Mine water inflow prediction model based on variational mode decomposition and gated recurrent units optimized by improved chimp optimization algorithm

Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction mo...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 4378 - 18
Main Authors: Chen, Juntao, Fan, Mingjin
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 05.02.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction model by selecting and improving it according to the previous research results in decomposition method, time series prediction model and optimization algorithm. After processing the raw data and setting the model parameters, MAE, RMSE, MAPE and R 2 are selected as the evaluation indexes of prediction accuracy, and VMD-GRU model, iCHOA-GRU model, CHOA-GRU model and GRU model are selected as the comparison models to validate the advantages of the VMD-iCHOA-GRU model in the prediction of mine inrush water. The results show that the VMD-iCHOA-GRU model has the best prediction effect on the trend of water inflow, with the evaluation index values of 0.00862, 0.01059, 0.02189%, 0.87079, respectively, and with the smallest MAE, RMSE, MAPE, and the largest R 2 , and the highest prediction accuracy of the VMD-iCHOA-GRU model.
AbstractList Abstract Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction model by selecting and improving it according to the previous research results in decomposition method, time series prediction model and optimization algorithm. After processing the raw data and setting the model parameters, MAE, RMSE, MAPE and R2 are selected as the evaluation indexes of prediction accuracy, and VMD-GRU model, iCHOA-GRU model, CHOA-GRU model and GRU model are selected as the comparison models to validate the advantages of the VMD-iCHOA-GRU model in the prediction of mine inrush water. The results show that the VMD-iCHOA-GRU model has the best prediction effect on the trend of water inflow, with the evaluation index values of 0.00862, 0.01059, 0.02189%, 0.87079, respectively, and with the smallest MAE, RMSE, MAPE, and the largest R2, and the highest prediction accuracy of the VMD-iCHOA-GRU model.
Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction model by selecting and improving it according to the previous research results in decomposition method, time series prediction model and optimization algorithm. After processing the raw data and setting the model parameters, MAE, RMSE, MAPE and R2 are selected as the evaluation indexes of prediction accuracy, and VMD-GRU model, iCHOA-GRU model, CHOA-GRU model and GRU model are selected as the comparison models to validate the advantages of the VMD-iCHOA-GRU model in the prediction of mine inrush water. The results show that the VMD-iCHOA-GRU model has the best prediction effect on the trend of water inflow, with the evaluation index values of 0.00862, 0.01059, 0.02189%, 0.87079, respectively, and with the smallest MAE, RMSE, MAPE, and the largest R2, and the highest prediction accuracy of the VMD-iCHOA-GRU model.Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction model by selecting and improving it according to the previous research results in decomposition method, time series prediction model and optimization algorithm. After processing the raw data and setting the model parameters, MAE, RMSE, MAPE and R2 are selected as the evaluation indexes of prediction accuracy, and VMD-GRU model, iCHOA-GRU model, CHOA-GRU model and GRU model are selected as the comparison models to validate the advantages of the VMD-iCHOA-GRU model in the prediction of mine inrush water. The results show that the VMD-iCHOA-GRU model has the best prediction effect on the trend of water inflow, with the evaluation index values of 0.00862, 0.01059, 0.02189%, 0.87079, respectively, and with the smallest MAE, RMSE, MAPE, and the largest R2, and the highest prediction accuracy of the VMD-iCHOA-GRU model.
Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction model by selecting and improving it according to the previous research results in decomposition method, time series prediction model and optimization algorithm. After processing the raw data and setting the model parameters, MAE, RMSE, MAPE and R 2 are selected as the evaluation indexes of prediction accuracy, and VMD-GRU model, iCHOA-GRU model, CHOA-GRU model and GRU model are selected as the comparison models to validate the advantages of the VMD-iCHOA-GRU model in the prediction of mine inrush water. The results show that the VMD-iCHOA-GRU model has the best prediction effect on the trend of water inflow, with the evaluation index values of 0.00862, 0.01059, 0.02189%, 0.87079, respectively, and with the smallest MAE, RMSE, MAPE, and the largest R 2 , and the highest prediction accuracy of the VMD-iCHOA-GRU model.
Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction model by selecting and improving it according to the previous research results in decomposition method, time series prediction model and optimization algorithm. After processing the raw data and setting the model parameters, MAE, RMSE, MAPE and R2 are selected as the evaluation indexes of prediction accuracy, and VMD-GRU model, iCHOA-GRU model, CHOA-GRU model and GRU model are selected as the comparison models to validate the advantages of the VMD-iCHOA-GRU model in the prediction of mine inrush water. The results show that the VMD-iCHOA-GRU model has the best prediction effect on the trend of water inflow, with the evaluation index values of 0.00862, 0.01059, 0.02189%, 0.87079, respectively, and with the smallest MAE, RMSE, MAPE, and the largest R2, and the highest prediction accuracy of the VMD-iCHOA-GRU model.
Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction model by selecting and improving it according to the previous research results in decomposition method, time series prediction model and optimization algorithm. After processing the raw data and setting the model parameters, MAE, RMSE, MAPE and R are selected as the evaluation indexes of prediction accuracy, and VMD-GRU model, iCHOA-GRU model, CHOA-GRU model and GRU model are selected as the comparison models to validate the advantages of the VMD-iCHOA-GRU model in the prediction of mine inrush water. The results show that the VMD-iCHOA-GRU model has the best prediction effect on the trend of water inflow, with the evaluation index values of 0.00862, 0.01059, 0.02189%, 0.87079, respectively, and with the smallest MAE, RMSE, MAPE, and the largest R , and the highest prediction accuracy of the VMD-iCHOA-GRU model.
ArticleNumber 4378
Author Fan, Mingjin
Chen, Juntao
Author_xml – sequence: 1
  givenname: Juntao
  orcidid: 0000-0002-7507-0981
  surname: Chen
  fullname: Chen, Juntao
  organization: College of Energy and Mining Engineering, Shandong University of Science and Technology, National Demonstration Centre for Experimental Mining Engineering Education, Shandong University of Science and Technology
– sequence: 2
  givenname: Mingjin
  orcidid: 0009-0002-7691-1786
  surname: Fan
  fullname: Fan, Mingjin
  email: 15216335378@163.com
  organization: College of Energy and Mining Engineering, Shandong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39910099$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNUREvpC7BAltiwCTi-JPYKoYpLpSI2sLZ8y4xHiR3sZKryIrwup5O2tCzIJsf-v_P7OPmfV0cxRV9VLxv8tsFUvCus4VLUmLBaEC5wLZ5UJwQzXhNKyNGD-rg6K2WH4eFEskY-q46plA3GUp5Uv7-G6NGVnn1GIfZDukJT9i7YOaSIxuT8gIwu3iFY7nUO-kbQw0FCzts0TqmEA62jQxtwcih7u-Ts44yWGOaC0jSHMfwCxVyjME457aG2WyjvNL1aDJuUw7wdX1RPez0Uf3b7Pq1-fPr4_fxLffnt88X5h8vaMknmuufMG9NjzXHLpTGUya7jljHjYEE7uHNLNTa6xz3jRHPvYJcJLF0redfT0-pi9XVJ79SUw6jztUo6qMNGyhul8xzs4BWWRFhtCBG9YK2jpu2MgW9PjemoFS14vV-9psWM3lm4f9bDI9PHSgxbtUl71TSdlIxgcHhz65DTz8WXWY2hWD8MOvq0FEWbloqWs1YC-vofdJeWDH9mpVrKYF6gXj0c6X6WuwAAQFbA5lRK9v090mB1EzS1Bk1B0NQhaEpAE12bCsBx4_Pfs__T9QdtadjF
Cites_doi 10.1016/j.engappai.2024.108103
10.1016/j.apenergy.2021.118438
10.1016/j.ins.2020.05.090
10.1109/TGRS.2024.3452937
10.1016/j.scitotenv.2020.137290
10.1371/journal.pone.0308474
10.1016/j.ijmst.2022.04.001
10.1016/j.jclepro.2023.138557
10.1038/s41598-021-82121-7
10.1016/j.jclepro.2023.140411
10.1016/j.eswa.2024.123171
10.1016/j.jhydrol.2024.130725
10.1109/JIOT.2019.2937110
10.1016/j.asoc.2023.111181
10.1016/j.jhydrol.2023.129319
10.3390/s22124628
10.1016/j.eswa.2020.113338
10.11834/jrs.20221408
10.1016/j.ecolind.2021.107975
10.1016/j.imavis.2024.104918
10.1016/j.jacc.2024.03.056
10.1073/pnas.2310012121
10.1016/j.compgeo.2024.106106
10.1109/TSP.2013.2288675
10.1016/j.autcon.2024.105297
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-82580-8
DatabaseName Open Access资源_Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 18
ExternalDocumentID oai_doaj_org_article_0928cab228f846d3b67bb8253bb73c86
PMC11799420
39910099
10_1038_s41598_024_82580_8
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2022ME140; ZR2022ME140
  funderid: http://dx.doi.org/10.13039/501100007129
– fundername: National Natural Science Foundation of China
  grantid: 52104203
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Project of State Key Laboratory of Efficient Mining and Clean Utilization of Coal Resources
  grantid: 2021-CMCU-KF015
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2022ME140
– fundername: National Natural Science Foundation of China
  grantid: 52104203
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c492t-f54ebbf0a50659bb349775c44bdbb33700563a0baf0f452a5ed3374809d6957f3
IEDL.DBID M7P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001415468600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:36:46 EDT 2025
Tue Nov 04 02:05:16 EST 2025
Sun Nov 09 11:43:58 EST 2025
Tue Oct 07 07:37:32 EDT 2025
Mon Jul 21 05:32:29 EDT 2025
Sat Nov 29 03:22:31 EST 2025
Mon Jul 21 06:08:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Water damage accidents
Variational mode decomposition
Gated recurrent units
Improved chimp optimization algorithm
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-f54ebbf0a50659bb349775c44bdbb33700563a0baf0f452a5ed3374809d6957f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0002-7691-1786
0000-0002-7507-0981
OpenAccessLink https://www.proquest.com/docview/3163634092?pq-origsite=%requestingapplication%
PMID 39910099
PQID 3163634092
PQPubID 2041939
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_0928cab228f846d3b67bb8253bb73c86
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11799420
proquest_miscellaneous_3163865469
proquest_journals_3163634092
pubmed_primary_39910099
crossref_primary_10_1038_s41598_024_82580_8
springer_journals_10_1038_s41598_024_82580_8
PublicationCentury 2000
PublicationDate 2025-02-05
PublicationDateYYYYMMDD 2025-02-05
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References YF Zeng (82580_CR11) 2023; 51
YQ Zhang (82580_CR23) 2024; 83
SQ Meng (82580_CR29) 2024; 167
JL Li (82580_CR33) 2022; 50
YK Yang (82580_CR3) 2024; 436
WQ Zhang (82580_CR8) 2023; 422
YP Song (82580_CR17) 2024; 246
ZL Li (82580_CR31) 2021; 47
JT Chen (82580_CR2) 2024; 52
YY Chen (82580_CR28) 2024; 152
J Yang (82580_CR40) 2020; 540
Q Wu (82580_CR7) 2021; 11
S Ge (82580_CR22) 2023; 27
G Zhou (82580_CR39) 2022; 22
KM Islam (82580_CR26) 2024; 142
C Feng (82580_CR18) 2022; 310
SN Dong (82580_CR14) 2022; 40
82580_CR21
82580_CR43
YF Zeng (82580_CR4) 2023; 48
YF Zeng (82580_CR5) 2024; 630
K Dragomiretskiy (82580_CR42) 2014; 62
G Sun (82580_CR37) 2020; 7
W Jin (82580_CR38) 2024; 80
SX Yin (82580_CR13) 2023; 51
Z Wang (82580_CR19) 2021; 129
MY Liang (82580_CR30) 2023; 54
EK Hou (82580_CR35) 2023; 23
SM Wang (82580_CR1) 2023; 48
H Liu (82580_CR32) 2023; 51
YF Zeng (82580_CR10) 2023; 619
G Tejasree (82580_CR27) 2024; 27
YF Zeng (82580_CR15) 2022; 47
H Yin (82580_CR36) 2024; 62
YX Zhang (82580_CR24) 2024; 133
Q He (82580_CR44) 2023; 38
S Matarneh (82580_CR25) 2024; 160
JT Chen (82580_CR9) 2023; 51
JH Liu (82580_CR12) 2022; 32
S Ryali (82580_CR16) 2024; 121
N Mashru (82580_CR41) 2024; 19
YF Zeng (82580_CR6) 2023; 51
A Gribov (82580_CR20) 2020; 722
F Wang (82580_CR34) 2022; 44
References_xml – volume: 133
  start-page: 108103
  year: 2024
  ident: 82580_CR24
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108103
– volume: 310
  year: 2022
  ident: 82580_CR18
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118438
– volume: 80
  start-page: 3523
  issue: 3
  year: 2024
  ident: 82580_CR38
  publication-title: Comput. Mater. Contin.
– volume: 540
  start-page: 117
  year: 2020
  ident: 82580_CR40
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.05.090
– volume: 62
  start-page: 4510417
  year: 2024
  ident: 82580_CR36
  publication-title: IEEE Trans. Geosci. Remote Sens
  doi: 10.1109/TGRS.2024.3452937
– volume: 44
  start-page: 143
  issue: 3
  year: 2022
  ident: 82580_CR34
  publication-title: Mining Res. Dev.
– volume: 48
  start-page: 2599
  issue: 7
  year: 2023
  ident: 82580_CR1
  publication-title: J. China Coal. Soc.
– volume: 722
  year: 2020
  ident: 82580_CR20
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137290
– volume: 52
  start-page: 189
  issue: 3
  year: 2024
  ident: 82580_CR2
  publication-title: Coal. Sci. Technol.
– volume: 19
  issue: 8
  year: 2024
  ident: 82580_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0308474
– volume: 47
  start-page: 904
  issue: 8
  year: 2021
  ident: 82580_CR31
  publication-title: J. Beijing Univ. Technol.
– volume: 32
  start-page: 513
  issue: 3
  year: 2022
  ident: 82580_CR12
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2022.04.001
– volume: 50
  start-page: 149
  issue: 4
  year: 2022
  ident: 82580_CR33
  publication-title: Coal. Sci. Technol.
– volume: 54
  start-page: 56
  issue: 5
  year: 2023
  ident: 82580_CR30
  publication-title: Saf. Coal. Mines
– volume: 422
  year: 2023
  ident: 82580_CR8
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2023.138557
– volume: 11
  start-page: 2621
  issue: 1
  year: 2021
  ident: 82580_CR7
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-82121-7
– volume: 51
  start-page: 24
  issue: 7
  year: 2023
  ident: 82580_CR13
  publication-title: Coal Sci. Technol.
– volume: 436
  year: 2024
  ident: 82580_CR3
  publication-title: J Clean Prod.
  doi: 10.1016/j.jclepro.2023.140411
– volume: 246
  year: 2024
  ident: 82580_CR17
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123171
– volume: 51
  start-page: 13
  issue: 6
  year: 2023
  ident: 82580_CR32
  publication-title: Coal. Geol. Explor.
– volume: 630
  year: 2024
  ident: 82580_CR5
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.130725
– volume: 7
  start-page: 5760
  issue: 7
  year: 2020
  ident: 82580_CR37
  publication-title: IEEE Internet Th. J.
  doi: 10.1109/JIOT.2019.2937110
– volume: 40
  start-page: 1
  issue: 2
  year: 2022
  ident: 82580_CR14
  publication-title: Mine Water Environ.
– volume: 152
  year: 2024
  ident: 82580_CR28
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2023.111181
– volume: 23
  start-page: 12012
  issue: 28
  year: 2023
  ident: 82580_CR35
  publication-title: Sci. Technol. Eng.
– volume: 619
  year: 2023
  ident: 82580_CR10
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129319
– volume: 51
  start-page: 1
  issue: 7
  year: 2023
  ident: 82580_CR6
  publication-title: Coal. Sci. Technol.
– volume: 22
  start-page: 4628
  issue: 12
  year: 2022
  ident: 82580_CR39
  publication-title: Sens
  doi: 10.3390/s22124628
– volume: 51
  start-page: 62
  issue: 10
  year: 2023
  ident: 82580_CR11
  publication-title: Coal. Geol. Explor.
– ident: 82580_CR43
  doi: 10.1016/j.eswa.2020.113338
– volume: 27
  start-page: 2796
  issue: 12
  year: 2023
  ident: 82580_CR22
  publication-title: Natl. Remote Sens Bull.
  doi: 10.11834/jrs.20221408
– volume: 27
  start-page: 52
  issue: 1
  year: 2024
  ident: 82580_CR27
  publication-title: Egpt. J. Remote Sens Space Sci.
– volume: 38
  start-page: 354
  issue: 2
  year: 2023
  ident: 82580_CR44
  publication-title: Control Decis.
– volume: 47
  start-page: 3091
  issue: 8
  year: 2022
  ident: 82580_CR15
  publication-title: J. China Coal. Soc.
– volume: 129
  year: 2021
  ident: 82580_CR19
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2021.107975
– volume: 142
  year: 2024
  ident: 82580_CR26
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2024.104918
– volume: 83
  start-page: S22
  issue: 16S
  year: 2024
  ident: 82580_CR23
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2024.03.056
– volume: 121
  start-page: e2310012121
  issue: 09
  year: 2024
  ident: 82580_CR16
  publication-title: Proc. Natl. Acad. Sci. US A
  doi: 10.1073/pnas.2310012121
– volume: 48
  start-page: 3776
  issue: 10
  year: 2023
  ident: 82580_CR4
  publication-title: J. China Coal. Soc.
– volume: 51
  start-page: 179
  issue: 7
  year: 2023
  ident: 82580_CR9
  publication-title: Coal Sci. Technol.
– volume: 167
  year: 2024
  ident: 82580_CR29
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2024.106106
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 82580_CR42
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– ident: 82580_CR21
– volume: 160
  year: 2024
  ident: 82580_CR25
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2024.105297
SSID ssj0000529419
Score 2.4470792
Snippet Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and...
Abstract Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4378
SubjectTerms 639/166/986
639/705/258
704/2151/241
Accuracy
Algorithms
Coal mining
Decomposition
Gated recurrent units
Humanities and Social Sciences
Improved chimp optimization algorithm
Mine drainage
Mining accidents & safety
multidisciplinary
Optimization algorithms
Prediction models
Science
Science (multidisciplinary)
Variational mode decomposition
Water damage accidents
Water inrush
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAQUbiBlETPxL7CIiKA1QcQOrN8itspDapsrutyh_h7zJjZ5cuD3HhECnZSbKWZ5z57Bl_Q8gLEb2qRWdLD869FB6rAXbal3WQrG0aJ1VMmv7QHh2p42P96UqpL8wJy_TAueMOKs2Ut44x1YGrDNw1rXMwreHOtdyrRLYNqOfKZCqzejMtaj3vkqm4OliCp8LdZEyU8LSqSrXjiRJh_59Q5u_Jkr9ETJMjOrxNbs0Ikr7OLb9DrsXhLrmRa0pe3iPfPwJupBcAIScK1nMyXtCzCaMxqAGaCt9QdF2BwuU5zJTn1cAkoiFijvmcyEXtECguswU64bI8EjnRNXwDlnSEL81p_w0k7pL2aWECzv0CTjcym19x8nWc-tXi9D75cvju89v35Vx9ofRCs1XZSRGd6yorMfTqHBcAFaUXwgW44C2SiHJbOdtVnZDMyhg4ctlUOjRath1_QPaGcYiPCOVaWQV693CIVjoHIERFVofYMfizpiAvN5owZ5lkw6TgOFcm682A3kzSm1EFeYPK2t6JBNnpBzAbM5uN-ZfZFGR_o2ozj9ql4QBOGw4zXlaQ51sxjDcMotghjut8j8IdYLogD7NlbFsCYK9GyF0QtWMzO03dlQz9InF6J2Y-waqCvNqY1892_b0vHv-PvnhCbjKsaoy56HKf7K2mdXxKrvvzVb-cnqWB9QPcJSlD
  priority: 102
  providerName: Directory of Open Access Journals
Title Mine water inflow prediction model based on variational mode decomposition and gated recurrent units optimized by improved chimp optimization algorithm
URI https://link.springer.com/article/10.1038/s41598-024-82580-8
https://www.ncbi.nlm.nih.gov/pubmed/39910099
https://www.proquest.com/docview/3163634092
https://www.proquest.com/docview/3163865469
https://pubmed.ncbi.nlm.nih.gov/PMC11799420
https://doaj.org/article/0928cab228f846d3b67bb8253bb73c86
Volume 15
WOSCitedRecordID wos001415468600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSRe-B4ERmUk3iBaajuJ84QY2gQSrSIEUnmK4o-slbakpO2m8Y_w73LnpJ3K1wsPjZJclNj9nX3nu_MdwEvpjBrKqgwNCvdQGqoGWGUmHNqYp0miY-U80h_T8VhNJlneG9wWfVjlek70E7VtDNnIDwUqDonA1Qh_M_8WUtUo8q72JTR2YI-yJAgfupdvbCzkxZLDrN8rEwl1uEB5RXvKuAxxaaSiUG3JI5-2_0-65u8hk7_4Tb04Orn7vx25B3d6RZS97TjnPtxw9QO41ZWmvHoIP0aofrJL1ERbhkx41lyyeUtOHQKS-fo5jCSgZXh5gQvu3qjoScw6ClXv48FYWVtG1jrLWrLuUz4otsKpZMEanLDOZ9-Roq_YzNs38NxM8XRNK7tXnJ1iH5bT80fw5eT487v3YV_EITQy48uwiqXTuorKmDy4WguJGmdspNQWL0RKuUhFGemyiioZ8zJ2VlBKnCizSRanldiH3bqp3RNgIlOlQvYx-JNprDXqMsrxoXUVx48lAbxaQ1nMu1wdhfexC1V0wBcIfOGBL1QAR4T25knKs-1vNO1p0Q_bAlFSptScqwoVNSt0kmqNLxBap8Io_OTBGuSiH_yL4hrhAF5syDhsyRdT1q5Zdc8o2kiWBfC4Y61NS1BnHJLmHoDaYrqtpm5T6tnUpwb3Cf4kjwJ4vebP63b9_b94-u9uPIPbnMoeU7B6fAC7y3blnsNNc7GcLdoB7KST1B_VAPaOjsf5p4E3beBxxPOBH5NIyT-M8q8_AUHRPok
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGFNzRQwEhwgqhZ20mcA0K8qlbdrnooUm_Br3RXapNtdrer5Y_wL_iNzDjJVsvr1gOHSEkmchznm4c94xlCXgpnZE8UKjSg3ENhsBpgkZmwZ2OWJomOpfN_up8OBvLoKDtYIz-6vTAYVtnJRC-obWVwjXyLg-GQcJiNsHfjsxCrRqF3tSuh0cBizy3mMGWbvN39BP_3FWPbnw8_7oRtVYHQiIxNwyIWTusiUjG6FLXmAkyg2AihLVzwFJNjchVpVUSFiJmKneWYoyXKbJLFacGh3SvkKpgRTPpQwYPlmg56zUQva_fmRFxuTUA_4h42JkKYiskolCv6z5cJ-JNt-3uI5i9-Wq_-tm__bwN3h9xqDW36vuGMu2TNlffI9ab05uI--b4P5jWdg6VdU2Cyk2pOxzU6rRCo1NcHoqjhLYXLc1WP2kVTT6LWYSh-G-9GVWkprkZaWqP3AvNd0RmIygmtQCCfjr4BRS_oyK_fwLkZwmlHU00TJ8cwZtPh6QPy5VJG5SFZL6vSbRDKM6kksIeBQ6Sx1mCrScd61hUMXpYE5HUHnXzc5CLJfQwBl3kDtByAlnug5TIgHxBdyycxj7i_UdXHeSuWckCFNEozJgswRC3XSao1NMC1TrmR8MrNDlR5K9wm-QWiAvJiSQaxhL4mVbpq1jwjcaNcFpBHDZSXPQGbuIczk4DIFZCvdHWVUo6GPvW5T2AoWBSQNx0_XPTr72Px-N-f8Zzc2Dnc7-f93cHeE3KTYYlnDMyPN8n6tJ65p-SaOZ-OJvUzz--UfL1sPvkJP9eTkw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaW5SEuvB-BBYwEJ4ia2k7iHBAClorVLlUPIO0t-JVtpd2kpO1W5Y_wX_h1zDhJV-V12wOHSEkmchznm4c94xlCnglnZF8UKjSg3ENhsBpgkZmwb2OWJomOpfN_-iAdDuXhYTbaIj-6vTAYVtnJRC-obWVwjbzHwXBIOMxGWK9owyJGu4PX068hVpBCT2tXTqOByL5bLWH6Nnu1twv_-jljg_ef3n0I2woDoREZm4dFLJzWRaRidC9qzQWYQ7ERQlu44CkmyuQq0qqIChEzFTvLMV9LlNkki9OCQ7sXyMUUk5b7sMHRen0HPWiin7X7dCIuezPQlbifjYkQpmUyCuWGLvQlA_5k5_4ervmLz9arwsH1_3kQb5BrrQFO3zQcc5NsufIWudyU5FzdJt8_gtlNl2CB1xSY77ha0mmNziwEMPV1gyhqfkvh8lTVk3Yx1ZOodRii38bBUVVaiquUltbo1cA8WHQBInRGKxDUJ5NvQNErOvHrOnBuxnDa0VTTxPERjNl8fHKHfD6XUblLtsuqdPcJ5ZlUEtjGwCHSWGuw4aRjfesKBi9LAvKig1E-bXKU5D62gMu8AV0OoMs96HIZkLeItPWTmF_c36jqo7wVVzkgRBqlGZMFGKiW6yTVGhrgWqfcSHjlTgewvBV6s_wMXQF5uiaDuEIflCpdtWiekbiBLgvIvQbW656ArdzHGUtA5AbgN7q6SSknY58S3Sc2FCwKyMuON8769fexePDvz3hCrgB75Ad7w_2H5CrDys8Yrx_vkO15vXCPyCVzOp_M6see9Sn5ct5s8hOgGZxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mine+water+inflow+prediction+model+based+on+variational+mode+decomposition+and+gated+recurrent+units+optimized+by+improved+chimp+optimization+algorithm&rft.jtitle=Scientific+reports&rft.au=Chen%2C+Juntao&rft.au=Fan%2C+Mingjin&rft.date=2025-02-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-82580-8&rft.externalDocID=10_1038_s41598_024_82580_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon