Enhanced algorithm performance for land cover classification from remotely sensed data using bagging and boosting

Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. The authors' results confirmed the theoretical explanation of L. Breiman (1996) that bagging improves unstable, but not stable, learning algorithms. While boosting enhanced accuracy of a weak lear...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 39; číslo 3; s. 693 - 695
Hlavní autoři: Jonathan Cheung-Wai Chan, Chengquan Huang, DeFries, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.03.2001
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Two ensemble methods, bagging and boosting, were investigated for improving algorithm performance. The authors' results confirmed the theoretical explanation of L. Breiman (1996) that bagging improves unstable, but not stable, learning algorithms. While boosting enhanced accuracy of a weak learner, its behavior is subject to the characteristics of each learning algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0196-2892
1558-0644
DOI:10.1109/36.911126