7_11_1
  article-title: Local regression models
  publication-title: Statistical Models in S
– ident: e_1_2_7_56_1
– ident: e_1_2_7_64_1
  doi: 10.1525/auk.2010.09220
– ident: e_1_2_7_44_1
  doi: 10.1073/pnas.1718985115
– ident: e_1_2_7_73_1
  doi: 10.1371/journal.pone.0095565
– ident: e_1_2_7_32_1
  doi: 10.1016/j.biocon.2018.02.027
– ident: e_1_2_7_59_1
  doi: 10.1126/science.aac9180
– ident: e_1_2_7_68_1
  doi: 10.1016/j.biocon.2013.11.003
– ident: e_1_2_7_17_1
– ident: e_1_2_7_42_1
  doi: 10.1093/oxfordjournals.pan.a004868
– ident: e_1_2_7_70_1
  doi: 10.1111/j.1469-185X.2011.00216.x
– ident: e_1_2_7_35_1
  doi: 10.1890/14-1826.1
– volume-title: Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS: Volume 1: Prelude and Static Models
  year: 2015
  ident: e_1_2_7_40_1
– ident: e_1_2_7_43_1
  doi: 10.1111/brv.12359
– ident: e_1_2_7_22_1
  doi: 10.1609/aimag.v35i2.2533
– volume: 17
  start-page: 841
  year: 2016
  ident: e_1_2_7_53_1
  article-title: Quantifying uncertainty in random forests via confidence intervals and hypothesis tests
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_7_67_1
  doi: 10.1016/j.biocon.2009.05.006
– ident: e_1_2_7_9_1
  doi: 10.1111/ele.12048
– ident: e_1_2_7_12_1
  doi: 10.1177/001316446002000104
– start-page: 574392
  year: 2019
  ident: e_1_2_7_37_1
  article-title: Best practices for making reliable inferences from citizen science data: case study using eBird to estimate species distributions
  publication-title: bioRxiv
– ident: e_1_2_7_57_1
  doi: 10.1111/ecog.02881
– ident: e_1_2_7_76_1
  doi: 10.1145/2934664
– ident: e_1_2_7_19_1
  doi: 10.1017/S0376892997000088
– ident: e_1_2_7_27_1
  doi: 10.1016/j.rse.2009.08.016
– ident: e_1_2_7_5_1
  doi: 10.1371/journal.pone.0081867
– ident: e_1_2_7_54_1
  doi: 10.1016/j.biocon.2015.06.009
– ident: e_1_2_7_63_1
  doi: 10.1111/ecog.01034
– ident: e_1_2_7_10_1
  doi: 10.1016/j.biocon.2016.09.004
– ident: e_1_2_7_45_1
  doi: 10.1111/gcb.13794
– volume-title: The birds of North America
  year: 2011
  ident: e_1_2_7_18_1
– ident: e_1_2_7_36_1
  doi: 10.1111/2041-210X.12838
– ident: e_1_2_7_3_1
  doi: 10.1002/eap.1918
– ident: e_1_2_7_4_1
  doi: 10.1016/j.biocon.2013.07.037
– ident: e_1_2_7_65_1
– ident: e_1_2_7_13_1
  doi: 10.1111/cobi.12956
– ident: e_1_2_7_16_1
  doi: 10.1080/01621459.2013.823775
– ident: e_1_2_7_30_1
  doi: 10.1890/130017
– ident: e_1_2_7_34_1
  doi: 10.1038/s41559-019-0826-1
– ident: e_1_2_7_58_1
  doi: 10.1111/ddi.12698
– ident: e_1_2_7_49_1
  doi: 10.1098/rsbl.2015.0552
– ident: e_1_2_7_33_1
  doi: 10.1146/annurev-ecolsys-112414-054400
– ident: e_1_2_7_71_1
  doi: 10.1073/pnas.1708574114
– ident: e_1_2_7_52_1
  doi: 10.1002/ecs2.2707
– ident: e_1_2_7_51_1
  doi: 10.11613/BM.2012.031
– ident: e_1_2_7_66_1
  doi: 10.1093/ptj/85.3.257
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1365-2699.2010.02345.x
– ident: e_1_2_7_14_1
  doi: 10.1146/annurev-ecolsys-102209-144636
– ident: e_1_2_7_8_1
  doi: 10.1016/j.biocon.2013.12.020
– ident: e_1_2_7_74_1
  doi: 10.1080/01621459.2017.1319839
– ident: e_1_2_7_2_1
  doi: 10.1038/sdata.2018.40
– ident: e_1_2_7_28_1
  doi: 10.1080/014311600210209
– ident: e_1_2_7_47_1
  doi: 10.2307/1941447
– ident: e_1_2_7_48_1
  doi: 10.1111/j.1466-8238.2007.00358.x
– ident: e_1_2_7_62_1
  doi: 10.1145/356924.356930
– ident: e_1_2_7_69_1
  doi: 10.1890/14-1410
– ident: e_1_2_7_21_1
  doi: 10.1609/aaai.v27i1.8484
– ident: e_1_2_7_6_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_7_61_1
  doi: 10.1038/s41598-019-48851-5
– ident: e_1_2_7_39_1
  doi: 10.1093/biosci/biz010
– ident: e_1_2_7_7_1
  doi: 10.1080/01621459.1996.10476660
– ident: e_1_2_7_31_1
  doi: 10.1016/j.tree.2011.11.006
– ident: e_1_2_7_72_1
– ident: e_1_2_7_75_1
  doi: 10.1201/9781315370279
– ident: e_1_2_7_29_1
  doi: 10.1007/978-0-387-84858-7
– ident: e_1_2_7_60_1
  doi: 10.1002/ecy.1967
– ident: e_1_2_7_24_1
  doi: 10.1111/j.2041-210X.2010.00060.x
– ident: e_1_2_7_50_1
– ident: e_1_2_7_25_1
  doi: 10.1214/14-AOS1220
– ident: e_1_2_7_20_1
  doi: 10.1890/09-1340.1
– ident: e_1_2_7_15_1
  doi: 10.1093/auk/124.1.96
– ident: e_1_2_7_23_1
– ident: e_1_2_7_26_1
  doi: 10.18637/jss.v023.i11
SSID ssj0000222
Score 2.6459932
Snippet Information on species’ distributions, abundances, and how they change over time is central to the study of the ecology and conservation of animal populations....
Information on species' distributions, abundances, and how they change over time is central to the study of the ecology and conservation of animal populations....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Abundance
Animal breeding
Animal populations
area of occurrence
biodiversity monitoring
bird distributions
bird migration
birds
Breeding seasons
citizen science
Conservation
Data collection
eBird
full annual cycle
Hylocichla mustelina
Landscape
landscapes
Modelling
Neotropics
population trends
Populations
Seasons
Species
surveys
Trends
Wildlife conservation
Wood Thrush
Title Modeling avian full annual cycle distribution and population trends with citizen science data
URI https://www.jstor.org/stable/26932424
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feap.2056
https://www.ncbi.nlm.nih.gov/pubmed/31837058
https://www.proquest.com/docview/2394540262
https://www.proquest.com/docview/2334696339
https://www.proquest.com/docview/2551954478
https://pubmed.ncbi.nlm.nih.gov/PMC7187145
Volume 30
WOSCitedRecordID wos000506075700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1939-5582
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000222
  issn: 1051-0761
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7apIVe-t7GbRpUKO3JRJZlST6GZpceQlhKU_ZSjF6mC8UJ2U0g-fWdsb3eLk1CIRfboLGxrXl8kkbfAHxUwvlouE6dtjzFeB1SU7gMOySI2oegfbsr7ceRPj42s1k57bMqaS9Mxw8xTLiRZbT-mgzcusX-mjQ0WqKbLNRD2M6y3FDZBiGnay_crSAgfMDhMo7VV8SzXOyv7twIRV024k048990yb9hbBuHJs_u8wXP4WmPPtlBpy4v4EFsXsLjrh7lFV6NfX81Gq83wOENvQdYvIKfVDyNtrAze4maxWj6nnXEpsxf4UNZICrevooWtgR2NtQIY8s2A5fR5C_z8-X8Ojasj8GMclVfw8lk_P3L17Qv0ZB6WeYqRTQotTXB8pLXUWVBWfSuvHAuBPRfvrTWBgQlJsQyC45n1mjjRV5bHJe5OuQj2GpOm7gDTDmEGiLyoLSSJYbJmlZ4BQpxmZUxJPB51VuV7_nLqYzG76pjXhYV_s-K_mcCHwbJs46z4waZUdvhg4BQJWFLmcDuSgOq3pwXFdWPR2grlMBnD81oiLS6Ypt4ekEyuVTozvLyDpmCyHyk1CaBN51SDS9AzlXzAlv0hroNAkQEvtnSzH-1hOCIL3QmiwQ-tep260dX44Mpnd_-r-A7eCJofqHNVNqFreX5RXwPj_zlcr4432sNDo96ZvZg-_Db5OToD5Q9MWA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VAioX3tuGFjASglNUx3HsRJwqtFURy2oPBfWCIsd2xEpVWnW3lcqvZyZOsl1REBKnRPLk6Xl8tsffALxVorI-5zqutOExxmsX51mVYIc4UVvntG13pX2b6Ok0PzkpZhvwod8LE_ghhgk3sozWX5OB04T0_oo11Bvim8zUHbgrMciQkgs5W7nhsISA-AHHyzhY75lnudjvr1yLRSEd8Tag-Xu-5E0c2waiw0f_9QmP4WGHP9lBUJgnsOGbp3A_VKS8xrOx7c5G49UWOLyg8wGLZ_CdyqfRJnZmrlC3GD2MBWpTZq_xpswRGW9XRwtbHDsfqoSxZZuDy2j6l9n5cv7TN6yLwoyyVZ_D18Px8cejuCvSEFtZpCpGPCi1yZ3hBa-9Spwy6F95VlXOoQezhTHGISzJnS8SV_HE5Dq3Iq0Njsyq2qUj2GzOGr8DTFUINoTnTmklCwyUNa3xChTiMim8i-B9312l7RjMqZDGaRm4l0WJ_7Ok_xnBm0HyPLB23CIzant8EBCqIHQpI9jrVaDsDHpRUgV5BLdCCbz30IymSOsrpvFnlySTSoUOLS3-IpMRnY-UOo9gO2jV8ALkXjXPsEWv6dsgQFTg6y3N_EdLCY4IQycyi-Bdq29__OhyfDCj44t_FXwNW0fHXybl5NP08y48EDTb0OYt7cHm8uLSv4R79mo5X1y8aq3vF_DlMsM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6dCt72Xdar92mwdieTGVZlmz2VNaEjYUQxjr6MowsySxQ3NCkhe6v352_0rBuDPZkg87Gsu7jJ-n0O4A3ShTWp1yHhTY8xHjtwjQpIhwQJ0rrnLb1qbRvEz2dpqen2WwL3ndnYRp-iH7BjSyj9tdk4H7hysM1a6g3xDeZqDuwLamGzAC2j7-MTyZrR9xsIiCCwBkzTtc77lkuDrtnN6JRk5B4G9T8PWPyJpKtQ9H44X914hE8aBEoO2pU5jFs-eoJ3GtqUl7j3ci2d8PR-hAcPtB6geVT-E4F1OgYOzNXqF2MlvBZQ27K7DW-lDmi420raWGLY4u-Thhb1Vm4jBaAmZ2v5j99xdo4zChf9RmcjEdfP3wM2zINoZVZrEJEhFKb1Bme8dKryCmDHpYnReEc-jCbGWMcApPU-SxyBY9MqlMr4tLg3KwoXTyEQXVe-T1gqkC4ITx3SiuZYagsaZdXoBCXUeZdAO-64cpty2FOpTTO8oZ9WeT4P3P6nwG87iUXDW_HLTLDesR7AaEywpcygINOBfLWpJc51ZBHeCuUwHf3zWiMtMNiKn9-STKxVOjS4uwvMgkR-kip0wB2G63qP4AcrOYJtugNfesFiAx8s6Wa_6hJwRFj6EgmAbyt9e2Pnc5HRzO6Pv9XwVewMzse55NP08_7cF_QckOduHQAg9XFpX8Bd-3Var68eNma3y--pDPZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+avian+full+annual+cycle+distribution+and+population+trends+with+citizen+science+data&rft.jtitle=Ecological+applications&rft.au=Fink%2C+Daniel&rft.au=Auer%2C+Tom&rft.au=Johnston%2C+Alison&rft.au=Ruiz-Gutierrez%2C+Viviana&rft.date=2020-04-01&rft.pub=John+Wiley+and+Sons%2C+Inc&rft.issn=1051-0761&rft.eissn=1939-5582&rft.volume=30&rft.issue=3&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1002%2Feap.2056&rft.externalDocID=26932424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-0761&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-0761&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-0761&client=summon