Mine water inflow prediction model based on variational mode decomposition and gated recurrent units optimized by improved chimp optimization algorithm

Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction mo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 4378 - 18
Hlavní autori: Chen, Juntao, Fan, Mingjin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 05.02.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction model by selecting and improving it according to the previous research results in decomposition method, time series prediction model and optimization algorithm. After processing the raw data and setting the model parameters, MAE, RMSE, MAPE and R 2 are selected as the evaluation indexes of prediction accuracy, and VMD-GRU model, iCHOA-GRU model, CHOA-GRU model and GRU model are selected as the comparison models to validate the advantages of the VMD-iCHOA-GRU model in the prediction of mine inrush water. The results show that the VMD-iCHOA-GRU model has the best prediction effect on the trend of water inflow, with the evaluation index values of 0.00862, 0.01059, 0.02189%, 0.87079, respectively, and with the smallest MAE, RMSE, MAPE, and the largest R 2 , and the highest prediction accuracy of the VMD-iCHOA-GRU model.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-82580-8