Mine water inflow prediction model based on variational mode decomposition and gated recurrent units optimized by improved chimp optimization algorithm
Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction mo...
Uložené v:
| Vydané v: | Scientific reports Ročník 15; číslo 1; s. 4378 - 18 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
05.02.2025
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction model by selecting and improving it according to the previous research results in decomposition method, time series prediction model and optimization algorithm. After processing the raw data and setting the model parameters, MAE, RMSE, MAPE and R
2
are selected as the evaluation indexes of prediction accuracy, and VMD-GRU model, iCHOA-GRU model, CHOA-GRU model and GRU model are selected as the comparison models to validate the advantages of the VMD-iCHOA-GRU model in the prediction of mine inrush water. The results show that the VMD-iCHOA-GRU model has the best prediction effect on the trend of water inflow, with the evaluation index values of 0.00862, 0.01059, 0.02189%, 0.87079, respectively, and with the smallest MAE, RMSE, MAPE, and the largest R
2
, and the highest prediction accuracy of the VMD-iCHOA-GRU model. |
|---|---|
| AbstractList | Abstract Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction model by selecting and improving it according to the previous research results in decomposition method, time series prediction model and optimization algorithm. After processing the raw data and setting the model parameters, MAE, RMSE, MAPE and R2 are selected as the evaluation indexes of prediction accuracy, and VMD-GRU model, iCHOA-GRU model, CHOA-GRU model and GRU model are selected as the comparison models to validate the advantages of the VMD-iCHOA-GRU model in the prediction of mine inrush water. The results show that the VMD-iCHOA-GRU model has the best prediction effect on the trend of water inflow, with the evaluation index values of 0.00862, 0.01059, 0.02189%, 0.87079, respectively, and with the smallest MAE, RMSE, MAPE, and the largest R2, and the highest prediction accuracy of the VMD-iCHOA-GRU model. Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction model by selecting and improving it according to the previous research results in decomposition method, time series prediction model and optimization algorithm. After processing the raw data and setting the model parameters, MAE, RMSE, MAPE and R2 are selected as the evaluation indexes of prediction accuracy, and VMD-GRU model, iCHOA-GRU model, CHOA-GRU model and GRU model are selected as the comparison models to validate the advantages of the VMD-iCHOA-GRU model in the prediction of mine inrush water. The results show that the VMD-iCHOA-GRU model has the best prediction effect on the trend of water inflow, with the evaluation index values of 0.00862, 0.01059, 0.02189%, 0.87079, respectively, and with the smallest MAE, RMSE, MAPE, and the largest R2, and the highest prediction accuracy of the VMD-iCHOA-GRU model.Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction model by selecting and improving it according to the previous research results in decomposition method, time series prediction model and optimization algorithm. After processing the raw data and setting the model parameters, MAE, RMSE, MAPE and R2 are selected as the evaluation indexes of prediction accuracy, and VMD-GRU model, iCHOA-GRU model, CHOA-GRU model and GRU model are selected as the comparison models to validate the advantages of the VMD-iCHOA-GRU model in the prediction of mine inrush water. The results show that the VMD-iCHOA-GRU model has the best prediction effect on the trend of water inflow, with the evaluation index values of 0.00862, 0.01059, 0.02189%, 0.87079, respectively, and with the smallest MAE, RMSE, MAPE, and the largest R2, and the highest prediction accuracy of the VMD-iCHOA-GRU model. Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction model by selecting and improving it according to the previous research results in decomposition method, time series prediction model and optimization algorithm. After processing the raw data and setting the model parameters, MAE, RMSE, MAPE and R 2 are selected as the evaluation indexes of prediction accuracy, and VMD-GRU model, iCHOA-GRU model, CHOA-GRU model and GRU model are selected as the comparison models to validate the advantages of the VMD-iCHOA-GRU model in the prediction of mine inrush water. The results show that the VMD-iCHOA-GRU model has the best prediction effect on the trend of water inflow, with the evaluation index values of 0.00862, 0.01059, 0.02189%, 0.87079, respectively, and with the smallest MAE, RMSE, MAPE, and the largest R 2 , and the highest prediction accuracy of the VMD-iCHOA-GRU model. Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction model by selecting and improving it according to the previous research results in decomposition method, time series prediction model and optimization algorithm. After processing the raw data and setting the model parameters, MAE, RMSE, MAPE and R2 are selected as the evaluation indexes of prediction accuracy, and VMD-GRU model, iCHOA-GRU model, CHOA-GRU model and GRU model are selected as the comparison models to validate the advantages of the VMD-iCHOA-GRU model in the prediction of mine inrush water. The results show that the VMD-iCHOA-GRU model has the best prediction effect on the trend of water inflow, with the evaluation index values of 0.00862, 0.01059, 0.02189%, 0.87079, respectively, and with the smallest MAE, RMSE, MAPE, and the largest R2, and the highest prediction accuracy of the VMD-iCHOA-GRU model. Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and efficient mining of coal resources. To improve the accuracy of mine water prediction, this paper proposes the VMD-iCHOA-GRU mine water prediction model by selecting and improving it according to the previous research results in decomposition method, time series prediction model and optimization algorithm. After processing the raw data and setting the model parameters, MAE, RMSE, MAPE and R are selected as the evaluation indexes of prediction accuracy, and VMD-GRU model, iCHOA-GRU model, CHOA-GRU model and GRU model are selected as the comparison models to validate the advantages of the VMD-iCHOA-GRU model in the prediction of mine inrush water. The results show that the VMD-iCHOA-GRU model has the best prediction effect on the trend of water inflow, with the evaluation index values of 0.00862, 0.01059, 0.02189%, 0.87079, respectively, and with the smallest MAE, RMSE, MAPE, and the largest R , and the highest prediction accuracy of the VMD-iCHOA-GRU model. |
| ArticleNumber | 4378 |
| Author | Fan, Mingjin Chen, Juntao |
| Author_xml | – sequence: 1 givenname: Juntao orcidid: 0000-0002-7507-0981 surname: Chen fullname: Chen, Juntao organization: College of Energy and Mining Engineering, Shandong University of Science and Technology, National Demonstration Centre for Experimental Mining Engineering Education, Shandong University of Science and Technology – sequence: 2 givenname: Mingjin orcidid: 0009-0002-7691-1786 surname: Fan fullname: Fan, Mingjin email: 15216335378@163.com organization: College of Energy and Mining Engineering, Shandong University of Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39910099$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1DAUhiNUREvpC7BAltiwCTi-JPYKoYpLpSI2sLZ8y4xHiR3sZKryIrwup5O2tCzIJsf-v_P7OPmfV0cxRV9VLxv8tsFUvCus4VLUmLBaEC5wLZ5UJwQzXhNKyNGD-rg6K2WH4eFEskY-q46plA3GUp5Uv7-G6NGVnn1GIfZDukJT9i7YOaSIxuT8gIwu3iFY7nUO-kbQw0FCzts0TqmEA62jQxtwcih7u-Ts44yWGOaC0jSHMfwCxVyjME457aG2WyjvNL1aDJuUw7wdX1RPez0Uf3b7Pq1-fPr4_fxLffnt88X5h8vaMknmuufMG9NjzXHLpTGUya7jljHjYEE7uHNLNTa6xz3jRHPvYJcJLF0redfT0-pi9XVJ79SUw6jztUo6qMNGyhul8xzs4BWWRFhtCBG9YK2jpu2MgW9PjemoFS14vV-9psWM3lm4f9bDI9PHSgxbtUl71TSdlIxgcHhz65DTz8WXWY2hWD8MOvq0FEWbloqWs1YC-vofdJeWDH9mpVrKYF6gXj0c6X6WuwAAQFbA5lRK9v090mB1EzS1Bk1B0NQhaEpAE12bCsBx4_Pfs__T9QdtadjF |
| Cites_doi | 10.1016/j.engappai.2024.108103 10.1016/j.apenergy.2021.118438 10.1016/j.ins.2020.05.090 10.1109/TGRS.2024.3452937 10.1016/j.scitotenv.2020.137290 10.1371/journal.pone.0308474 10.1016/j.ijmst.2022.04.001 10.1016/j.jclepro.2023.138557 10.1038/s41598-021-82121-7 10.1016/j.jclepro.2023.140411 10.1016/j.eswa.2024.123171 10.1016/j.jhydrol.2024.130725 10.1109/JIOT.2019.2937110 10.1016/j.asoc.2023.111181 10.1016/j.jhydrol.2023.129319 10.3390/s22124628 10.1016/j.eswa.2020.113338 10.11834/jrs.20221408 10.1016/j.ecolind.2021.107975 10.1016/j.imavis.2024.104918 10.1016/j.jacc.2024.03.056 10.1073/pnas.2310012121 10.1016/j.compgeo.2024.106106 10.1109/TSP.2013.2288675 10.1016/j.autcon.2024.105297 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-82580-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_0928cab228f846d3b67bb8253bb73c86 PMC11799420 39910099 10_1038_s41598_024_82580_8 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province grantid: ZR2022ME140; ZR2022ME140 funderid: http://dx.doi.org/10.13039/501100007129 – fundername: National Natural Science Foundation of China grantid: 52104203 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Project of State Key Laboratory of Efficient Mining and Clean Utilization of Coal Resources grantid: 2021-CMCU-KF015 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2022ME140 – fundername: National Natural Science Foundation of China grantid: 52104203 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c492t-f54ebbf0a50659bb349775c44bdbb33700563a0baf0f452a5ed3374809d6957f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001415468600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:36:46 EDT 2025 Tue Nov 04 02:05:16 EST 2025 Sun Nov 09 11:43:58 EST 2025 Tue Oct 07 07:37:32 EDT 2025 Mon Jul 21 05:32:29 EDT 2025 Sat Nov 29 03:22:31 EST 2025 Mon Jul 21 06:08:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Water damage accidents Variational mode decomposition Gated recurrent units Improved chimp optimization algorithm |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-f54ebbf0a50659bb349775c44bdbb33700563a0baf0f452a5ed3374809d6957f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0002-7691-1786 0000-0002-7507-0981 |
| OpenAccessLink | https://doaj.org/article/0928cab228f846d3b67bb8253bb73c86 |
| PMID | 39910099 |
| PQID | 3163634092 |
| PQPubID | 2041939 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0928cab228f846d3b67bb8253bb73c86 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11799420 proquest_miscellaneous_3163865469 proquest_journals_3163634092 pubmed_primary_39910099 crossref_primary_10_1038_s41598_024_82580_8 springer_journals_10_1038_s41598_024_82580_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-05 |
| PublicationDateYYYYMMDD | 2025-02-05 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | YF Zeng (82580_CR11) 2023; 51 YQ Zhang (82580_CR23) 2024; 83 SQ Meng (82580_CR29) 2024; 167 JL Li (82580_CR33) 2022; 50 YK Yang (82580_CR3) 2024; 436 WQ Zhang (82580_CR8) 2023; 422 YP Song (82580_CR17) 2024; 246 ZL Li (82580_CR31) 2021; 47 JT Chen (82580_CR2) 2024; 52 YY Chen (82580_CR28) 2024; 152 J Yang (82580_CR40) 2020; 540 Q Wu (82580_CR7) 2021; 11 S Ge (82580_CR22) 2023; 27 G Zhou (82580_CR39) 2022; 22 KM Islam (82580_CR26) 2024; 142 C Feng (82580_CR18) 2022; 310 SN Dong (82580_CR14) 2022; 40 82580_CR21 82580_CR43 YF Zeng (82580_CR4) 2023; 48 YF Zeng (82580_CR5) 2024; 630 K Dragomiretskiy (82580_CR42) 2014; 62 G Sun (82580_CR37) 2020; 7 W Jin (82580_CR38) 2024; 80 SX Yin (82580_CR13) 2023; 51 Z Wang (82580_CR19) 2021; 129 MY Liang (82580_CR30) 2023; 54 EK Hou (82580_CR35) 2023; 23 SM Wang (82580_CR1) 2023; 48 H Liu (82580_CR32) 2023; 51 YF Zeng (82580_CR10) 2023; 619 G Tejasree (82580_CR27) 2024; 27 YF Zeng (82580_CR15) 2022; 47 H Yin (82580_CR36) 2024; 62 YX Zhang (82580_CR24) 2024; 133 Q He (82580_CR44) 2023; 38 S Matarneh (82580_CR25) 2024; 160 JT Chen (82580_CR9) 2023; 51 JH Liu (82580_CR12) 2022; 32 S Ryali (82580_CR16) 2024; 121 N Mashru (82580_CR41) 2024; 19 YF Zeng (82580_CR6) 2023; 51 A Gribov (82580_CR20) 2020; 722 F Wang (82580_CR34) 2022; 44 |
| References_xml | – volume: 133 start-page: 108103 year: 2024 ident: 82580_CR24 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108103 – volume: 310 year: 2022 ident: 82580_CR18 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118438 – volume: 80 start-page: 3523 issue: 3 year: 2024 ident: 82580_CR38 publication-title: Comput. Mater. Contin. – volume: 540 start-page: 117 year: 2020 ident: 82580_CR40 publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.05.090 – volume: 62 start-page: 4510417 year: 2024 ident: 82580_CR36 publication-title: IEEE Trans. Geosci. Remote Sens doi: 10.1109/TGRS.2024.3452937 – volume: 44 start-page: 143 issue: 3 year: 2022 ident: 82580_CR34 publication-title: Mining Res. Dev. – volume: 48 start-page: 2599 issue: 7 year: 2023 ident: 82580_CR1 publication-title: J. China Coal. Soc. – volume: 722 year: 2020 ident: 82580_CR20 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137290 – volume: 52 start-page: 189 issue: 3 year: 2024 ident: 82580_CR2 publication-title: Coal. Sci. Technol. – volume: 19 issue: 8 year: 2024 ident: 82580_CR41 publication-title: PLoS ONE doi: 10.1371/journal.pone.0308474 – volume: 47 start-page: 904 issue: 8 year: 2021 ident: 82580_CR31 publication-title: J. Beijing Univ. Technol. – volume: 32 start-page: 513 issue: 3 year: 2022 ident: 82580_CR12 publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2022.04.001 – volume: 50 start-page: 149 issue: 4 year: 2022 ident: 82580_CR33 publication-title: Coal. Sci. Technol. – volume: 54 start-page: 56 issue: 5 year: 2023 ident: 82580_CR30 publication-title: Saf. Coal. Mines – volume: 422 year: 2023 ident: 82580_CR8 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2023.138557 – volume: 11 start-page: 2621 issue: 1 year: 2021 ident: 82580_CR7 publication-title: Sci. Rep. doi: 10.1038/s41598-021-82121-7 – volume: 51 start-page: 24 issue: 7 year: 2023 ident: 82580_CR13 publication-title: Coal Sci. Technol. – volume: 436 year: 2024 ident: 82580_CR3 publication-title: J Clean Prod. doi: 10.1016/j.jclepro.2023.140411 – volume: 246 year: 2024 ident: 82580_CR17 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.123171 – volume: 51 start-page: 13 issue: 6 year: 2023 ident: 82580_CR32 publication-title: Coal. Geol. Explor. – volume: 630 year: 2024 ident: 82580_CR5 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.130725 – volume: 7 start-page: 5760 issue: 7 year: 2020 ident: 82580_CR37 publication-title: IEEE Internet Th. J. doi: 10.1109/JIOT.2019.2937110 – volume: 40 start-page: 1 issue: 2 year: 2022 ident: 82580_CR14 publication-title: Mine Water Environ. – volume: 152 year: 2024 ident: 82580_CR28 publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2023.111181 – volume: 23 start-page: 12012 issue: 28 year: 2023 ident: 82580_CR35 publication-title: Sci. Technol. Eng. – volume: 619 year: 2023 ident: 82580_CR10 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129319 – volume: 51 start-page: 1 issue: 7 year: 2023 ident: 82580_CR6 publication-title: Coal. Sci. Technol. – volume: 22 start-page: 4628 issue: 12 year: 2022 ident: 82580_CR39 publication-title: Sens doi: 10.3390/s22124628 – volume: 51 start-page: 62 issue: 10 year: 2023 ident: 82580_CR11 publication-title: Coal. Geol. Explor. – ident: 82580_CR43 doi: 10.1016/j.eswa.2020.113338 – volume: 27 start-page: 2796 issue: 12 year: 2023 ident: 82580_CR22 publication-title: Natl. Remote Sens Bull. doi: 10.11834/jrs.20221408 – volume: 27 start-page: 52 issue: 1 year: 2024 ident: 82580_CR27 publication-title: Egpt. J. Remote Sens Space Sci. – volume: 38 start-page: 354 issue: 2 year: 2023 ident: 82580_CR44 publication-title: Control Decis. – volume: 47 start-page: 3091 issue: 8 year: 2022 ident: 82580_CR15 publication-title: J. China Coal. Soc. – volume: 129 year: 2021 ident: 82580_CR19 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2021.107975 – volume: 142 year: 2024 ident: 82580_CR26 publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2024.104918 – volume: 83 start-page: S22 issue: 16S year: 2024 ident: 82580_CR23 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2024.03.056 – volume: 121 start-page: e2310012121 issue: 09 year: 2024 ident: 82580_CR16 publication-title: Proc. Natl. Acad. Sci. US A doi: 10.1073/pnas.2310012121 – volume: 48 start-page: 3776 issue: 10 year: 2023 ident: 82580_CR4 publication-title: J. China Coal. Soc. – volume: 51 start-page: 179 issue: 7 year: 2023 ident: 82580_CR9 publication-title: Coal Sci. Technol. – volume: 167 year: 2024 ident: 82580_CR29 publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2024.106106 – volume: 62 start-page: 531 issue: 3 year: 2014 ident: 82580_CR42 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – ident: 82580_CR21 – volume: 160 year: 2024 ident: 82580_CR25 publication-title: Autom. Constr. doi: 10.1016/j.autcon.2024.105297 |
| SSID | ssj0000529419 |
| Score | 2.4470792 |
| Snippet | Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe and... Abstract Water damage accidents occur frequently in mines in China, and accurate prediction of incoming water has become an important guarantee for the safe... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 4378 |
| SubjectTerms | 639/166/986 639/705/258 704/2151/241 Accuracy Algorithms Coal mining Decomposition Gated recurrent units Humanities and Social Sciences Improved chimp optimization algorithm Mine drainage Mining accidents & safety multidisciplinary Optimization algorithms Prediction models Science Science (multidisciplinary) Variational mode decomposition Water damage accidents Water inrush |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkJG4gdWs7STOCQGi4gBVDyD1FvnZXalNlmS3Vfkj_F1mHGer5XXhluxYkb0ztj_PjL8h5KXl3sjaOiaVrZmsgmPahoIZJxxeguVViDyzn6qDA3V0VB8mh9uQ0iqnNTEu1K6z6CPfEwAcSgGnEf5m-Y1h1SiMrqYSGlfJNWRJEDF173DjY8EolpzV6a5MLtTeAPsV3injksHRSOVMbe1Hkbb_T1jz95TJX-KmcTvav_2_A7lDbiUgSt-OlnOXXPHtPXJjLE15cZ_8-Azwk54DEu0pGOFJd06XPQZ1UJE01s-huAM6Cq9ncOBOTsUoos5jqnrKB6O6dRS9dY726N1HPii6hqVkoB0sWKeL7yAxF3QR_RvwbOfwOMn0-ImTYxjDan76gHzd__Dl_UeWijgwK2u-YqGQ3piQ6wIjuMYICYizsFIaBy-iQi5SoXOjQx5kwXXhnUBKnLx2ZV1UQTwkO23X-seEAhzxoXRa1aWXxcwoWYeZF4bPnOJeqYy8mlTZLEeujibG2IVqRsU3oPgmKr6B1u9Q25uWyLMdf-j64yZN2wa0pKw2nKsAQM0JU1bGwAeEMZWwqszI7qTkJk3-obnUcEZebMQwbTEWo1vfrcc2Ci-S1Rl5NJrWpieAGWeI3DOitoxuq6vbknYxj9TgkeBP8jwjryf7vOzX3_-LJ_8exlNyk2PZY0xWL3bJzqpf-2fkuj1bLYb-eZxzPwHWsTg9 priority: 102 providerName: ProQuest |
| Title | Mine water inflow prediction model based on variational mode decomposition and gated recurrent units optimized by improved chimp optimization algorithm |
| URI | https://link.springer.com/article/10.1038/s41598-024-82580-8 https://www.ncbi.nlm.nih.gov/pubmed/39910099 https://www.proquest.com/docview/3163634092 https://www.proquest.com/docview/3163865469 https://pubmed.ncbi.nlm.nih.gov/PMC11799420 https://doaj.org/article/0928cab228f846d3b67bb8253bb73c86 |
| Volume | 15 |
| WOSCitedRecordID | wos001415468600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBYlLxZuUsjISN4ia2E5iHylqBRK7WiGQllMUx3Y3UptU2d1W5Y_wd5mxs0uXh7hwsZLYiSzPOPPZM_6GkFc1s1qo2sRC1ioWhTNxVbss1oYbPATLCud5Zj8Wk4mczdT0RqovjAkL9MBh4A4TxWRdacakA1NpuM4LrWFZw7UueC092TagnhuLqcDqzZRI1XBKJuHycAGWCk-TMRHD2zKJ5ZYl8oT9f0KZvwdL_uIx9Ybo5D7ZGxAkfRt6_oDcsu1DcjfklLx-RL6PATfSK4CQPQXtOeuu6EWP3hiUAPWJbyiaLkPh9hJWysNuoK-ixmKM-RDIRavWUNxmM7THbXkkcqIr-AcsaAd_mvPmG9Toa9r4jQm4rudwua6rwifOTru-Wc7PH5MvJ8ef372Ph-wLcS0UW8YuE1Zrl1QZul615gKgYlYLoQ3c8AJJRHmV6MolTmSsyqzhyGWTKJOrrHD8Cdlpu9Y-IxRwhHW5qaTKrchSLYVyqeWapUYyK2VEXq8lUV4Eko3SO8e5LIPcSpBb6eVWQusjFNamJRJk-wegNuWgNuW_1CYiB2tRl8OsXZQcwGnOYcXLIvJyUw3zDZ0oVWu7VWgj8QSYisjToBmbngDYSxFyR0Ru6cxWV7dr2mbuOb09M59gSUTerNXrZ7_-Phb7_2MsnpN7DLMaYyx6dkB2lv3KviB36stls-hH5HYxK3wpR2T36Hgy_TTykw3KMZtiWUC5O_0wnn79AZsuMPc |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGFNzRQwEhwgqhZ20mcA0K8qlbdrnooUm8mfqS7Uptss7tdLX-Ef8FvZMZJtlpetx64JTuW5Xi_GY_nSchLw5wWmbGhkCYLRVrYMDdFHGrLLSbBsrTwdWb76WAgj46ygzXyo8uFwbDKTiZ6QW0rgzbyLQ6KQ8LhNsLejc9C7BqF3tWuhUYDiz23mMOVbfJ29xP8v68Y2_58-HEnbLsKhEZkbBoWsXBaF1Eeo0tRay5ABYqNENrCC0-xOCbPI50XUSFilsfOcqzREmU2yeK04DDvFXIV1AgmfajgwdKmg14z0cva3JyIy60JnI-Yw8ZECFcxGYVy5fzzbQL-pNv-HqL5i5_WH3_bt_-3jbtDbrWKNn3fcMZdsubKe-R603pzcZ983wf1ms5B064pMNlJNafjGp1WCFTq-wNRPOEthdfzvB61RlNPotZhKH4b70bz0lK0Rlpao_cC613RGYjKCa1AIJ-OvgFFL-jI22_g2QzhsaPlzRQnx7Bn0-HpA_LlUnblIVkvq9JtEArqlisSm8sscSLuaSmyoue4Zj0rmZMyIK876KhxU4tE-RgCLlUDNAVAUx5oCkZ_QHQtR2Idcf9DVR-rViwpQIU0uWZMFqCIWq6TVGuYgGudciOTgGx2oFKtcJuoC0QF5MWSDGIJfU156apZM0ZiolwWkEcNlJcrAZ24hzeTgMgVkK8sdZVSjoa-9LkvYChYFJA3HT9crOvve_H435_xnNzYOdzvq_7uYO8JucmwxTMG5sebZH1az9xTcs2cT0eT-pnnd0q-Xjaf_ATyepRH |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaW5SEuvB-BBYwEJ4ia2k7iHBAClorVLlUPIO0t2LG9rbSblLTdqvwR_gu_jhkn6aq8bnvglnQsy3G_GY_nScizglktssKEQhZZKFJnQlW4ONSGG0yCZanzdWYP0uFQHh5moy3yo8uFwbDKTiZ6QW2qAm3kPQ6KQ8LhNsJ6rg2LGO0OXk-_hthBCj2tXTuNBiL7drWE69vs1d4u_NfPGRu8__TuQ9h2GAgLkbF56GJhtXaRitG9qDUXoA7FhRDawAtPsVAmV5FWLnIiZiq2hmO9ligzSRanjsO8F8jFFIuW-7DB0dq-gx400c_aPJ2Iy94MzkrMZ2MihGuZjEK5cRb6lgF_0nN_D9f8xWfrj8LB9f95E2-Qa60CTt80HHOTbNnyFrnctORc3SbfP4LaTZeggdcUmO-4WtJpjc4sBDD1fYMonvyGwuupqietMdWTqLEYot_GwVFVGopWSkNr9GpgHSy6ABE6oxUI6pPJN6DoFZ14uw48F2N47GiqmeL4CPZsPj65Qz6fy67cJdtlVdr7hIIaZl1ilMwSK-K-liJzfcs16xvJrJQBedHBKJ82NUpyH1vAZd6ALgfQ5R50OYx-i0hbj8T64v6Hqj7KW3GVA0JkoTRj0oGCarhOUq1hAq51yguZBGSnA1jeCr1ZfoaugDxdk0FcoQ9KlbZaNGMkJtBlAbnXwHq9EtCV-3hjCYjcAPzGUjcp5WTsS6L7woaCRQF52fHG2br-vhcP_v0ZT8gVYI_8YG-4_5BcZdj5GeP14x2yPa8X9hG5VJzOJ7P6sWd9Sr6cN5v8BGMnnQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mine+water+inflow+prediction+model+based+on+variational+mode+decomposition+and+gated+recurrent+units+optimized+by+improved+chimp+optimization+algorithm&rft.jtitle=Scientific+reports&rft.au=Juntao+Chen&rft.au=Mingjin+Fan&rft.date=2025-02-05&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1038%2Fs41598-024-82580-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0928cab228f846d3b67bb8253bb73c86 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |