Verification study on how macrofungal fruitbody formation can be predicted by artificial neural network

The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 14; číslo 1; s. 278 - 21
Hlavní autoři: Somfalvi-Tóth, Katalin, Jócsák, Ildikó, Pál-Fám, Ferenc
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 02.01.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural network (ANN) to forecast fruitbody occurrence in mycorrhizal species of Russula and Amanita , utilizing meteorological factors and validating the accuracy of the forecast of fruitbody formation. Fungal data were collected from two locations in Western Hungary between 2015 and 2020. The ANN was the commonly used algorithm for classification problems: feed-forward multilayer perceptrons with a backpropagation algorithm to estimate the binary (Yes/No) classification of fruitbody appearance in natural and undisturbed forests. The verification indices resulted in two outcomes: however, development is most often studied by genus level, we established a more successful, new model per species. Furthermore, the algorithm is able to successfully estimate fruitbody formations with medium to high accuracy (60–80%). Therefore, this work was the first to reliably utilise the ANN approach of estimating fruitbody occurrence based on meteorological parameters of mycorrhizal specified with an extended vegetation period. These findings can assist in field mycological investigations that utilize sporocarp occurrences to ascertain species abundance.
AbstractList The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural network (ANN) to forecast fruitbody occurrence in mycorrhizal species of Russula and Amanita , utilizing meteorological factors and validating the accuracy of the forecast of fruitbody formation. Fungal data were collected from two locations in Western Hungary between 2015 and 2020. The ANN was the commonly used algorithm for classification problems: feed-forward multilayer perceptrons with a backpropagation algorithm to estimate the binary (Yes/No) classification of fruitbody appearance in natural and undisturbed forests. The verification indices resulted in two outcomes: however, development is most often studied by genus level, we established a more successful, new model per species. Furthermore, the algorithm is able to successfully estimate fruitbody formations with medium to high accuracy (60–80%). Therefore, this work was the first to reliably utilise the ANN approach of estimating fruitbody occurrence based on meteorological parameters of mycorrhizal specified with an extended vegetation period. These findings can assist in field mycological investigations that utilize sporocarp occurrences to ascertain species abundance.
Abstract The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural network (ANN) to forecast fruitbody occurrence in mycorrhizal species of Russula and Amanita, utilizing meteorological factors and validating the accuracy of the forecast of fruitbody formation. Fungal data were collected from two locations in Western Hungary between 2015 and 2020. The ANN was the commonly used algorithm for classification problems: feed-forward multilayer perceptrons with a backpropagation algorithm to estimate the binary (Yes/No) classification of fruitbody appearance in natural and undisturbed forests. The verification indices resulted in two outcomes: however, development is most often studied by genus level, we established a more successful, new model per species. Furthermore, the algorithm is able to successfully estimate fruitbody formations with medium to high accuracy (60–80%). Therefore, this work was the first to reliably utilise the ANN approach of estimating fruitbody occurrence based on meteorological parameters of mycorrhizal specified with an extended vegetation period. These findings can assist in field mycological investigations that utilize sporocarp occurrences to ascertain species abundance.
The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural network (ANN) to forecast fruitbody occurrence in mycorrhizal species of Russula and Amanita, utilizing meteorological factors and validating the accuracy of the forecast of fruitbody formation. Fungal data were collected from two locations in Western Hungary between 2015 and 2020. The ANN was the commonly used algorithm for classification problems: feed-forward multilayer perceptrons with a backpropagation algorithm to estimate the binary (Yes/No) classification of fruitbody appearance in natural and undisturbed forests. The verification indices resulted in two outcomes: however, development is most often studied by genus level, we established a more successful, new model per species. Furthermore, the algorithm is able to successfully estimate fruitbody formations with medium to high accuracy (60-80%). Therefore, this work was the first to reliably utilise the ANN approach of estimating fruitbody occurrence based on meteorological parameters of mycorrhizal specified with an extended vegetation period. These findings can assist in field mycological investigations that utilize sporocarp occurrences to ascertain species abundance.
The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural network (ANN) to forecast fruitbody occurrence in mycorrhizal species of Russula and Amanita, utilizing meteorological factors and validating the accuracy of the forecast of fruitbody formation. Fungal data were collected from two locations in Western Hungary between 2015 and 2020. The ANN was the commonly used algorithm for classification problems: feed-forward multilayer perceptrons with a backpropagation algorithm to estimate the binary (Yes/No) classification of fruitbody appearance in natural and undisturbed forests. The verification indices resulted in two outcomes: however, development is most often studied by genus level, we established a more successful, new model per species. Furthermore, the algorithm is able to successfully estimate fruitbody formations with medium to high accuracy (60-80%). Therefore, this work was the first to reliably utilise the ANN approach of estimating fruitbody occurrence based on meteorological parameters of mycorrhizal specified with an extended vegetation period. These findings can assist in field mycological investigations that utilize sporocarp occurrences to ascertain species abundance.The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural network (ANN) to forecast fruitbody occurrence in mycorrhizal species of Russula and Amanita, utilizing meteorological factors and validating the accuracy of the forecast of fruitbody formation. Fungal data were collected from two locations in Western Hungary between 2015 and 2020. The ANN was the commonly used algorithm for classification problems: feed-forward multilayer perceptrons with a backpropagation algorithm to estimate the binary (Yes/No) classification of fruitbody appearance in natural and undisturbed forests. The verification indices resulted in two outcomes: however, development is most often studied by genus level, we established a more successful, new model per species. Furthermore, the algorithm is able to successfully estimate fruitbody formations with medium to high accuracy (60-80%). Therefore, this work was the first to reliably utilise the ANN approach of estimating fruitbody occurrence based on meteorological parameters of mycorrhizal specified with an extended vegetation period. These findings can assist in field mycological investigations that utilize sporocarp occurrences to ascertain species abundance.
The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural network (ANN) to forecast fruitbody occurrence in mycorrhizal species of Russula and Amanita, utilizing meteorological factors and validating the accuracy of the forecast of fruitbody formation. Fungal data were collected from two locations in Western Hungary between 2015 and 2020. The ANN was the commonly used algorithm for classification problems: feed-forward multilayer perceptrons with a backpropagation algorithm to estimate the binary (Yes/No) classification of fruitbody appearance in natural and undisturbed forests. The verification indices resulted in two outcomes: however, development is most often studied by genus level, we established a more successful, new model per species. Furthermore, the algorithm is able to successfully estimate fruitbody formations with medium to high accuracy (60–80%). Therefore, this work was the first to reliably utilise the ANN approach of estimating fruitbody occurrence based on meteorological parameters of mycorrhizal specified with an extended vegetation period. These findings can assist in field mycological investigations that utilize sporocarp occurrences to ascertain species abundance.
ArticleNumber 278
Author Pál-Fám, Ferenc
Jócsák, Ildikó
Somfalvi-Tóth, Katalin
Author_xml – sequence: 1
  givenname: Katalin
  orcidid: 0000-0001-7404-6704
  surname: Somfalvi-Tóth
  fullname: Somfalvi-Tóth, Katalin
  email: somfalvi-toth.katalin@uni-mate.hu
  organization: Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences
– sequence: 2
  givenname: Ildikó
  orcidid: 0000-0002-1958-6377
  surname: Jócsák
  fullname: Jócsák, Ildikó
  organization: Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences
– sequence: 3
  givenname: Ferenc
  orcidid: 0000-0002-1545-7885
  surname: Pál-Fám
  fullname: Pál-Fám, Ferenc
  organization: Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38168546$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAQtVArWkp_gAWKxIZNqJ-JvUKoolCpUjfA1vIrqS-JfbGTVvfv69yU0naBNzOaOXPOeGbegIMQgwPgHYKfECT8LFPEBK8hJjWDDeE1fwWOMaSsxgTjgyf-ETjNeQPLY1hQJF6DI8JRwxltjkH_yyXfeaMmH0OVp9nuquLcxLtqVCbFbg69GqouzX7SsSS7mMYVbFSotKu2yVlvJmcrvatUmhY2X0qCm9PeTHcx_X4LDjs1ZHf6YE_Az4uvP86_11fX3y7Pv1zVhgo81dpwokXnuIGtNZpx3hqOtLJIYaoEYVQvaWot5LREKXcCMY1tq4xVTJMTcLny2qg2cpv8qNJORuXlPhBTL5cezeCkYlhZomnTEkpbUhS4aDrhIIICw4YXrs8r13bWo7PGhan86Bnp80zwN7KPtxLBtikDJoXh4wNDin9mlyc5-mzcMKjg4pwlFggiAdt2EfvwArqJcwplVgUFBWxaBGFBvX_a0mMvfxdaAHgFlN3lnFz3CEFQLocj18OR5XDk_nDkok3WolzAoXfpn_Z_qu4BhNPGwQ
Cites_doi 10.1016/S0007-1536(87)80151-1
10.1007/s13225-018-0405-9
10.1080/19942060.2018.1526119
10.1016/j.jobe.2017.08.008
10.47371/mycosci.2020.08.003
10.1016/j.agrformet.2016.07.013
10.11646/phytotaxa.440.1.3
10.1023/a:1008074223811
10.1017/s0953756205003953
10.1016/0925-2312(91)90023-5
10.1111/jfpe.12849
10.11975/j.issn.1002-6819.2018.07.033
10.1111/j.1745-4557.2004.00642.x
10.1016/j.fbr.2018.02.003
10.1186/1472-6785-2-7
10.1007/s00572-018-0877-1
10.13427/j.cnki.njyi.2021.02.005
10.1126/science.abj5479
10.1007/s00704-018-2702-3
10.1016/j.funeco.2016.05.008
10.1016/s0378-1127(01)00672-7
10.1139/B08-094
10.1111/j.1365-2958.2007.05711.x
10.1007/s10310-014-0459-9
10.1051/forest:2007089
10.3906/tar-1408-28
10.3390/biology11050770
10.13031/2013.28168
10.1016/j.agrformet.2015.07.001
10.1007/s11947-010-0401-x
10.1080/0031305.1995.10476113
10.5281/zenodo.146765952
10.1016/j.scitotenv.2004.01.06
10.1016/j.compag.2019.104929
10.3390/biology11040531
10.1016/j.compag.2022.107015
10.1016/j.scitotenv.2019.04.009
10.5943/mycosphere/4/5/3
10.1016/0893-6080(90)90049-Q
10.1139/er-2018-0034
10.1109/72.896792
10.1016/j.comcom.2020.04.004
10.1023/a:1026575418649
10.5402/2012/324194
10.1038/s41598-019-53797-9
10.1088/1742-6596/1524/1/012147
10.3390/d14020101
10.1007/BF02478259
10.1175/1520-0477(1998)079<1855:ANNMTP>2.0.CO;2
10.1038/s41598-020-69157-x
10.1111/gcb.16424
10.1109/72.97934
10.13031/2013.28255
10.1007/s42974-020-00031-6
10.1016/j.funeco.2013.10.006
10.1016/j.ecolind.2020.106160
10.5194/hess-11-1633-2007
10.1016/j.funeco.2022.101166
10.1016/j.biosystemseng.2018.10.002
10.1109/SNLP.2009.5340935
10.1007/s10457-012-9548-y
10.1016/j.foodchem.2015.04.09
10.1007/978-94-011-2414-0_2
10.3785/j.issn.1008-9209.2016.04.113
10.1145/3375959.3375982
10.1109/isesd.2016.7886713
10.1201/9781315374116
10.1109/icccnt.2018.8494024
10.13031/aim.201900505
10.1007/978-3-540-40046-2_5
10.1007/978-3-030-36841-8
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-50638-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE


MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 21
ExternalDocumentID oai_doaj_org_article_a52ad3b467344731a2896f9e01092068
PMC10761683
38168546
10_1038_s41598_023_50638_8
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c492t-bc83b9fe8c07dcb5887c81bad1a24a9354bb9fe4dd084ad148e915b2d7acda5b3
IEDL.DBID M2P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001163663800087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:32:28 EST 2025
Tue Nov 04 02:06:22 EST 2025
Sun Nov 09 11:41:51 EST 2025
Mon Oct 06 17:47:59 EDT 2025
Thu Apr 03 07:08:00 EDT 2025
Sat Nov 29 01:56:46 EST 2025
Fri Feb 21 02:39:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-bc83b9fe8c07dcb5887c81bad1a24a9354bb9fe4dd084ad148e915b2d7acda5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7404-6704
0000-0002-1958-6377
0000-0002-1545-7885
OpenAccessLink https://www.proquest.com/docview/2909067100?pq-origsite=%requestingapplication%
PMID 38168546
PQID 2909067100
PQPubID 2041939
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_a52ad3b467344731a2896f9e01092068
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10761683
proquest_miscellaneous_2910190778
proquest_journals_2909067100
pubmed_primary_38168546
crossref_primary_10_1038_s41598_023_50638_8
springer_journals_10_1038_s41598_023_50638_8
PublicationCentury 2000
PublicationDate 2024-01-02
PublicationDateYYYYMMDD 2024-01-02
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Kattenborn, Eichel, Fassnacht (CR27) 2019; 9
Siller, Dima, Albert, Vasas, Fodor, Pál-Fám, Bratek, Zagyva (CR70) 2006; 45
Pál-Fám (CR22) 2001; 88
Cui, Cai, Yang (CR66) 2021; 62
Heinemann, Hughes, Morrow, Sommer, Beelman, Wuest (CR52) 1994; 37
CR38
De-Wei (CR75) 2005; 109
Liu, Li, Xiao (CR13) 2018; 61
CR79
Jeatrakul, Wong (CR86) 2009; 2009
Supriyanto Noguchi, Ahamed, Rani, Sakurai, Nasution, Watanabe (CR34) 2018
Siller, Kutszegi, Takács, Varga, Zs, Turcsányi, Ódor, Dima (CR71) 2013; 4
CR77
CR76
Olden (CR31) 2000; 436
CR74
CR73
Runge (CR15) 1986; 52
Alkronz, Moghayer, Meimeh, Gazzaz (CR59) 2019; 3
Pohan, Warsito, Suryono (CR40) 2020; 1524
McCulloch, Pitts (CR25) 1943; 5
Wu, Wang, Zhang, Du (CR88) 2012; 2012
Wolski, Kruk (CR28) 2020; 113
Boddy, Büntgen, Egli, Gange, Heegaard, Kirk, Kauserud (CR2) 2014; 10
Wang, Feng, Zheng, Sun, Niu, Chen, Zhang, Wang (CR54) 2018; 34
Murtagh (CR85) 1991; 2
Murakami (CR21) 1987; 89
Elizondo, McClendon, Hoogenboom (CR30) 1994; 37
Osono (CR23) 2015; 20
Alvarado, Gasch-Illescas, Morel, Dagher-Kharrat, Moreno, Manjón, Carteret, Bellanger, Rapor, Gelardi, Moreau (CR69) 2022; 11
Cao, Wu, Yu (CR5) 2021; 372
Talley, Coley, Kursar (CR7) 2002; 2
Ghazvinei, Hassanpour, Mosavi, Yusof, bin W, Alizamir M, Shamshirband S, Chau K (CR33) 2018; 12
Sakamoto (CR1) 2018; 32
Gholami, Torkaman, Dalir (CR81) 2019; 137
Coutinho, Thompson, Cabral, Paranhos, Dutilh, Thompson (CR35) 2019
CR45
Baltacıoğlu, Bayındırlı, Severcan, Severcan (CR48) 2015; 187
CR43
Liu, Liu, Kumla, Lumyong (CR65) 2022; 14
CR84
Mohebbi, Fathi, Shahidi (CR46) 2010; 4
Vizzini, Cingarlini, Sartori, Maraia, Setti, Poumarat, Kudzma, Dovana (CR68) 2020; 440
CR83
Park, Chon, Kwak, Lek (CR26) 2004; 327
Primicia, Camarero, Martínez de Aragón, de-Miguel S, Bonet JA (CR64) 2016; 228
Solanki, Kumar, Sharma, Gehlot, Singh (CR63) 2016; 16
KüÇükönder, Boyaci, Akyüz (CR32) 2016; 40
Ardabili, Najafi, Ghaebi, Shamshirband, Mostafaeipour (CR44) 2017; 13
Vogt-Schilb, Richard, Malaval, Rapior, Fons, Bourgade, Moreau (CR3) 2022; 60
Peel, Finlayson, McMahon (CR78) 2007; 11
Baragatti, Grollemund, Montpied, Dupouey, Gravier, Murat, Le Tacon (CR55) 2019; 29
Lidasan, Tagacay (CR41) 2018; 15
Salvador, Martins, Vicente, Neves, Arteiro, Caldeira (CR47) 2012; 87
CR19
CR18
Busch, Braus (CR4) 2007; 64
Liu, Peng, Work, Candau, DesRochers, Kneeshaw (CR11) 2018; 26
CR14
CR58
CR12
Zhang, Chen, Xu, Xue, Ren (CR29) 2020; 10
Bayat, Ghorbanpour, Zare, Jaafari, Thai Pham (CR39) 2019; 164
Stine (CR80) 1995; 49
CR51
CR93
Schilling, Carroll, Al-Ajlouni (CR87) 2001; 12
Laganà, Angiolini, Loppi, Salerni, Perini, Barluzzi, De Dominicis (CR10) 2002; 169
CR90
Taye, Martínez-Peña, Bonet, Martínez de Aragón, de-Miguel S (CR9) 2016; 23
Sun, Zhao, Ji, Zhu, Ma (CR57) 2021; 43
Ooi, Teoh, Ong (CR91) 2008; 2008
Aljojo, Dawood, Zaqout, Salem (CR60) 2021; 5
Specht (CR89) 1991; 2
Łuszczyński, Adamska, Wojciechowska, Czerwik-Marcinkowska (CR24) 2022; 11
Livingstone, Manallack, Tetko (CR82) 1997; 11
Hernández-Rodríguez, de-Miguel S, Pukkala T, Oria-de-Rueda JA, Martín-Pinto P (CR62) 2015; 213
Kutszegi, Siller, Dima, Zs, Varga, Takács, Turcsányi, Bidló, Ódor (CR72) 2021; 22
Krebs, Carrier, Boutin, Boonstra, Hofer (CR8) 2008; 86
Cui, Cai, Tang, Liu, Yang (CR67) 2018; 91
Hsieh, Tang (CR37) 1998; 79
Verma, Dutta (CR42) 2018; 8
Yin, Yi, Hu (CR50) 2022; 198
Chen, Ting (CR53) 2004; 27
Runge (CR16) 1989; 55
Steidinger, Büntgen, Stobbe, Tegel, Sproll, Haeni, Peter (CR56) 2022; 28
CR20
Krisai-Greilhuber (CR17) 1992
CR61
Specht (CR92) 1990; 3
Thippa, Swarna Priya, Parimala, Chowdhary, Praveen Kumar, Hakak, Khan (CR36) 2020
Bonet, Pukkala, Fischer, Palahí, Aragón, Colinas (CR6) 2008; 65
Omari, Behroozi-Khazaei, Sharifian (CR49) 2018
50638_CR79
S-Y Ooi (50638_CR91) 2008; 2008
50638_CR38
JU Lidasan (50638_CR41) 2018; 15
S Pohan (50638_CR40) 2020; 1524
RG Thippa (50638_CR36) 2020
M Baragatti (50638_CR55) 2019; 29
GJ Wolski (50638_CR28) 2020; 113
FS Ardabili (50638_CR44) 2017; 13
I Siller (50638_CR71) 2013; 4
H Vogt-Schilb (50638_CR3) 2022; 60
DF Specht (50638_CR92) 1990; 3
W McCulloch (50638_CR25) 1943; 5
JW Sun (50638_CR57) 2021; 43
V Gholami (50638_CR81) 2019; 137
DJ Livingstone (50638_CR82) 1997; 11
M Mohebbi (50638_CR46) 2010; 4
A Vizzini (50638_CR68) 2020; 440
50638_CR73
50638_CR74
RJ Schilling (50638_CR87) 2001; 12
50638_CR76
50638_CR77
H KüÇükönder (50638_CR32) 2016; 40
H Baltacıoğlu (50638_CR48) 2015; 187
RA Stine (50638_CR80) 1995; 49
P Jeatrakul (50638_CR86) 2009; 2009
SK Verma (50638_CR42) 2018; 8
DA Elizondo (50638_CR30) 1994; 37
Y Murakami (50638_CR21) 1987; 89
PT Ghazvinei (50638_CR33) 2018; 12
T Osono (50638_CR23) 2015; 20
DS Solanki (50638_CR63) 2016; 16
ZM Taye (50638_CR9) 2016; 23
Y Wu (50638_CR88) 2012; 2012
R Supriyanto Noguchi (50638_CR34) 2018
BS Steidinger (50638_CR56) 2022; 28
LI De-Wei (50638_CR75) 2005; 109
50638_CR83
A Runge (50638_CR15) 1986; 52
50638_CR84
50638_CR43
YS Park (50638_CR26) 2004; 327
50638_CR45
A Omari (50638_CR49) 2018
P Alvarado (50638_CR69) 2022; 11
I Krisai-Greilhuber (50638_CR17) 1992
J Łuszczyński (50638_CR24) 2022; 11
50638_CR14
50638_CR58
A Runge (50638_CR16) 1989; 55
F Pál-Fám (50638_CR22) 2001; 88
HH Chen (50638_CR53) 2004; 27
I Siller (50638_CR70) 2006; 45
D Liu (50638_CR13) 2018; 61
50638_CR18
MC Peel (50638_CR78) 2007; 11
50638_CR19
WW Hsieh (50638_CR37) 1998; 79
DF Specht (50638_CR89) 1991; 2
Y Cao (50638_CR5) 2021; 372
C Zhang (50638_CR29) 2020; 10
JA Bonet (50638_CR6) 2008; 65
SM Talley (50638_CR7) 2002; 2
Y Sakamoto (50638_CR1) 2018; 32
ES Alkronz (50638_CR59) 2019; 3
50638_CR90
CJ Krebs (50638_CR8) 2008; 86
50638_CR93
50638_CR51
PH Heinemann (50638_CR52) 1994; 37
C Salvador (50638_CR47) 2012; 87
F Murtagh (50638_CR85) 1991; 2
50638_CR12
H Yin (50638_CR50) 2022; 198
A Laganà (50638_CR10) 2002; 169
FH Coutinho (50638_CR35) 2019
YS Liu (50638_CR65) 2022; 14
M Bayat (50638_CR39) 2019; 164
JD Olden (50638_CR31) 2000; 436
YY Cui (50638_CR66) 2021; 62
M Hernández-Rodríguez (50638_CR62) 2015; 213
Z Liu (50638_CR11) 2018; 26
FY Wang (50638_CR54) 2018; 34
I Primicia (50638_CR64) 2016; 228
MS Aljojo (50638_CR60) 2021; 5
50638_CR61
YY Cui (50638_CR67) 2018; 91
G Kutszegi (50638_CR72) 2021; 22
L Boddy (50638_CR2) 2014; 10
S Busch (50638_CR4) 2007; 64
50638_CR20
T Kattenborn (50638_CR27) 2019; 9
References_xml – ident: CR45
– volume: 89
  start-page: 187
  issue: 2
  year: 1987
  end-page: 193
  ident: CR21
  article-title: Spatial distribution of Russula species in Castanopsis cuspidata forest
  publication-title: Trans. Br. Mycol. Soc.
  doi: 10.1016/S0007-1536(87)80151-1
– volume: 45
  start-page: 3
  issue: 1–3
  year: 2006
  end-page: 158
  ident: CR70
  article-title: Protected Macrofungi in Hungary
  publication-title: Clusiana
– volume: 91
  start-page: 5
  year: 2018
  end-page: 230
  ident: CR67
  article-title: The family : molecular phylogeny, higher-rank taxonomy and the species in China
  publication-title: Fungal Divers.
  doi: 10.1007/s13225-018-0405-9
– ident: CR74
– ident: CR93
– volume: 12
  start-page: 738
  issue: 1
  year: 2018
  end-page: 749
  ident: CR33
  article-title: Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network
  publication-title: Eng. Appl. Comput. Fluid Mech.
  doi: 10.1080/19942060.2018.1526119
– volume: 13
  start-page: 309
  year: 2017
  end-page: 318
  ident: CR44
  article-title: A novel enhanced exergy method in analyzing HVAC system using soft computing approaches: A case study on mushroom growing hall
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2017.08.008
– volume: 62
  start-page: 29
  issue: 1
  year: 2021
  end-page: 35
  ident: CR66
  article-title: , a new species with a marginate basal bulb
  publication-title: Mycoscience
  doi: 10.47371/mycosci.2020.08.003
– ident: CR51
– ident: CR12
– volume: 228
  start-page: 339
  year: 2016
  end-page: 348
  ident: CR64
  article-title: Linkages between climate, seasonal wood formation and mycorrhizal mushroom yields
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.07.013
– volume: 440
  start-page: 55
  issue: 1
  year: 2020
  end-page: 68
  ident: CR68
  article-title: Assessing the taxonomic status of Amanita citrina var. intermedia (Basidiomycota, Agaricales)
  publication-title: Phytotaxa
  doi: 10.11646/phytotaxa.440.1.3
– volume: 11
  start-page: 135
  issue: 2
  year: 1997
  end-page: 142
  ident: CR82
  article-title: Data modelling with neural networks: advantages and limitations
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1023/a:1008074223811
– ident: CR61
– volume: 109
  start-page: 1235
  issue: 11
  year: 2005
  end-page: 1242
  ident: CR75
  article-title: Release and dispersal of basidiospores from Amanita muscaria var. alba and their infiltration into a residence
  publication-title: Mycol. Res.
  doi: 10.1017/s0953756205003953
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 6
  ident: CR91
  article-title: Compatibility of biometric strengthening with probabilistic neural network. In , 2008. ISBAST 2008
  publication-title: International Symposium on Biometrics and Security Technologies
– ident: CR77
– volume: 2
  start-page: 183
  issue: 5–6
  year: 1991
  end-page: 197
  ident: CR85
  article-title: Multilayer perceptrons for classification and regression
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(91)90023-5
– ident: CR58
– ident: CR84
– year: 2018
  ident: CR49
  article-title: Drying kinetic and artificial neural network modeling of mushroom drying process in microwave-hot air dryer
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.12849
– volume: 34
  start-page: 256
  issue: 07
  year: 2018
  end-page: 263
  ident: CR54
  article-title: Design and experiment of automatic sorting and grading system based on machine vision for white Agaricus bisporus
  publication-title: Trans. Chin. Soc. Agric. Eng.
  doi: 10.11975/j.issn.1002-6819.2018.07.033
– volume: 27
  start-page: 352
  issue: 5
  year: 2004
  end-page: 365
  ident: CR53
  article-title: The development of a machine vision system for shiitake grading
  publication-title: J. Food Qual.
  doi: 10.1111/j.1745-4557.2004.00642.x
– volume: 32
  start-page: 236
  year: 2018
  end-page: 248
  ident: CR1
  article-title: Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi
  publication-title: Fungal Biol. Rev.
  doi: 10.1016/j.fbr.2018.02.003
– volume: 2
  start-page: 7
  year: 2002
  ident: CR7
  article-title: The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West
  publication-title: BMC Ecology
  doi: 10.1186/1472-6785-2-7
– volume: 29
  start-page: 113
  year: 2019
  end-page: 125
  ident: CR55
  article-title: Influence of annual climatic variations, climate changes, and sociological factors on the production of the Périgord black truffle (Tuber melanosporum Vittad.) from 1903–1904 to 1988–1989 in the Vaucluse (France)
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-018-0877-1
– volume: 43
  start-page: 28
  issue: 02
  year: 2021
  end-page: 33
  ident: CR57
  article-title: Detection and diameter measurement method of agaricus bisporus based on “Submerged Method
  publication-title: J. Agric. Mech. Res.
  doi: 10.13427/j.cnki.njyi.2021.02.005
– volume: 372
  start-page: 1160
  issue: 6547
  year: 2021
  end-page: 1160
  ident: CR5
  article-title: Include macrofungi in biodiversity targets
  publication-title: Science
  doi: 10.1126/science.abj5479
– volume: 137
  start-page: 1939
  year: 2019
  end-page: 1948
  ident: CR81
  article-title: Simulation of precipitation time series using tree-rings, earlywood vessel features, and artificial neural network
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-018-2702-3
– volume: 23
  start-page: 30
  year: 2016
  end-page: 41
  ident: CR9
  article-title: Meteorological conditions and site characteristics driving edible mushroom production in Pinus pinaster forests of Central Spain
  publication-title: Fungal Ecology
  doi: 10.1016/j.funeco.2016.05.008
– volume: 169
  start-page: 187
  issue: 3
  year: 2002
  end-page: 202
  ident: CR10
  article-title: Periodicity, fluctuations and successions of macrofungi in fir forests (Abies alba Miller) in Tuscany, Italy
  publication-title: For. Ecol. Manag.
  doi: 10.1016/s0378-1127(01)00672-7
– volume: 86
  start-page: 1497
  issue: 12
  year: 2008
  end-page: 1502
  ident: CR8
  article-title: Mushroom crops in relation to weather in the southwestern Yukon
  publication-title: Botany
  doi: 10.1139/B08-094
– ident: CR19
– volume: 64
  start-page: 873
  issue: 4
  year: 2007
  end-page: 876
  ident: CR4
  article-title: How to build a fungal fruit body: From uniform cells to specialized tissue
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2007.05711.x
– volume: 20
  start-page: 60
  issue: 1
  year: 2015
  end-page: 68
  ident: CR23
  article-title: Diversity, resource utilization, and phenology of fruiting bodies of litter-decomposing macrofungi in subtropical, temperate, and subalpine forests
  publication-title: J. For. Res.
  doi: 10.1007/s10310-014-0459-9
– volume: 65
  start-page: 206
  year: 2008
  ident: CR6
  article-title: Empirical models for predicting the production of wild mushrooms in Scots pine ( L.) forests in the Central Pyrenees
  publication-title: Ann. For. Sci.
  doi: 10.1051/forest:2007089
– volume: 52
  start-page: 429
  issue: 2
  year: 1986
  end-page: 437
  ident: CR15
  article-title: Pilzsukzession auf Kiefernstümpfen II
  publication-title: Zeitschrift für Mykologie
– volume: 40
  start-page: 9
  issue: 2
  year: 2016
  ident: CR32
  article-title: A modeling study with an artificial neural network: Developing estimationmodels for the tomato plant leaf area
  publication-title: Turk. J. Agric. For.
  doi: 10.3906/tar-1408-28
– volume: 11
  start-page: 770
  issue: 5
  year: 2022
  ident: CR69
  article-title: section species in the mediterranean basin: Destroying angels reviewed
  publication-title: Biology
  doi: 10.3390/biology11050770
– volume: 37
  start-page: 981
  issue: 3
  year: 1994
  end-page: 988
  ident: CR30
  article-title: Neural network models for predicting flowering and physiological maturity of soybean
  publication-title: Trans. ASAE
  doi: 10.13031/2013.28168
– volume: 213
  start-page: 173
  year: 2015
  end-page: 182
  ident: CR62
  article-title: Climate-sensitive models for mushroom yields and diversity in Cistus ladanifer scrublands
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.07.001
– volume: 8
  start-page: 94
  issue: 1
  year: 2018
  end-page: 100
  ident: CR42
  article-title: Mushroom classification using ANN and ANFIS algorithm
  publication-title: IOSR J. Eng.
– volume: 4
  start-page: 603
  issue: 4
  year: 2010
  end-page: 609
  ident: CR46
  article-title: Genetic algorithm-artificial neural network modeling of moisture and oil content of pretreated fried mushroom
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-010-0401-x
– volume: 49
  start-page: 53
  issue: 1
  year: 1995
  end-page: 56
  ident: CR80
  article-title: Graphical interpretation of variance inflation factors
  publication-title: Am. Stat.
  doi: 10.1080/0031305.1995.10476113
– volume: 15
  start-page: 52
  issue: 5
  year: 2018
  end-page: 57
  ident: CR41
  article-title: Mushroom recognition using neural network
  publication-title: Int. J. Comput. Sci. Iss.
  doi: 10.5281/zenodo.146765952
– volume: 327
  start-page: 105
  issue: 1–3
  year: 2004
  end-page: 122
  ident: CR26
  article-title: Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks
  publication-title: Sci. Tot. Environ.
  doi: 10.1016/j.scitotenv.2004.01.06
– volume: 164
  year: 2019
  ident: CR39
  article-title: Application of artificial neural networks for predicting tree survival and mortality in the Hyrcanian forest of Iran
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104929
– volume: 11
  start-page: 531
  issue: 4
  year: 2022
  ident: CR24
  article-title: Diversity Patterns of Macrofungi in Xerothermic Grasslands from the Nida Basin (Małopolska Upland, Southern Poland): A Case Study
  publication-title: Biology
  doi: 10.3390/biology11040531
– volume: 198
  year: 2022
  ident: CR50
  article-title: Computer vision and machine learning applied in the mushroom industry: A critical review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107015
– volume: 55
  start-page: 17
  issue: 1
  year: 1989
  end-page: 30
  ident: CR16
  article-title: Elfjährige Pilzkundliche Untersuchungen im nordöstlichen Sauerland
  publication-title: Zeitschrift für Mykologie
– ident: CR18
– ident: CR43
– volume: 3
  start-page: 1
  issue: 2
  year: 2019
  end-page: 5
  ident: CR59
  article-title: Classification of mushroom using artificial neural network
  publication-title: Int. J. Acad. Appl. Res.
– volume: 16
  start-page: 986
  issue: 2
  year: 2016
  end-page: 989
  ident: CR63
  article-title: Weather prerequisites for fructification of mushroom
  publication-title: Plant Arch.
– year: 2019
  ident: CR35
  article-title: Modelling the influence of environmental parameters over marine planktonic microbial communities using artificial neural networks
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.04.009
– ident: CR14
– volume: 4
  start-page: 871
  year: 2013
  end-page: 924
  ident: CR71
  article-title: Sixty-one macrofungi species new to Hungary in Őrség National Park
  publication-title: Mycosphere
  doi: 10.5943/mycosphere/4/5/3
– volume: 88
  start-page: 145
  issue: 1–2
  year: 2001
  end-page: 172
  ident: CR22
  article-title: Review of methods used in macrofungal coenology /In Hungarian/
  publication-title: Botanikai Közlemények
– volume: 3
  start-page: 109
  issue: 1
  year: 1990
  end-page: 118
  ident: CR92
  article-title: Probabilistic neural networks
  publication-title: Neural networks
  doi: 10.1016/0893-6080(90)90049-Q
– volume: 26
  start-page: 339
  issue: 4
  year: 2018
  end-page: 350
  ident: CR11
  article-title: Application of machine-learning methods in forest ecology: Recent progress and future challenges
  publication-title: Environ. Rev.
  doi: 10.1139/er-2018-0034
– volume: 12
  start-page: 1
  issue: 1
  year: 2001
  end-page: 15
  ident: CR87
  article-title: Approximation of nonlinear systems with radial basis function neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.896792
– year: 2020
  ident: CR36
  article-title: A deep neural networks based model for uninterrupted marine environment monitoring
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.04.004
– volume: 436
  start-page: 131
  issue: 1/3
  year: 2000
  end-page: 143
  ident: CR31
  article-title: An artificial neural network approach for studying phytoplankton succession
  publication-title: Hydrobiologia
  doi: 10.1023/a:1026575418649
– volume: 2012
  year: 2012
  ident: CR88
  article-title: Using radial basis function networks for function approximation and classification
  publication-title: Int. Schol. Res. Not.
  doi: 10.5402/2012/324194
– ident: CR79
– volume: 9
  start-page: 17656
  issue: 1
  year: 2019
  ident: CR27
  article-title: Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53797-9
– volume: 1524
  year: 2020
  ident: CR40
  article-title: Backpropagation artificial neural network for prediction plant seedling growth
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/1524/1/012147
– volume: 14
  start-page: 101
  issue: 2
  year: 2022
  ident: CR65
  article-title: Two New Species in Section from Thailand
  publication-title: Diversity
  doi: 10.3390/d14020101
– year: 1992
  ident: CR17
  publication-title: Die Makromyceten im Raum von Wien
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  end-page: 133
  ident: CR25
  article-title: A logical calculus of ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 79
  start-page: 1855
  issue: 9
  year: 1998
  end-page: 1870
  ident: CR37
  article-title: Applying neural network models to prediction and data analysis in meteorology and oceanography
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1998)079<1855:ANNMTP>2.0.CO;2
– volume: 10
  start-page: 12230
  issue: 1
  year: 2020
  ident: CR29
  article-title: Improving prediction of rare species’ distribution from community data
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69157-x
– volume: 28
  start-page: 7376
  issue: 24
  year: 2022
  end-page: 7390
  ident: CR56
  article-title: The fall of the summer truffle: Recurring hot, dry summers result in declining fruitbody production of Tuber aestivum in Central Europe
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.16424
– ident: CR73
– volume: 2
  start-page: 568
  issue: 6
  year: 1991
  end-page: 576
  ident: CR89
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.97934
– ident: CR90
– ident: CR38
– volume: 37
  start-page: 1671
  issue: 5
  year: 1994
  end-page: 1677
  ident: CR52
  article-title: Grading of mushrooms using a machine vision system
  publication-title: Trans. ASAE
  doi: 10.13031/2013.28255
– volume: 22
  start-page: 13
  year: 2021
  end-page: 28
  ident: CR72
  article-title: Revealing hidden drivers of macrofungal species richness by analyzing fungal guilds in temperate forests, West Hungary
  publication-title: Community Ecol.
  doi: 10.1007/s42974-020-00031-6
– volume: 10
  start-page: 20
  year: 2014
  end-page: 33
  ident: CR2
  article-title: Climate variation effects on fungal fruiting
  publication-title: Fungal Ecol.
  doi: 10.1016/j.funeco.2013.10.006
– volume: 113
  year: 2020
  ident: CR28
  article-title: Determination of plant communities based on bryophytes: The combined use of Kohonen artificial neural network and indicator species analysis
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2020.106160
– ident: CR76
– ident: CR83
– volume: 61
  start-page: 145
  issue: 06
  year: 2018
  ident: CR13
  article-title: Survey methods and indicator system of assessment for macrofungal diversity in China
  publication-title: J. Nanjing For. Univ.
– volume: 11
  start-page: 1633
  year: 2007
  end-page: 1644
  ident: CR78
  article-title: Updated world map of the Köppen–Geiger climate classification
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-11-1633-2007
– volume: 60
  year: 2022
  ident: CR3
  article-title: Climate-induced long-term changes in the phenology of Mediterranean fungi
  publication-title: Fungal Ecol.
  doi: 10.1016/j.funeco.2022.101166
– ident: CR20
– year: 2018
  ident: CR34
  article-title: Artificial neural networks model for estimating growth of polyculture microalgae in an open raceway pond
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.10.002
– volume: 5
  start-page: 128
  issue: 3
  year: 2021
  end-page: 137
  ident: CR60
  article-title: ANN for mushroom prediction
  publication-title: Int. J. Acad. Multidiscip. Res.
– volume: 2009
  start-page: 111
  year: 2009
  end-page: 115
  ident: CR86
  article-title: Comparing the performance of different neural networks for binary classification problems
  publication-title: Eighth International Symposium on Natural Language Processing, Bangkok, Thailand
  doi: 10.1109/SNLP.2009.5340935
– volume: 87
  start-page: 295
  issue: 2
  year: 2012
  end-page: 302
  ident: CR47
  article-title: Modelling molecular and inorganic data of Amanita ponderosa mushrooms using artificial neural networks
  publication-title: Agrofor. Syst.
  doi: 10.1007/s10457-012-9548-y
– volume: 187
  start-page: 263
  year: 2015
  end-page: 269
  ident: CR48
  article-title: Effect of thermal treatment on secondary structure and conformational change of mushroom polyphenol oxidase (PPO) as food quality related enzyme: A FTIR study
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.04.09
– volume: 2
  start-page: 183
  issue: 5–6
  year: 1991
  ident: 50638_CR85
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(91)90023-5
– year: 2018
  ident: 50638_CR34
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.10.002
– volume: 213
  start-page: 173
  year: 2015
  ident: 50638_CR62
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.07.001
– volume: 2009
  start-page: 111
  year: 2009
  ident: 50638_CR86
  publication-title: Eighth International Symposium on Natural Language Processing, Bangkok, Thailand
  doi: 10.1109/SNLP.2009.5340935
– ident: 50638_CR20
  doi: 10.1007/978-94-011-2414-0_2
– volume: 49
  start-page: 53
  issue: 1
  year: 1995
  ident: 50638_CR80
  publication-title: Am. Stat.
  doi: 10.1080/0031305.1995.10476113
– ident: 50638_CR76
– volume: 164
  year: 2019
  ident: 50638_CR39
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104929
– volume: 440
  start-page: 55
  issue: 1
  year: 2020
  ident: 50638_CR68
  publication-title: Phytotaxa
  doi: 10.11646/phytotaxa.440.1.3
– volume: 12
  start-page: 1
  issue: 1
  year: 2001
  ident: 50638_CR87
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.896792
– volume: 169
  start-page: 187
  issue: 3
  year: 2002
  ident: 50638_CR10
  publication-title: For. Ecol. Manag.
  doi: 10.1016/s0378-1127(01)00672-7
– ident: 50638_CR14
– volume: 55
  start-page: 17
  issue: 1
  year: 1989
  ident: 50638_CR16
  publication-title: Zeitschrift für Mykologie
– year: 2018
  ident: 50638_CR49
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.12849
– volume: 28
  start-page: 7376
  issue: 24
  year: 2022
  ident: 50638_CR56
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.16424
– ident: 50638_CR58
  doi: 10.3785/j.issn.1008-9209.2016.04.113
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: 50638_CR25
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 9
  start-page: 17656
  issue: 1
  year: 2019
  ident: 50638_CR27
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53797-9
– ident: 50638_CR18
– volume: 34
  start-page: 256
  issue: 07
  year: 2018
  ident: 50638_CR54
  publication-title: Trans. Chin. Soc. Agric. Eng.
  doi: 10.11975/j.issn.1002-6819.2018.07.033
– ident: 50638_CR79
– year: 2020
  ident: 50638_CR36
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.04.004
– ident: 50638_CR43
  doi: 10.1145/3375959.3375982
– volume: 79
  start-page: 1855
  issue: 9
  year: 1998
  ident: 50638_CR37
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1998)079<1855:ANNMTP>2.0.CO;2
– volume: 2012
  year: 2012
  ident: 50638_CR88
  publication-title: Int. Schol. Res. Not.
  doi: 10.5402/2012/324194
– volume: 87
  start-page: 295
  issue: 2
  year: 2012
  ident: 50638_CR47
  publication-title: Agrofor. Syst.
  doi: 10.1007/s10457-012-9548-y
– volume: 61
  start-page: 145
  issue: 06
  year: 2018
  ident: 50638_CR13
  publication-title: J. Nanjing For. Univ.
– ident: 50638_CR61
  doi: 10.1109/isesd.2016.7886713
– volume: 62
  start-page: 29
  issue: 1
  year: 2021
  ident: 50638_CR66
  publication-title: Mycoscience
  doi: 10.47371/mycosci.2020.08.003
– volume: 45
  start-page: 3
  issue: 1–3
  year: 2006
  ident: 50638_CR70
  publication-title: Clusiana
– volume: 22
  start-page: 13
  year: 2021
  ident: 50638_CR72
  publication-title: Community Ecol.
  doi: 10.1007/s42974-020-00031-6
– ident: 50638_CR19
– volume: 89
  start-page: 187
  issue: 2
  year: 1987
  ident: 50638_CR21
  publication-title: Trans. Br. Mycol. Soc.
  doi: 10.1016/S0007-1536(87)80151-1
– volume: 5
  start-page: 128
  issue: 3
  year: 2021
  ident: 50638_CR60
  publication-title: Int. J. Acad. Multidiscip. Res.
– volume: 91
  start-page: 5
  year: 2018
  ident: 50638_CR67
  publication-title: Fungal Divers.
  doi: 10.1007/s13225-018-0405-9
– volume: 65
  start-page: 206
  year: 2008
  ident: 50638_CR6
  publication-title: Ann. For. Sci.
  doi: 10.1051/forest:2007089
– volume: 12
  start-page: 738
  issue: 1
  year: 2018
  ident: 50638_CR33
  publication-title: Eng. Appl. Comput. Fluid Mech.
  doi: 10.1080/19942060.2018.1526119
– ident: 50638_CR93
  doi: 10.1201/9781315374116
– volume: 10
  start-page: 20
  year: 2014
  ident: 50638_CR2
  publication-title: Fungal Ecol.
  doi: 10.1016/j.funeco.2013.10.006
– volume: 10
  start-page: 12230
  issue: 1
  year: 2020
  ident: 50638_CR29
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69157-x
– volume: 14
  start-page: 101
  issue: 2
  year: 2022
  ident: 50638_CR65
  publication-title: Diversity
  doi: 10.3390/d14020101
– volume: 86
  start-page: 1497
  issue: 12
  year: 2008
  ident: 50638_CR8
  publication-title: Botany
  doi: 10.1139/B08-094
– volume: 4
  start-page: 603
  issue: 4
  year: 2010
  ident: 50638_CR46
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-010-0401-x
– volume: 2
  start-page: 568
  issue: 6
  year: 1991
  ident: 50638_CR89
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.97934
– volume: 2008
  start-page: 1
  year: 2008
  ident: 50638_CR91
  publication-title: International Symposium on Biometrics and Security Technologies
– volume: 327
  start-page: 105
  issue: 1–3
  year: 2004
  ident: 50638_CR26
  publication-title: Sci. Tot. Environ.
  doi: 10.1016/j.scitotenv.2004.01.06
– volume: 1524
  year: 2020
  ident: 50638_CR40
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/1524/1/012147
– volume: 15
  start-page: 52
  issue: 5
  year: 2018
  ident: 50638_CR41
  publication-title: Int. J. Comput. Sci. Iss.
  doi: 10.5281/zenodo.146765952
– volume: 27
  start-page: 352
  issue: 5
  year: 2004
  ident: 50638_CR53
  publication-title: J. Food Qual.
  doi: 10.1111/j.1745-4557.2004.00642.x
– volume: 43
  start-page: 28
  issue: 02
  year: 2021
  ident: 50638_CR57
  publication-title: J. Agric. Mech. Res.
  doi: 10.13427/j.cnki.njyi.2021.02.005
– ident: 50638_CR38
  doi: 10.1109/icccnt.2018.8494024
– volume: 4
  start-page: 871
  year: 2013
  ident: 50638_CR71
  publication-title: Mycosphere
  doi: 10.5943/mycosphere/4/5/3
– ident: 50638_CR74
– volume: 64
  start-page: 873
  issue: 4
  year: 2007
  ident: 50638_CR4
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2007.05711.x
– volume: 3
  start-page: 1
  issue: 2
  year: 2019
  ident: 50638_CR59
  publication-title: Int. J. Acad. Appl. Res.
– volume: 13
  start-page: 309
  year: 2017
  ident: 50638_CR44
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2017.08.008
– volume: 40
  start-page: 9
  issue: 2
  year: 2016
  ident: 50638_CR32
  publication-title: Turk. J. Agric. For.
  doi: 10.3906/tar-1408-28
– volume: 372
  start-page: 1160
  issue: 6547
  year: 2021
  ident: 50638_CR5
  publication-title: Science
  doi: 10.1126/science.abj5479
– volume: 37
  start-page: 981
  issue: 3
  year: 1994
  ident: 50638_CR30
  publication-title: Trans. ASAE
  doi: 10.13031/2013.28168
– volume: 16
  start-page: 986
  issue: 2
  year: 2016
  ident: 50638_CR63
  publication-title: Plant Arch.
– volume: 109
  start-page: 1235
  issue: 11
  year: 2005
  ident: 50638_CR75
  publication-title: Mycol. Res.
  doi: 10.1017/s0953756205003953
– volume: 32
  start-page: 236
  year: 2018
  ident: 50638_CR1
  publication-title: Fungal Biol. Rev.
  doi: 10.1016/j.fbr.2018.02.003
– volume: 11
  start-page: 1633
  year: 2007
  ident: 50638_CR78
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-11-1633-2007
– volume: 2
  start-page: 7
  year: 2002
  ident: 50638_CR7
  publication-title: BMC Ecology
  doi: 10.1186/1472-6785-2-7
– ident: 50638_CR12
– volume: 88
  start-page: 145
  issue: 1–2
  year: 2001
  ident: 50638_CR22
  publication-title: Botanikai Közlemények
– volume: 436
  start-page: 131
  issue: 1/3
  year: 2000
  ident: 50638_CR31
  publication-title: Hydrobiologia
  doi: 10.1023/a:1026575418649
– ident: 50638_CR84
– volume: 26
  start-page: 339
  issue: 4
  year: 2018
  ident: 50638_CR11
  publication-title: Environ. Rev.
  doi: 10.1139/er-2018-0034
– ident: 50638_CR51
  doi: 10.13031/aim.201900505
– volume: 11
  start-page: 770
  issue: 5
  year: 2022
  ident: 50638_CR69
  publication-title: Biology
  doi: 10.3390/biology11050770
– volume: 52
  start-page: 429
  issue: 2
  year: 1986
  ident: 50638_CR15
  publication-title: Zeitschrift für Mykologie
– volume: 29
  start-page: 113
  year: 2019
  ident: 50638_CR55
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-018-0877-1
– ident: 50638_CR77
– year: 2019
  ident: 50638_CR35
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.04.009
– volume: 3
  start-page: 109
  issue: 1
  year: 1990
  ident: 50638_CR92
  publication-title: Neural networks
  doi: 10.1016/0893-6080(90)90049-Q
– volume: 8
  start-page: 94
  issue: 1
  year: 2018
  ident: 50638_CR42
  publication-title: IOSR J. Eng.
– ident: 50638_CR73
– volume: 113
  year: 2020
  ident: 50638_CR28
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2020.106160
– ident: 50638_CR90
  doi: 10.1007/978-3-540-40046-2_5
– volume: 228
  start-page: 339
  year: 2016
  ident: 50638_CR64
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.07.013
– volume: 37
  start-page: 1671
  issue: 5
  year: 1994
  ident: 50638_CR52
  publication-title: Trans. ASAE
  doi: 10.13031/2013.28255
– volume: 137
  start-page: 1939
  year: 2019
  ident: 50638_CR81
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-018-2702-3
– volume: 198
  year: 2022
  ident: 50638_CR50
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107015
– volume: 11
  start-page: 135
  issue: 2
  year: 1997
  ident: 50638_CR82
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1023/a:1008074223811
– ident: 50638_CR83
– volume-title: Die Makromyceten im Raum von Wien
  year: 1992
  ident: 50638_CR17
– volume: 11
  start-page: 531
  issue: 4
  year: 2022
  ident: 50638_CR24
  publication-title: Biology
  doi: 10.3390/biology11040531
– ident: 50638_CR45
  doi: 10.1007/978-3-030-36841-8
– volume: 187
  start-page: 263
  year: 2015
  ident: 50638_CR48
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.04.09
– volume: 60
  year: 2022
  ident: 50638_CR3
  publication-title: Fungal Ecol.
  doi: 10.1016/j.funeco.2022.101166
– volume: 20
  start-page: 60
  issue: 1
  year: 2015
  ident: 50638_CR23
  publication-title: J. For. Res.
  doi: 10.1007/s10310-014-0459-9
– volume: 23
  start-page: 30
  year: 2016
  ident: 50638_CR9
  publication-title: Fungal Ecology
  doi: 10.1016/j.funeco.2016.05.008
SSID ssj0000529419
Score 2.4084764
Snippet The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the...
Abstract The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 278
SubjectTerms 631/158
631/449
704/158
704/172
Agaricales
Algorithms
Classification
Fruit bodies
Humanities and Social Sciences
Machine Learning
multidisciplinary
Mycorrhizae
Neural networks
Neural Networks, Computer
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQVSQuqLxTCjISN4hqx05sHymi4oAqDlD1ZvlJ90C22geo_54ZO7t0eYgLp0QZx3LmkRl7PJ8JeQkRa3RcptYkPMIsDA5sLot2YL7XsXcpl_WO8w_q7ExfXJiPN476wj1hFR64Mu7Y9Z2LwoM9Izad4A5mCEOGnjkzHRtKmS9T5sZkqqJ6d0ZyM1XJMKGPl-CpsJqsE22PbrrVO56oAPb_Kcr8fbPkLxnT4ohOD8jdKYKkb-rI75FbabxPbtczJa8fkC_noFN5WomjBT2Wws3l_Dv96vCvC9YNr-fFerbycyBuyxcpcJn6RK8WmLyBSJT6a4oMqiATFKEvy6VsHH9IPp---_T2fTudptAGabpV64MW3uSkA1MxgCS0ChCzuggslc6IXnokyxiZlvBU6mR477uoXIiu9-IR2RvnY3pC6BBA_ziLCssvgWYidC65VDkb6bJryKsNZ-1VBc2wJdkttK1ysCAHW-RgdUNOkPnblgh4XR6AGthJDey_1KAhRxvR2ckKl7YzzIA35ow15MWWDPaDSRE3pvka23Asp1cKunhcJb0dCSZV4QuHhugdHdgZ6i5lnF0WjG6O60ODFg15vVGXn-P6Oy8O_wcvnpI7HYReZaGoOyJ7q8U6PSP74dtqtlw8L4byA0EoFpM
  priority: 102
  providerName: Directory of Open Access Journals
Title Verification study on how macrofungal fruitbody formation can be predicted by artificial neural network
URI https://link.springer.com/article/10.1038/s41598-023-50638-8
https://www.ncbi.nlm.nih.gov/pubmed/38168546
https://www.proquest.com/docview/2909067100
https://www.proquest.com/docview/2910190778
https://pubmed.ncbi.nlm.nih.gov/PMC10761683
https://doaj.org/article/a52ad3b467344731a2896f9e01092068
Volume 14
WOSCitedRecordID wos001163663800087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0KJdkLjwfgTKykjcIKrtOLF9QhS1AomuIgTVcrKcOGn3QLJkd0H9e2acbKrldeHiRJnEsjNPzXhmCHkBFqt3XFaxqbCFWZk54Lk6iTNWpNqnrqqDv-Psg5rN9Hxu8sHhthqOVW5lYhDUvi3RR34oDDMgWTljr5ffYuwahdHVoYXGHpmAZcPxSNepyEcfC0axJDdDrgxL9OEK9BXmlIkkTlFZx3pHH4Wy_X-yNX8_MvlL3DSoo5Pb_7uRO-TWYIjSNz3l3CXXquYeudG3pry8T87PgDTrwaFHQxFaCjcX7Q_61aHwBiEBn9fdZrEuWgCOWZAUkEWLii47jAGBQUuLS4oE2teqoFhBM1zC-fMH5PPJ8ae37-KhKUNcSiPWcVHqpDB1pUumfAkI1aoE09d57oR0JkllgWDpPdMSnkpdGZ4WwitXepcWyUOy37RN9ZjQrAQy5swrzOIEmPEwueRS1bWRrnYReblFjV32tTdsiJkn2vaItIBIGxBpdUSOEHvjm1g3Ozxou3M7sKF1qXA-KUA7YKXDBNasTVYDnXJmBMtgkoMt0uzAzCt7hbGIPB_BwIYYW3FN1W7wHY5Z-UrBFI96UhlXgrFZ2GEWEb1DRDtL3YU0i4tQ6pujmynTSURebental1__xdP_r2Np-SmANsseJLEAdlfd5vqGblefl8vVt2U7Km5CqOeksnR8Sz_OA2uimngLhwVjJP8_Wn-5Sfq0S1V
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAoILb0qgwCLBCaza67W9e0CIV9WqIeqhVL1t1951m0Pj4CRU-VP8RmbWjyq8bj1wSuRxVrPONw_PzM4AvESP1ZpIuEA5GmFWpAZlroyDNMwTaRPjSh_vOBxmo5E8OlL7a_CjOwtDZZWdTvSK2lYFxci3uAoVatYoDN9NvwU0NYqyq90IjQYWe255jq9ss7e7n_D_fcX59ueDjztBO1UgKITi8yAvZJyr0skizGyBHMmsQN_N2MhwYVSciJzIwtpQCrwqpFNRknObmcKaJI9x3StwVVBnMSoV5Pt9TIeyZiJS7dmcMJZbM7SPdIaNx0FCzkEgV-yfHxPwJ9_29xLNX_K03vxt3_7fHtwduNU62ux9Ixl3Yc1N7sH1ZvTm8j6cHKLolW3Akvkmuwy_nFbn7MyQcUIliD8v68V4nldI7E95MgQjyx2b1pTjQoed5UtGAtj04mDUIdR_-Pr6B_D1Unb5ENYn1cQ9ApYWKKZRaDM6pYo0ZXFxEYmsLJUwpRnA6w4Ketr0FtG-JiCWugGORuBoDxwtB_CB0NLfSX3B_YWqPtGtmtEm4cbGOVo_6uQYI89SpSXKYRQqHqa4yGYHEt0qq5m-QMgAXvRkVDOUOzITVy3onoi6DmQZLrHRQLPnhHLPuMN0AHIFtCusrlIm41PfyjyiMFoq4wG86fB9wdffn8Xjf2_jOdzYOfgy1MPd0d4TuMnRD_VRM74J6_N64Z7CteL7fDyrn3n5ZXB82bj_CZAXht0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFBAX3pRAgUWCE1ix12t794AQUCKiligHqMppWXvXbQ6NQx5U-Wv8OmbWdqrwuvXAKZHHWc063zw8MzsD8Aw9Vmsi4QLlaIRZkRqUuTIO0jBPpE2MK3284_AgGw7l0ZEabcGP9iwMlVW2OtEralsVFCPvcRUq1KxRGPbKpixitNd_Pf0W0AQpyrS24zRqiOy71Rm-vs1fDfbwv37Oef_9p3cfgmbCQFAIxRdBXsg4V6WTRZjZArmTWYF-nLGR4cKoOBE5kYW1oRR4VUinoiTnNjOFNUke47qXYBtdcsE7sD0afBx9WUd4KIcmItWc1Alj2ZujtaQTbTwOEnIVArlhDf3QgD95ur8XbP6StfXGsH_jf36MN-F644KzN7XM3IItN7kNV-qhnKs7cHyIQlk2oUzm2-8y_HJSnbFTQ2YL1SP-vJwtx4u8QuL6_CdDmLLcsemMsl_oyrN8xUg06y4djHqH-g9feX8XPl_ILu9BZ1JN3H1gaYECHIU2o_OrSFMWFxeRyMpSCVOaLrxoYaGnddcR7asFYqlrEGkEkfYg0rILbwk56zupY7i_UM2OdaOAtEm4sXGOdpF6PMbIs1RpiRIahYqHKS6y2wJGN2psrs_R0oWnazIqIMoqmYmrlnRPRP0IsgyX2KlhuuaEstK4w7QLcgPAG6xuUibjE9_kPKIAWyrjLrxssX7O19-fxYN_b-MJXEW464PBcP8hXOPooPpwGt-FzmK2dI_gcvF9MZ7PHjfCzODrRQP_J3l0kSY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Verification+study+on+how+macrofungal+fruitbody+formation+can+be+predicted+by+artificial+neural+network&rft.jtitle=Scientific+reports&rft.au=Somfalvi-T%C3%B3th%2C+Katalin&rft.au=J%C3%B3cs%C3%A1k%2C+Ildik%C3%B3&rft.au=P%C3%A1l-F%C3%A1m%2C+Ferenc&rft.date=2024-01-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-50638-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_50638_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon