Generation of short-term follow-up chest CT images using a latent diffusion model in COVID-19

Purpose Despite a global decrease in the number of COVID-19 patients, early prediction of the clinical course for optimal patient care remains challenging. Recently, the usefulness of image generation for medical images has been investigated. This study aimed to generate short-term follow-up chest C...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Japanese journal of radiology Ročník 43; číslo 4; s. 622 - 633
Hlavní autoři: Kawata, Naoko, Iwao, Yuma, Matsuura, Yukiko, Higashide, Takashi, Okamoto, Takayuki, Sekiguchi, Yuki, Nagayoshi, Masaru, Takiguchi, Yasuo, Suzuki, Takuji, Haneishi, Hideaki
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.04.2025
Springer Nature B.V
Témata:
ISSN:1867-1071, 1867-108X, 1867-108X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose Despite a global decrease in the number of COVID-19 patients, early prediction of the clinical course for optimal patient care remains challenging. Recently, the usefulness of image generation for medical images has been investigated. This study aimed to generate short-term follow-up chest CT images using a latent diffusion model in patients with COVID-19. Materials and methods We retrospectively enrolled 505 patients with COVID-19 for whom the clinical parameters (patient background, clinical symptoms, and blood test results) upon admission were available and chest CT imaging was performed. Subject datasets ( n  = 505) were allocated for training ( n  = 403), and the remaining ( n  = 102) were reserved for evaluation. The image underwent variational autoencoder (VAE) encoding, resulting in latent vectors. The information consisting of initial clinical parameters and radiomic features were formatted as a table data encoder. Initial and follow-up latent vectors and the initial table data encoders were utilized for training the diffusion model. The evaluation data were used to generate prognostic images. Then, similarity of the prognostic images (generated images) and the follow-up images (real images) was evaluated by zero-mean normalized cross-correlation (ZNCC), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM). Visual assessment was also performed using a numerical rating scale. Results Prognostic chest CT images were generated using the diffusion model. Image similarity showed reasonable values of 0.973 ± 0.028 for the ZNCC, 24.48 ± 3.46 for the PSNR, and 0.844 ± 0.075 for the SSIM. Visual evaluation of the images by two pulmonologists and one radiologist yielded a reasonable mean score. Conclusions The similarity and validity of generated predictive images for the course of COVID-19-associated pneumonia using a diffusion model were reasonable. The generation of prognostic images may suggest potential utility for early prediction of the clinical course in COVID-19-associated pneumonia and other respiratory diseases.
AbstractList Purpose Despite a global decrease in the number of COVID-19 patients, early prediction of the clinical course for optimal patient care remains challenging. Recently, the usefulness of image generation for medical images has been investigated. This study aimed to generate short-term follow-up chest CT images using a latent diffusion model in patients with COVID-19. Materials and methods We retrospectively enrolled 505 patients with COVID-19 for whom the clinical parameters (patient background, clinical symptoms, and blood test results) upon admission were available and chest CT imaging was performed. Subject datasets ( n  = 505) were allocated for training ( n  = 403), and the remaining ( n  = 102) were reserved for evaluation. The image underwent variational autoencoder (VAE) encoding, resulting in latent vectors. The information consisting of initial clinical parameters and radiomic features were formatted as a table data encoder. Initial and follow-up latent vectors and the initial table data encoders were utilized for training the diffusion model. The evaluation data were used to generate prognostic images. Then, similarity of the prognostic images (generated images) and the follow-up images (real images) was evaluated by zero-mean normalized cross-correlation (ZNCC), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM). Visual assessment was also performed using a numerical rating scale. Results Prognostic chest CT images were generated using the diffusion model. Image similarity showed reasonable values of 0.973 ± 0.028 for the ZNCC, 24.48 ± 3.46 for the PSNR, and 0.844 ± 0.075 for the SSIM. Visual evaluation of the images by two pulmonologists and one radiologist yielded a reasonable mean score. Conclusions The similarity and validity of generated predictive images for the course of COVID-19-associated pneumonia using a diffusion model were reasonable. The generation of prognostic images may suggest potential utility for early prediction of the clinical course in COVID-19-associated pneumonia and other respiratory diseases.
PurposeDespite a global decrease in the number of COVID-19 patients, early prediction of the clinical course for optimal patient care remains challenging. Recently, the usefulness of image generation for medical images has been investigated. This study aimed to generate short-term follow-up chest CT images using a latent diffusion model in patients with COVID-19.Materials and methodsWe retrospectively enrolled 505 patients with COVID-19 for whom the clinical parameters (patient background, clinical symptoms, and blood test results) upon admission were available and chest CT imaging was performed. Subject datasets (n = 505) were allocated for training (n = 403), and the remaining (n = 102) were reserved for evaluation. The image underwent variational autoencoder (VAE) encoding, resulting in latent vectors. The information consisting of initial clinical parameters and radiomic features were formatted as a table data encoder. Initial and follow-up latent vectors and the initial table data encoders were utilized for training the diffusion model. The evaluation data were used to generate prognostic images. Then, similarity of the prognostic images (generated images) and the follow-up images (real images) was evaluated by zero-mean normalized cross-correlation (ZNCC), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM). Visual assessment was also performed using a numerical rating scale.ResultsPrognostic chest CT images were generated using the diffusion model. Image similarity showed reasonable values of 0.973 ± 0.028 for the ZNCC, 24.48 ± 3.46 for the PSNR, and 0.844 ± 0.075 for the SSIM. Visual evaluation of the images by two pulmonologists and one radiologist yielded a reasonable mean score.ConclusionsThe similarity and validity of generated predictive images for the course of COVID-19-associated pneumonia using a diffusion model were reasonable. The generation of prognostic images may suggest potential utility for early prediction of the clinical course in COVID-19-associated pneumonia and other respiratory diseases.
Despite a global decrease in the number of COVID-19 patients, early prediction of the clinical course for optimal patient care remains challenging. Recently, the usefulness of image generation for medical images has been investigated. This study aimed to generate short-term follow-up chest CT images using a latent diffusion model in patients with COVID-19.PURPOSEDespite a global decrease in the number of COVID-19 patients, early prediction of the clinical course for optimal patient care remains challenging. Recently, the usefulness of image generation for medical images has been investigated. This study aimed to generate short-term follow-up chest CT images using a latent diffusion model in patients with COVID-19.We retrospectively enrolled 505 patients with COVID-19 for whom the clinical parameters (patient background, clinical symptoms, and blood test results) upon admission were available and chest CT imaging was performed. Subject datasets (n = 505) were allocated for training (n = 403), and the remaining (n = 102) were reserved for evaluation. The image underwent variational autoencoder (VAE) encoding, resulting in latent vectors. The information consisting of initial clinical parameters and radiomic features were formatted as a table data encoder. Initial and follow-up latent vectors and the initial table data encoders were utilized for training the diffusion model. The evaluation data were used to generate prognostic images. Then, similarity of the prognostic images (generated images) and the follow-up images (real images) was evaluated by zero-mean normalized cross-correlation (ZNCC), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM). Visual assessment was also performed using a numerical rating scale.MATERIALS AND METHODSWe retrospectively enrolled 505 patients with COVID-19 for whom the clinical parameters (patient background, clinical symptoms, and blood test results) upon admission were available and chest CT imaging was performed. Subject datasets (n = 505) were allocated for training (n = 403), and the remaining (n = 102) were reserved for evaluation. The image underwent variational autoencoder (VAE) encoding, resulting in latent vectors. The information consisting of initial clinical parameters and radiomic features were formatted as a table data encoder. Initial and follow-up latent vectors and the initial table data encoders were utilized for training the diffusion model. The evaluation data were used to generate prognostic images. Then, similarity of the prognostic images (generated images) and the follow-up images (real images) was evaluated by zero-mean normalized cross-correlation (ZNCC), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM). Visual assessment was also performed using a numerical rating scale.Prognostic chest CT images were generated using the diffusion model. Image similarity showed reasonable values of 0.973 ± 0.028 for the ZNCC, 24.48 ± 3.46 for the PSNR, and 0.844 ± 0.075 for the SSIM. Visual evaluation of the images by two pulmonologists and one radiologist yielded a reasonable mean score.RESULTSPrognostic chest CT images were generated using the diffusion model. Image similarity showed reasonable values of 0.973 ± 0.028 for the ZNCC, 24.48 ± 3.46 for the PSNR, and 0.844 ± 0.075 for the SSIM. Visual evaluation of the images by two pulmonologists and one radiologist yielded a reasonable mean score.The similarity and validity of generated predictive images for the course of COVID-19-associated pneumonia using a diffusion model were reasonable. The generation of prognostic images may suggest potential utility for early prediction of the clinical course in COVID-19-associated pneumonia and other respiratory diseases.CONCLUSIONSThe similarity and validity of generated predictive images for the course of COVID-19-associated pneumonia using a diffusion model were reasonable. The generation of prognostic images may suggest potential utility for early prediction of the clinical course in COVID-19-associated pneumonia and other respiratory diseases.
Despite a global decrease in the number of COVID-19 patients, early prediction of the clinical course for optimal patient care remains challenging. Recently, the usefulness of image generation for medical images has been investigated. This study aimed to generate short-term follow-up chest CT images using a latent diffusion model in patients with COVID-19. We retrospectively enrolled 505 patients with COVID-19 for whom the clinical parameters (patient background, clinical symptoms, and blood test results) upon admission were available and chest CT imaging was performed. Subject datasets (n = 505) were allocated for training (n = 403), and the remaining (n = 102) were reserved for evaluation. The image underwent variational autoencoder (VAE) encoding, resulting in latent vectors. The information consisting of initial clinical parameters and radiomic features were formatted as a table data encoder. Initial and follow-up latent vectors and the initial table data encoders were utilized for training the diffusion model. The evaluation data were used to generate prognostic images. Then, similarity of the prognostic images (generated images) and the follow-up images (real images) was evaluated by zero-mean normalized cross-correlation (ZNCC), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM). Visual assessment was also performed using a numerical rating scale. Prognostic chest CT images were generated using the diffusion model. Image similarity showed reasonable values of 0.973 ± 0.028 for the ZNCC, 24.48 ± 3.46 for the PSNR, and 0.844 ± 0.075 for the SSIM. Visual evaluation of the images by two pulmonologists and one radiologist yielded a reasonable mean score. The similarity and validity of generated predictive images for the course of COVID-19-associated pneumonia using a diffusion model were reasonable. The generation of prognostic images may suggest potential utility for early prediction of the clinical course in COVID-19-associated pneumonia and other respiratory diseases.
Author Matsuura, Yukiko
Okamoto, Takayuki
Haneishi, Hideaki
Takiguchi, Yasuo
Nagayoshi, Masaru
Iwao, Yuma
Higashide, Takashi
Suzuki, Takuji
Kawata, Naoko
Sekiguchi, Yuki
Author_xml – sequence: 1
  givenname: Naoko
  orcidid: 0000-0002-4083-4531
  surname: Kawata
  fullname: Kawata, Naoko
  email: chumito_03@yahoo.co.jp
  organization: Department of Respirology, Graduate School of Medicine, Chiba University, Graduate School of Science and Engineering, Chiba University
– sequence: 2
  givenname: Yuma
  surname: Iwao
  fullname: Iwao, Yuma
  organization: Center for Frontier Medical Engineering, Chiba University, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology
– sequence: 3
  givenname: Yukiko
  surname: Matsuura
  fullname: Matsuura, Yukiko
  organization: Department of Respiratory Medicine, Chiba Aoba Municipal Hospital
– sequence: 4
  givenname: Takashi
  surname: Higashide
  fullname: Higashide, Takashi
  organization: Department of Radiology, Chiba University Hospital, Department of Radiology, Japanese Red Cross Narita Hospital
– sequence: 5
  givenname: Takayuki
  surname: Okamoto
  fullname: Okamoto, Takayuki
  organization: Center for Frontier Medical Engineering, Chiba University
– sequence: 6
  givenname: Yuki
  surname: Sekiguchi
  fullname: Sekiguchi, Yuki
  organization: Graduate School of Science and Engineering, Chiba University
– sequence: 7
  givenname: Masaru
  surname: Nagayoshi
  fullname: Nagayoshi, Masaru
  organization: Department of Respiratory Medicine, Chiba Aoba Municipal Hospital
– sequence: 8
  givenname: Yasuo
  surname: Takiguchi
  fullname: Takiguchi, Yasuo
  organization: Department of Respiratory Medicine, Chiba Aoba Municipal Hospital
– sequence: 9
  givenname: Takuji
  surname: Suzuki
  fullname: Suzuki, Takuji
  organization: Department of Respirology, Graduate School of Medicine, Chiba University
– sequence: 10
  givenname: Hideaki
  surname: Haneishi
  fullname: Haneishi, Hideaki
  organization: Center for Frontier Medical Engineering, Chiba University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39585556$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFvFCEUxompse3qP-DBkHjxguUBwwwnY1atTZr0Uo0XQ9gZ2J1mBlaY6cb_3qfbbqsHDwQCv_fxvfedkqOYoifkJfC3wHl9VgA0V4wLXKCNYbsn5AQaXTPgzbejw7mGY3Jayg3nWkmlnpFjaaqmqip9Qr6f--izm_oUaQq0bFKe2OTzSEMahrRj85a2G18murym_ejWvtC59HFNHR3c5ONEuz4EvEKBMXV-oH2ky6uvFx8YmOfkaXBD8S_u9gX58unj9fIzu7w6v1i-v2StMmJinTJdByswpg1KwkoaVwUBQXMnXHBSyrZCw6FWtQoteC1EB65embqpG-FALsi7ve52Xo2-a9FWdoPdZnScf9rkevv3S-w3dp1uLYCpJG8EKry5U8jpx4z92rEvrR8GF32ai5UghQahcYIL8vof9CbNOWJ_SDWiaiSOF6lXjy0dvNyPHgGxB9qcSsk-HBDg9ne-dp-vxXztn3ztDovkvqggHNc-P_z9n6pf1z6ngw
Cites_doi 10.1016/S2589-7500(21)00039-X
10.1016/j.media.2017.07.005
10.1186/s12931-024-02834-x
10.1109/TIP.2003.819861
10.1007/s11604-023-01466-3
10.1109/WACV56688.2023.00204
10.1016/j.cell.2020.08.029
10.1038/s41598-023-34341-2
10.1016/j.artmed.2022.102286
10.1038/s41591-021-01292-y
10.48550/arXiv.2102.12092
10.1038/s41467-020-17280-8
10.1164/rccm.200908-1189OC
10.1056/NEJMp2006141
10.48550/arXiv.2112.10752.
10.1038/nature14539
10.1111/resp.14311
10.48550/arXiv.1503.03585
10.48550/arXiv.1401.4082
10.1148/radiol.221806
10.48550/arXiv.1505.04597
10.1101/2020.03.24.20042317
10.1016/j.jvir.2022.03.010
10.1186/s12890-023-02365-z
10.48550/arXiv.2103.00020
10.1016/j.acra.2019.12.024
10.1158/0008-5472.CAN-17-0339
10.1007/s00259-020-05075-4
10.1148/radiol.2020200370
10.48550/arXiv.1406.2661
10.1109/TMI.2019.2897538
10.48550/arXiv.2209.06167
10.1148/radiol.2021203692
10.1038/s41380-023-02171-3
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Springer Nature B.V. Apr 2025
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Springer Nature B.V. Apr 2025
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
7U7
8FD
C1K
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.1007/s11604-024-01699-w
DatabaseName Springer Nature Link
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Nursing & Allied Health Premium
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1867-108X
EndPage 633
ExternalDocumentID PMC11953082
39585556
10_1007_s11604_024_01699_w
Genre Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 22K12836
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Japanese Respiratory Foundation
  funderid: http://dx.doi.org/10.13039/100019085
– fundername: Japan Society for the Promotion of Science
  grantid: 22K12836
GroupedDBID ---
-Y2
.VR
04C
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
40D
40E
53G
5VS
6NX
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACZOJ
ADBBV
ADHIR
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BVXVI
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMOBN
EN4
ESBYG
EX3
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IMOTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KPH
LK8
LLZTM
M1P
M4Y
M7P
MA-
NAPCQ
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
P62
P9S
PF0
PHGZT
PQQKQ
PROAC
PSQYO
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RSV
S16
S37
S3B
SAP
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
TSG
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
WOW
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c492t-d49dd1b199cf431b39a5f21f60a2afa333c5585f7474fc1e622d1a7b978782a13
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001362508600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1867-1071
1867-108X
IngestDate Tue Nov 04 02:02:25 EST 2025
Thu Sep 04 18:17:40 EDT 2025
Wed Nov 05 08:18:50 EST 2025
Mon Jul 21 05:51:33 EDT 2025
Sat Nov 29 08:04:01 EST 2025
Sat Mar 29 01:21:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords COVID-19
Deep learning
Chest CT images
Prognostic image generation
Latent diffusion model
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-d49dd1b199cf431b39a5f21f60a2afa333c5585f7474fc1e622d1a7b978782a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4083-4531
OpenAccessLink https://link.springer.com/10.1007/s11604-024-01699-w
PMID 39585556
PQID 3182583395
PQPubID 54542
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11953082
proquest_miscellaneous_3132612664
proquest_journals_3182583395
pubmed_primary_39585556
crossref_primary_10_1007_s11604_024_01699_w
springer_journals_10_1007_s11604_024_01699_w
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Japan
– name: Tokyo
PublicationSubtitle formerly: Radiation Medicine
PublicationTitle Japanese journal of radiology
PublicationTitleAbbrev Jpn J Radiol
PublicationTitleAlternate Jpn J Radiol
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Z Jiao (1699_CR7) 2021; 3
A Watanabe (1699_CR33) 2022; 27
N Kawata (1699_CR22) 2023; 41
S Su (1699_CR32) 2023; 28
J Mongan (1699_CR23) 2020; 2
1699_CR9
F Khader (1699_CR19) 2023; 13
G Litjens (1699_CR4) 2017; 42
1699_CR5
1699_CR24
1699_CR27
1699_CR1
Y Onishi (1699_CR11) 2019; 2019
F Pan (1699_CR21) 2020; 295
1699_CR26
V Sorin (1699_CR10) 2020; 27
CH Sudre (1699_CR31) 2021; 27
H Yonezawa (1699_CR37) 2022; 33
Y LeCun (1699_CR3) 2015; 521
H Wang (1699_CR12) 2021; 48
H Ali (1699_CR20) 2022; 10
K Zhang (1699_CR30) 2020; 182
1699_CR18
D Ueda (1699_CR28) 2021; 299
JJM van Griethuysen (1699_CR25) 2017; 77
Z Wang (1699_CR38) 2004; 13
1699_CR13
W Liang (1699_CR6) 2020; 11
1699_CR16
1699_CR17
S Matsuoka (1699_CR39) 2010; 181
1699_CR14
1699_CR15
JP Kanne (1699_CR34) 2023; 306
TK Tran (1699_CR36) 2024; 25
ML Ranney (1699_CR2) 2020; 382
IJ Goodfellow (1699_CR8) 2014
C Comito (1699_CR29) 2022; 128
C Xu (1699_CR35) 2023; 23
References_xml – volume: 3
  start-page: e286
  year: 2021
  ident: 1699_CR7
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(21)00039-X
– volume: 42
  start-page: 60
  year: 2017
  ident: 1699_CR4
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– volume: 10
  year: 2022
  ident: 1699_CR20
  publication-title: JMIR Med Inform
– volume: 25
  start-page: 232
  year: 2024
  ident: 1699_CR36
  publication-title: Respir Res
  doi: 10.1186/s12931-024-02834-x
– volume: 13
  start-page: 600
  year: 2004
  ident: 1699_CR38
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– ident: 1699_CR1
– volume: 41
  start-page: 1359
  year: 2023
  ident: 1699_CR22
  publication-title: Jpn J Radiol
  doi: 10.1007/s11604-023-01466-3
– ident: 1699_CR17
  doi: 10.1109/WACV56688.2023.00204
– volume: 182
  start-page: 1360
  year: 2020
  ident: 1699_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.029
– volume: 13
  start-page: 7303
  year: 2023
  ident: 1699_CR19
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-34341-2
– volume: 128
  year: 2022
  ident: 1699_CR29
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2022.102286
– volume: 27
  start-page: 626
  year: 2021
  ident: 1699_CR31
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01292-y
– ident: 1699_CR15
  doi: 10.48550/arXiv.2102.12092
– volume: 11
  start-page: 3543
  year: 2020
  ident: 1699_CR6
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17280-8
– volume: 181
  start-page: 218
  year: 2010
  ident: 1699_CR39
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200908-1189OC
– volume: 382
  year: 2020
  ident: 1699_CR2
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp2006141
– ident: 1699_CR16
  doi: 10.48550/arXiv.2112.10752.
– volume: 521
  start-page: 436
  year: 2015
  ident: 1699_CR3
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 1699_CR26
– volume: 27
  start-page: 605
  year: 2022
  ident: 1699_CR33
  publication-title: Respirology
  doi: 10.1111/resp.14311
– volume: 2019
  start-page: 6051939
  year: 2019
  ident: 1699_CR11
  publication-title: Biomed Res Int
– ident: 1699_CR13
  doi: 10.48550/arXiv.1503.03585
– ident: 1699_CR9
  doi: 10.48550/arXiv.1401.4082
– volume: 306
  year: 2023
  ident: 1699_CR34
  publication-title: Radiology
  doi: 10.1148/radiol.221806
– ident: 1699_CR27
  doi: 10.48550/arXiv.1505.04597
– ident: 1699_CR5
  doi: 10.1101/2020.03.24.20042317
– volume: 33
  start-page: 845
  year: 2022
  ident: 1699_CR37
  publication-title: J Vasc Interv Radiol
  doi: 10.1016/j.jvir.2022.03.010
– volume: 23
  start-page: 78
  year: 2023
  ident: 1699_CR35
  publication-title: BMC Pulm Med
  doi: 10.1186/s12890-023-02365-z
– ident: 1699_CR14
  doi: 10.48550/arXiv.2103.00020
– volume: 27
  start-page: 1175
  year: 2020
  ident: 1699_CR10
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2019.12.024
– volume: 77
  start-page: e104
  year: 2017
  ident: 1699_CR25
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0339
– volume: 48
  start-page: 1478
  year: 2021
  ident: 1699_CR12
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-020-05075-4
– volume: 295
  start-page: 715
  year: 2020
  ident: 1699_CR21
  publication-title: Radiology
  doi: 10.1148/radiol.2020200370
– year: 2014
  ident: 1699_CR8
  publication-title: Networks
  doi: 10.48550/arXiv.1406.2661
– ident: 1699_CR24
  doi: 10.1109/TMI.2019.2897538
– ident: 1699_CR18
  doi: 10.48550/arXiv.2209.06167
– volume: 299
  start-page: 675
  year: 2021
  ident: 1699_CR28
  publication-title: Radiology
  doi: 10.1148/radiol.2021203692
– volume: 2
  year: 2020
  ident: 1699_CR23
  publication-title: Radiol Artif Intell
– volume: 28
  start-page: 4056
  year: 2023
  ident: 1699_CR32
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-023-02171-3
SSID ssj0064344
Score 2.3667629
Snippet Purpose Despite a global decrease in the number of COVID-19 patients, early prediction of the clinical course for optimal patient care remains challenging....
Despite a global decrease in the number of COVID-19 patients, early prediction of the clinical course for optimal patient care remains challenging. Recently,...
PurposeDespite a global decrease in the number of COVID-19 patients, early prediction of the clinical course for optimal patient care remains challenging....
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 622
SubjectTerms Adult
Aged
Chest
Coders
Computed tomography
COVID-19
COVID-19 - diagnostic imaging
Cross correlation
Diffusion
Diffusion models
Female
Follow-Up Studies
Humans
Image processing
Imaging
Lung - diagnostic imaging
Male
Medical imaging
Medicine
Medicine & Public Health
Middle Aged
Nuclear Medicine
Original
Original Article
Parameters
Patients
Pneumonia
Radiographic Image Interpretation, Computer-Assisted - methods
Radiography, Thoracic - methods
Radiology
Radiomics
Radiotherapy
Respiratory diseases
Retrospective Studies
SARS-CoV-2
Signal to noise ratio
Similarity
Tomography, X-Ray Computed - methods
Training
Title Generation of short-term follow-up chest CT images using a latent diffusion model in COVID-19
URI https://link.springer.com/article/10.1007/s11604-024-01699-w
https://www.ncbi.nlm.nih.gov/pubmed/39585556
https://www.proquest.com/docview/3182583395
https://www.proquest.com/docview/3132612664
https://pubmed.ncbi.nlm.nih.gov/PMC11953082
Volume 43
WOSCitedRecordID wos001362508600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1867-108X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064344
  issn: 1867-1071
  databaseCode: RSV
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VWqFe-gLatBS5EjewFOfhxMdqW9QeCqgFtBcUOX7ASm0Wkd3u3--MN9nVFjjA2c7LY88jM_N9AHvSZk7mueUe9SOnVkiulSu4MN6RiU2NiwPZRHF0VA6H6qRrCmv7avc-JRk09bLZTUiqmEioakIqxWdr8BTNXUmEDT9_nff6F01soHAlpDZUMoXoWmXuvseqObrlY94ulfwvXxrM0OHLx33AK3jRuZ3s83yfvIYnrnkDGz-6xPomXMzhp0lKbOxZe4VeOSetzTxulPGMT69ZoNZig1M2-oNKqGVUMn_JNPuN7mozYUS1MqV_byyw67BRwwbH59-_cKG24Ozw6-ngG--YF7jJVDLhNlPWilooZTx6GHWqdO4T4WWsE-11mqYmxzjDYyySeSOcTBIrdFFjSIoehxbpNqw348a9Axb7wtR1aTEw0VkprfaxKOsY4yjjlLRFBPu9AKrrOcBGtYRSphWrcMWqsGLVLIKdXkZVd9jaCtVSQs1jKo_g02IYjwnlPnTjxlOakxJYmpRZBG_nIl08Di8s8zyXEZQrwl5MIAju1ZFmdBWguAkwjwB_IjjoZb58r_s_4_3Dpn-A5wnRDoeCoR1Yn9xM3Ud4Zv5ORu3NLqwVw3I3nIF_yScATw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VFkEvlDeBAkbiBpbiPJz4WC1UrWgXBEvVC4ocP-hKkK2a3e7f74w32dVSeoCznZfH_mYmM_MNwFtpMyfz3HKP-MipFJJr5QoujHekYlPj4tBsohgOy9NT9aUrCmv7bPc-JBmQelXsJiRlTCSUNSGV4vNbsJWhxiLG_K_fTnr8RRUbWrgSUxuCTCG6Upm_32NdHV2zMa-nSv4RLw1qaH_n_z7gPtzrzE62t9gnD2DDNQ_hznEXWH8EPxb00yQlNvGsPUOrnBNqM48bZTLns3MWWmuxwYiNfyMItYxS5n8yzX6hudpMGbVamdG_Nxa667BxwwafTw4_cKEew_f9j6PBAe86L3CTqWTKbaasFbVQyni0MOpU6dwnwstYJ9rrNE1Njn6GR18k80Y4mSRW6KJGlxQtDi3SJ7DZTBr3DFjsC1PXpUXHRGeltNrHoqxj9KOMU9IWEbzrBVCdLwg2qhWVMq1YhStWhRWr5hHs9jKqusPWVghLCRWPqTyCN8thPCYU-9CNm8xoTkpkaVJmETxdiHT5OLywzPNcRlCuCXs5gSi410ea8Vmg4ibCPCL8ieB9L_PVe938Gc__bfpruHswOj6qjg6Hn17AdkItiEPy0C5sTi9m7iXcNpfTcXvxKpyEK8pVAks
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BQBMvjK9BYAMj8QbW4nw48SPqVjEBZRJj2guKHH-wSpBWa0v_fe6cpKUbPCCe7ST2nX0fubvfAbySNnMyzy33KB85lUJyrVzBhfGOVGxqXByaTRSjUXl-rk5-q-IP2e59SLKtaSCUpmZ-MLX-YF34JiRlTySUQSGV4subcCujRHry1z-f9bIY1W1o50qobShwCtGVzfz5HZuq6Zq9eT1t8krsNKik4c7_b-Ye3O3MUfa2PT_34YZrHsD2xy7g_hC-trDUxD028Wx2gdY6J2nOPB6gyZIvpiy03GKDUzb-gcJpxiiV_hvT7LumRTBqwbKgf3IsdN1h44YNPp0dH3KhHsGX4dHp4B3vOjJwk6lkzm2mrBW1UMp4tDzqVOncJ8LLWCfa6zRNTY7-h0cfJfNGOJkkVuiiRlcVLREt0l3YaiaNewIs9oWp69Kiw6KzUlrtY1HWMfpXxilpiwhe98yopi3wRrWGWCaKVUixKlCsWkaw1_Or6i7hrEJxlVBRmcojeLkaxutDMRHduMmC5qQEoiZlFsHjlr2rz-GDZZ7nMoJyg_GrCQTNvTnSjC8CRDcB6REQUARvev6v1_X3bTz9t-kvYPvkcFh9OB69fwZ3EupMHHKK9mBrfrlw-3Db_JyPZ5fPw6X4BZYnCy8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+short-term+follow-up+chest+CT+images+using+a+latent+diffusion+model+in+COVID-19&rft.jtitle=Japanese+journal+of+radiology&rft.au=Kawata%2C+Naoko&rft.au=Iwao%2C+Yuma&rft.au=Matsuura%2C+Yukiko&rft.au=Higashide%2C+Takashi&rft.date=2025-04-01&rft.issn=1867-108X&rft.eissn=1867-108X&rft.volume=43&rft.issue=4&rft.spage=622&rft_id=info:doi/10.1007%2Fs11604-024-01699-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1071&client=summon