Verification study on how macrofungal fruitbody formation can be predicted by artificial neural network
The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 14; číslo 1; s. 278 - 21 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
02.01.2024
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural network (ANN) to forecast fruitbody occurrence in mycorrhizal species of
Russula
and
Amanita
, utilizing meteorological factors and validating the accuracy of the forecast of fruitbody formation. Fungal data were collected from two locations in Western Hungary between 2015 and 2020. The ANN was the commonly used algorithm for classification problems: feed-forward multilayer perceptrons with a backpropagation algorithm to estimate the binary (Yes/No) classification of fruitbody appearance in natural and undisturbed forests. The verification indices resulted in two outcomes: however, development is most often studied by genus level, we established a more successful, new model per species. Furthermore, the algorithm is able to successfully estimate fruitbody formations with medium to high accuracy (60–80%). Therefore, this work was the first to reliably utilise the ANN approach of estimating fruitbody occurrence based on meteorological parameters of mycorrhizal specified with an extended vegetation period. These findings can assist in field mycological investigations that utilize sporocarp occurrences to ascertain species abundance. |
|---|---|
| AbstractList | The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural network (ANN) to forecast fruitbody occurrence in mycorrhizal species of
Russula
and
Amanita
, utilizing meteorological factors and validating the accuracy of the forecast of fruitbody formation. Fungal data were collected from two locations in Western Hungary between 2015 and 2020. The ANN was the commonly used algorithm for classification problems: feed-forward multilayer perceptrons with a backpropagation algorithm to estimate the binary (Yes/No) classification of fruitbody appearance in natural and undisturbed forests. The verification indices resulted in two outcomes: however, development is most often studied by genus level, we established a more successful, new model per species. Furthermore, the algorithm is able to successfully estimate fruitbody formations with medium to high accuracy (60–80%). Therefore, this work was the first to reliably utilise the ANN approach of estimating fruitbody occurrence based on meteorological parameters of mycorrhizal specified with an extended vegetation period. These findings can assist in field mycological investigations that utilize sporocarp occurrences to ascertain species abundance. Abstract The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural network (ANN) to forecast fruitbody occurrence in mycorrhizal species of Russula and Amanita, utilizing meteorological factors and validating the accuracy of the forecast of fruitbody formation. Fungal data were collected from two locations in Western Hungary between 2015 and 2020. The ANN was the commonly used algorithm for classification problems: feed-forward multilayer perceptrons with a backpropagation algorithm to estimate the binary (Yes/No) classification of fruitbody appearance in natural and undisturbed forests. The verification indices resulted in two outcomes: however, development is most often studied by genus level, we established a more successful, new model per species. Furthermore, the algorithm is able to successfully estimate fruitbody formations with medium to high accuracy (60–80%). Therefore, this work was the first to reliably utilise the ANN approach of estimating fruitbody occurrence based on meteorological parameters of mycorrhizal specified with an extended vegetation period. These findings can assist in field mycological investigations that utilize sporocarp occurrences to ascertain species abundance. The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural network (ANN) to forecast fruitbody occurrence in mycorrhizal species of Russula and Amanita, utilizing meteorological factors and validating the accuracy of the forecast of fruitbody formation. Fungal data were collected from two locations in Western Hungary between 2015 and 2020. The ANN was the commonly used algorithm for classification problems: feed-forward multilayer perceptrons with a backpropagation algorithm to estimate the binary (Yes/No) classification of fruitbody appearance in natural and undisturbed forests. The verification indices resulted in two outcomes: however, development is most often studied by genus level, we established a more successful, new model per species. Furthermore, the algorithm is able to successfully estimate fruitbody formations with medium to high accuracy (60-80%). Therefore, this work was the first to reliably utilise the ANN approach of estimating fruitbody occurrence based on meteorological parameters of mycorrhizal specified with an extended vegetation period. These findings can assist in field mycological investigations that utilize sporocarp occurrences to ascertain species abundance. The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural network (ANN) to forecast fruitbody occurrence in mycorrhizal species of Russula and Amanita, utilizing meteorological factors and validating the accuracy of the forecast of fruitbody formation. Fungal data were collected from two locations in Western Hungary between 2015 and 2020. The ANN was the commonly used algorithm for classification problems: feed-forward multilayer perceptrons with a backpropagation algorithm to estimate the binary (Yes/No) classification of fruitbody appearance in natural and undisturbed forests. The verification indices resulted in two outcomes: however, development is most often studied by genus level, we established a more successful, new model per species. Furthermore, the algorithm is able to successfully estimate fruitbody formations with medium to high accuracy (60-80%). Therefore, this work was the first to reliably utilise the ANN approach of estimating fruitbody occurrence based on meteorological parameters of mycorrhizal specified with an extended vegetation period. These findings can assist in field mycological investigations that utilize sporocarp occurrences to ascertain species abundance.The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural network (ANN) to forecast fruitbody occurrence in mycorrhizal species of Russula and Amanita, utilizing meteorological factors and validating the accuracy of the forecast of fruitbody formation. Fungal data were collected from two locations in Western Hungary between 2015 and 2020. The ANN was the commonly used algorithm for classification problems: feed-forward multilayer perceptrons with a backpropagation algorithm to estimate the binary (Yes/No) classification of fruitbody appearance in natural and undisturbed forests. The verification indices resulted in two outcomes: however, development is most often studied by genus level, we established a more successful, new model per species. Furthermore, the algorithm is able to successfully estimate fruitbody formations with medium to high accuracy (60-80%). Therefore, this work was the first to reliably utilise the ANN approach of estimating fruitbody occurrence based on meteorological parameters of mycorrhizal specified with an extended vegetation period. These findings can assist in field mycological investigations that utilize sporocarp occurrences to ascertain species abundance. The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural network (ANN) to forecast fruitbody occurrence in mycorrhizal species of Russula and Amanita, utilizing meteorological factors and validating the accuracy of the forecast of fruitbody formation. Fungal data were collected from two locations in Western Hungary between 2015 and 2020. The ANN was the commonly used algorithm for classification problems: feed-forward multilayer perceptrons with a backpropagation algorithm to estimate the binary (Yes/No) classification of fruitbody appearance in natural and undisturbed forests. The verification indices resulted in two outcomes: however, development is most often studied by genus level, we established a more successful, new model per species. Furthermore, the algorithm is able to successfully estimate fruitbody formations with medium to high accuracy (60–80%). Therefore, this work was the first to reliably utilise the ANN approach of estimating fruitbody occurrence based on meteorological parameters of mycorrhizal specified with an extended vegetation period. These findings can assist in field mycological investigations that utilize sporocarp occurrences to ascertain species abundance. |
| ArticleNumber | 278 |
| Author | Pál-Fám, Ferenc Jócsák, Ildikó Somfalvi-Tóth, Katalin |
| Author_xml | – sequence: 1 givenname: Katalin orcidid: 0000-0001-7404-6704 surname: Somfalvi-Tóth fullname: Somfalvi-Tóth, Katalin email: somfalvi-toth.katalin@uni-mate.hu organization: Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences – sequence: 2 givenname: Ildikó orcidid: 0000-0002-1958-6377 surname: Jócsák fullname: Jócsák, Ildikó organization: Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences – sequence: 3 givenname: Ferenc orcidid: 0000-0002-1545-7885 surname: Pál-Fám fullname: Pál-Fám, Ferenc organization: Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38168546$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu1TAQtVArWkp_gAWKxIZNqJ-JvUKoolCpUjfA1vIrqS-JfbGTVvfv69yU0naBNzOaOXPOeGbegIMQgwPgHYKfECT8LFPEBK8hJjWDDeE1fwWOMaSsxgTjgyf-ETjNeQPLY1hQJF6DI8JRwxltjkH_yyXfeaMmH0OVp9nuquLcxLtqVCbFbg69GqouzX7SsSS7mMYVbFSotKu2yVlvJmcrvatUmhY2X0qCm9PeTHcx_X4LDjs1ZHf6YE_Az4uvP86_11fX3y7Pv1zVhgo81dpwokXnuIGtNZpx3hqOtLJIYaoEYVQvaWot5LREKXcCMY1tq4xVTJMTcLny2qg2cpv8qNJORuXlPhBTL5cezeCkYlhZomnTEkpbUhS4aDrhIIICw4YXrs8r13bWo7PGhan86Bnp80zwN7KPtxLBtikDJoXh4wNDin9mlyc5-mzcMKjg4pwlFggiAdt2EfvwArqJcwplVgUFBWxaBGFBvX_a0mMvfxdaAHgFlN3lnFz3CEFQLocj18OR5XDk_nDkok3WolzAoXfpn_Z_qu4BhNPGwQ |
| Cites_doi | 10.1016/S0007-1536(87)80151-1 10.1007/s13225-018-0405-9 10.1080/19942060.2018.1526119 10.1016/j.jobe.2017.08.008 10.47371/mycosci.2020.08.003 10.1016/j.agrformet.2016.07.013 10.11646/phytotaxa.440.1.3 10.1023/a:1008074223811 10.1017/s0953756205003953 10.1016/0925-2312(91)90023-5 10.1111/jfpe.12849 10.11975/j.issn.1002-6819.2018.07.033 10.1111/j.1745-4557.2004.00642.x 10.1016/j.fbr.2018.02.003 10.1186/1472-6785-2-7 10.1007/s00572-018-0877-1 10.13427/j.cnki.njyi.2021.02.005 10.1126/science.abj5479 10.1007/s00704-018-2702-3 10.1016/j.funeco.2016.05.008 10.1016/s0378-1127(01)00672-7 10.1139/B08-094 10.1111/j.1365-2958.2007.05711.x 10.1007/s10310-014-0459-9 10.1051/forest:2007089 10.3906/tar-1408-28 10.3390/biology11050770 10.13031/2013.28168 10.1016/j.agrformet.2015.07.001 10.1007/s11947-010-0401-x 10.1080/0031305.1995.10476113 10.5281/zenodo.146765952 10.1016/j.scitotenv.2004.01.06 10.1016/j.compag.2019.104929 10.3390/biology11040531 10.1016/j.compag.2022.107015 10.1016/j.scitotenv.2019.04.009 10.5943/mycosphere/4/5/3 10.1016/0893-6080(90)90049-Q 10.1139/er-2018-0034 10.1109/72.896792 10.1016/j.comcom.2020.04.004 10.1023/a:1026575418649 10.5402/2012/324194 10.1038/s41598-019-53797-9 10.1088/1742-6596/1524/1/012147 10.3390/d14020101 10.1007/BF02478259 10.1175/1520-0477(1998)079<1855:ANNMTP>2.0.CO;2 10.1038/s41598-020-69157-x 10.1111/gcb.16424 10.1109/72.97934 10.13031/2013.28255 10.1007/s42974-020-00031-6 10.1016/j.funeco.2013.10.006 10.1016/j.ecolind.2020.106160 10.5194/hess-11-1633-2007 10.1016/j.funeco.2022.101166 10.1016/j.biosystemseng.2018.10.002 10.1109/SNLP.2009.5340935 10.1007/s10457-012-9548-y 10.1016/j.foodchem.2015.04.09 10.1007/978-94-011-2414-0_2 10.3785/j.issn.1008-9209.2016.04.113 10.1145/3375959.3375982 10.1109/isesd.2016.7886713 10.1201/9781315374116 10.1109/icccnt.2018.8494024 10.13031/aim.201900505 10.1007/978-3-540-40046-2_5 10.1007/978-3-030-36841-8 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-023-50638-8 |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 21 |
| ExternalDocumentID | oai_doaj_org_article_a52ad3b467344731a2896f9e01092068 PMC10761683 38168546 10_1038_s41598_023_50638_8 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c492t-bc83b9fe8c07dcb5887c81bad1a24a9354bb9fe4dd084ad148e915b2d7acda5b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001163663800087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:32:28 EST 2025 Tue Nov 04 02:06:22 EST 2025 Sun Nov 09 11:41:51 EST 2025 Mon Oct 06 17:47:59 EDT 2025 Thu Apr 03 07:08:00 EDT 2025 Sat Nov 29 01:56:46 EST 2025 Fri Feb 21 02:39:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-bc83b9fe8c07dcb5887c81bad1a24a9354bb9fe4dd084ad148e915b2d7acda5b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7404-6704 0000-0002-1958-6377 0000-0002-1545-7885 |
| OpenAccessLink | https://doaj.org/article/a52ad3b467344731a2896f9e01092068 |
| PMID | 38168546 |
| PQID | 2909067100 |
| PQPubID | 2041939 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a52ad3b467344731a2896f9e01092068 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10761683 proquest_miscellaneous_2910190778 proquest_journals_2909067100 pubmed_primary_38168546 crossref_primary_10_1038_s41598_023_50638_8 springer_journals_10_1038_s41598_023_50638_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-02 |
| PublicationDateYYYYMMDD | 2024-01-02 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Kattenborn, Eichel, Fassnacht (CR27) 2019; 9 Siller, Dima, Albert, Vasas, Fodor, Pál-Fám, Bratek, Zagyva (CR70) 2006; 45 Pál-Fám (CR22) 2001; 88 Cui, Cai, Yang (CR66) 2021; 62 Heinemann, Hughes, Morrow, Sommer, Beelman, Wuest (CR52) 1994; 37 CR38 De-Wei (CR75) 2005; 109 Liu, Li, Xiao (CR13) 2018; 61 CR79 Jeatrakul, Wong (CR86) 2009; 2009 Supriyanto Noguchi, Ahamed, Rani, Sakurai, Nasution, Watanabe (CR34) 2018 Siller, Kutszegi, Takács, Varga, Zs, Turcsányi, Ódor, Dima (CR71) 2013; 4 CR77 CR76 Olden (CR31) 2000; 436 CR74 CR73 Runge (CR15) 1986; 52 Alkronz, Moghayer, Meimeh, Gazzaz (CR59) 2019; 3 Pohan, Warsito, Suryono (CR40) 2020; 1524 McCulloch, Pitts (CR25) 1943; 5 Wu, Wang, Zhang, Du (CR88) 2012; 2012 Wolski, Kruk (CR28) 2020; 113 Boddy, Büntgen, Egli, Gange, Heegaard, Kirk, Kauserud (CR2) 2014; 10 Wang, Feng, Zheng, Sun, Niu, Chen, Zhang, Wang (CR54) 2018; 34 Murtagh (CR85) 1991; 2 Murakami (CR21) 1987; 89 Elizondo, McClendon, Hoogenboom (CR30) 1994; 37 Osono (CR23) 2015; 20 Alvarado, Gasch-Illescas, Morel, Dagher-Kharrat, Moreno, Manjón, Carteret, Bellanger, Rapor, Gelardi, Moreau (CR69) 2022; 11 Cao, Wu, Yu (CR5) 2021; 372 Talley, Coley, Kursar (CR7) 2002; 2 Ghazvinei, Hassanpour, Mosavi, Yusof, bin W, Alizamir M, Shamshirband S, Chau K (CR33) 2018; 12 Sakamoto (CR1) 2018; 32 Gholami, Torkaman, Dalir (CR81) 2019; 137 Coutinho, Thompson, Cabral, Paranhos, Dutilh, Thompson (CR35) 2019 CR45 Baltacıoğlu, Bayındırlı, Severcan, Severcan (CR48) 2015; 187 CR43 Liu, Liu, Kumla, Lumyong (CR65) 2022; 14 CR84 Mohebbi, Fathi, Shahidi (CR46) 2010; 4 Vizzini, Cingarlini, Sartori, Maraia, Setti, Poumarat, Kudzma, Dovana (CR68) 2020; 440 CR83 Park, Chon, Kwak, Lek (CR26) 2004; 327 Primicia, Camarero, Martínez de Aragón, de-Miguel S, Bonet JA (CR64) 2016; 228 Solanki, Kumar, Sharma, Gehlot, Singh (CR63) 2016; 16 KüÇükönder, Boyaci, Akyüz (CR32) 2016; 40 Ardabili, Najafi, Ghaebi, Shamshirband, Mostafaeipour (CR44) 2017; 13 Vogt-Schilb, Richard, Malaval, Rapior, Fons, Bourgade, Moreau (CR3) 2022; 60 Peel, Finlayson, McMahon (CR78) 2007; 11 Baragatti, Grollemund, Montpied, Dupouey, Gravier, Murat, Le Tacon (CR55) 2019; 29 Lidasan, Tagacay (CR41) 2018; 15 Salvador, Martins, Vicente, Neves, Arteiro, Caldeira (CR47) 2012; 87 CR19 CR18 Busch, Braus (CR4) 2007; 64 Liu, Peng, Work, Candau, DesRochers, Kneeshaw (CR11) 2018; 26 CR14 CR58 CR12 Zhang, Chen, Xu, Xue, Ren (CR29) 2020; 10 Bayat, Ghorbanpour, Zare, Jaafari, Thai Pham (CR39) 2019; 164 Stine (CR80) 1995; 49 CR51 CR93 Schilling, Carroll, Al-Ajlouni (CR87) 2001; 12 Laganà, Angiolini, Loppi, Salerni, Perini, Barluzzi, De Dominicis (CR10) 2002; 169 CR90 Taye, Martínez-Peña, Bonet, Martínez de Aragón, de-Miguel S (CR9) 2016; 23 Sun, Zhao, Ji, Zhu, Ma (CR57) 2021; 43 Ooi, Teoh, Ong (CR91) 2008; 2008 Aljojo, Dawood, Zaqout, Salem (CR60) 2021; 5 Specht (CR89) 1991; 2 Łuszczyński, Adamska, Wojciechowska, Czerwik-Marcinkowska (CR24) 2022; 11 Livingstone, Manallack, Tetko (CR82) 1997; 11 Hernández-Rodríguez, de-Miguel S, Pukkala T, Oria-de-Rueda JA, Martín-Pinto P (CR62) 2015; 213 Kutszegi, Siller, Dima, Zs, Varga, Takács, Turcsányi, Bidló, Ódor (CR72) 2021; 22 Krebs, Carrier, Boutin, Boonstra, Hofer (CR8) 2008; 86 Cui, Cai, Tang, Liu, Yang (CR67) 2018; 91 Hsieh, Tang (CR37) 1998; 79 Verma, Dutta (CR42) 2018; 8 Yin, Yi, Hu (CR50) 2022; 198 Chen, Ting (CR53) 2004; 27 Runge (CR16) 1989; 55 Steidinger, Büntgen, Stobbe, Tegel, Sproll, Haeni, Peter (CR56) 2022; 28 CR20 Krisai-Greilhuber (CR17) 1992 CR61 Specht (CR92) 1990; 3 Thippa, Swarna Priya, Parimala, Chowdhary, Praveen Kumar, Hakak, Khan (CR36) 2020 Bonet, Pukkala, Fischer, Palahí, Aragón, Colinas (CR6) 2008; 65 Omari, Behroozi-Khazaei, Sharifian (CR49) 2018 50638_CR79 S-Y Ooi (50638_CR91) 2008; 2008 50638_CR38 JU Lidasan (50638_CR41) 2018; 15 S Pohan (50638_CR40) 2020; 1524 RG Thippa (50638_CR36) 2020 M Baragatti (50638_CR55) 2019; 29 GJ Wolski (50638_CR28) 2020; 113 FS Ardabili (50638_CR44) 2017; 13 I Siller (50638_CR71) 2013; 4 H Vogt-Schilb (50638_CR3) 2022; 60 DF Specht (50638_CR92) 1990; 3 W McCulloch (50638_CR25) 1943; 5 JW Sun (50638_CR57) 2021; 43 V Gholami (50638_CR81) 2019; 137 DJ Livingstone (50638_CR82) 1997; 11 M Mohebbi (50638_CR46) 2010; 4 A Vizzini (50638_CR68) 2020; 440 50638_CR73 50638_CR74 RJ Schilling (50638_CR87) 2001; 12 50638_CR76 50638_CR77 H KüÇükönder (50638_CR32) 2016; 40 H Baltacıoğlu (50638_CR48) 2015; 187 RA Stine (50638_CR80) 1995; 49 P Jeatrakul (50638_CR86) 2009; 2009 SK Verma (50638_CR42) 2018; 8 DA Elizondo (50638_CR30) 1994; 37 Y Murakami (50638_CR21) 1987; 89 PT Ghazvinei (50638_CR33) 2018; 12 T Osono (50638_CR23) 2015; 20 DS Solanki (50638_CR63) 2016; 16 ZM Taye (50638_CR9) 2016; 23 Y Wu (50638_CR88) 2012; 2012 R Supriyanto Noguchi (50638_CR34) 2018 BS Steidinger (50638_CR56) 2022; 28 LI De-Wei (50638_CR75) 2005; 109 50638_CR83 A Runge (50638_CR15) 1986; 52 50638_CR84 50638_CR43 YS Park (50638_CR26) 2004; 327 50638_CR45 A Omari (50638_CR49) 2018 P Alvarado (50638_CR69) 2022; 11 I Krisai-Greilhuber (50638_CR17) 1992 J Łuszczyński (50638_CR24) 2022; 11 50638_CR14 50638_CR58 A Runge (50638_CR16) 1989; 55 F Pál-Fám (50638_CR22) 2001; 88 HH Chen (50638_CR53) 2004; 27 I Siller (50638_CR70) 2006; 45 D Liu (50638_CR13) 2018; 61 50638_CR18 MC Peel (50638_CR78) 2007; 11 50638_CR19 WW Hsieh (50638_CR37) 1998; 79 DF Specht (50638_CR89) 1991; 2 Y Cao (50638_CR5) 2021; 372 C Zhang (50638_CR29) 2020; 10 JA Bonet (50638_CR6) 2008; 65 SM Talley (50638_CR7) 2002; 2 Y Sakamoto (50638_CR1) 2018; 32 ES Alkronz (50638_CR59) 2019; 3 50638_CR90 CJ Krebs (50638_CR8) 2008; 86 50638_CR93 50638_CR51 PH Heinemann (50638_CR52) 1994; 37 C Salvador (50638_CR47) 2012; 87 F Murtagh (50638_CR85) 1991; 2 50638_CR12 H Yin (50638_CR50) 2022; 198 A Laganà (50638_CR10) 2002; 169 FH Coutinho (50638_CR35) 2019 YS Liu (50638_CR65) 2022; 14 M Bayat (50638_CR39) 2019; 164 JD Olden (50638_CR31) 2000; 436 YY Cui (50638_CR66) 2021; 62 M Hernández-Rodríguez (50638_CR62) 2015; 213 Z Liu (50638_CR11) 2018; 26 FY Wang (50638_CR54) 2018; 34 I Primicia (50638_CR64) 2016; 228 MS Aljojo (50638_CR60) 2021; 5 50638_CR61 YY Cui (50638_CR67) 2018; 91 G Kutszegi (50638_CR72) 2021; 22 L Boddy (50638_CR2) 2014; 10 S Busch (50638_CR4) 2007; 64 50638_CR20 T Kattenborn (50638_CR27) 2019; 9 |
| References_xml | – ident: CR45 – volume: 89 start-page: 187 issue: 2 year: 1987 end-page: 193 ident: CR21 article-title: Spatial distribution of Russula species in Castanopsis cuspidata forest publication-title: Trans. Br. Mycol. Soc. doi: 10.1016/S0007-1536(87)80151-1 – volume: 45 start-page: 3 issue: 1–3 year: 2006 end-page: 158 ident: CR70 article-title: Protected Macrofungi in Hungary publication-title: Clusiana – volume: 91 start-page: 5 year: 2018 end-page: 230 ident: CR67 article-title: The family : molecular phylogeny, higher-rank taxonomy and the species in China publication-title: Fungal Divers. doi: 10.1007/s13225-018-0405-9 – ident: CR74 – ident: CR93 – volume: 12 start-page: 738 issue: 1 year: 2018 end-page: 749 ident: CR33 article-title: Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network publication-title: Eng. Appl. Comput. Fluid Mech. doi: 10.1080/19942060.2018.1526119 – volume: 13 start-page: 309 year: 2017 end-page: 318 ident: CR44 article-title: A novel enhanced exergy method in analyzing HVAC system using soft computing approaches: A case study on mushroom growing hall publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2017.08.008 – volume: 62 start-page: 29 issue: 1 year: 2021 end-page: 35 ident: CR66 article-title: , a new species with a marginate basal bulb publication-title: Mycoscience doi: 10.47371/mycosci.2020.08.003 – ident: CR51 – ident: CR12 – volume: 228 start-page: 339 year: 2016 end-page: 348 ident: CR64 article-title: Linkages between climate, seasonal wood formation and mycorrhizal mushroom yields publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2016.07.013 – volume: 440 start-page: 55 issue: 1 year: 2020 end-page: 68 ident: CR68 article-title: Assessing the taxonomic status of Amanita citrina var. intermedia (Basidiomycota, Agaricales) publication-title: Phytotaxa doi: 10.11646/phytotaxa.440.1.3 – volume: 11 start-page: 135 issue: 2 year: 1997 end-page: 142 ident: CR82 article-title: Data modelling with neural networks: advantages and limitations publication-title: J. Comput. Aided Mol. Des. doi: 10.1023/a:1008074223811 – ident: CR61 – volume: 109 start-page: 1235 issue: 11 year: 2005 end-page: 1242 ident: CR75 article-title: Release and dispersal of basidiospores from Amanita muscaria var. alba and their infiltration into a residence publication-title: Mycol. Res. doi: 10.1017/s0953756205003953 – volume: 2008 start-page: 1 year: 2008 end-page: 6 ident: CR91 article-title: Compatibility of biometric strengthening with probabilistic neural network. In , 2008. ISBAST 2008 publication-title: International Symposium on Biometrics and Security Technologies – ident: CR77 – volume: 2 start-page: 183 issue: 5–6 year: 1991 end-page: 197 ident: CR85 article-title: Multilayer perceptrons for classification and regression publication-title: Neurocomputing doi: 10.1016/0925-2312(91)90023-5 – ident: CR58 – ident: CR84 – year: 2018 ident: CR49 article-title: Drying kinetic and artificial neural network modeling of mushroom drying process in microwave-hot air dryer publication-title: J. Food Process Eng. doi: 10.1111/jfpe.12849 – volume: 34 start-page: 256 issue: 07 year: 2018 end-page: 263 ident: CR54 article-title: Design and experiment of automatic sorting and grading system based on machine vision for white Agaricus bisporus publication-title: Trans. Chin. Soc. Agric. Eng. doi: 10.11975/j.issn.1002-6819.2018.07.033 – volume: 27 start-page: 352 issue: 5 year: 2004 end-page: 365 ident: CR53 article-title: The development of a machine vision system for shiitake grading publication-title: J. Food Qual. doi: 10.1111/j.1745-4557.2004.00642.x – volume: 32 start-page: 236 year: 2018 end-page: 248 ident: CR1 article-title: Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi publication-title: Fungal Biol. Rev. doi: 10.1016/j.fbr.2018.02.003 – volume: 2 start-page: 7 year: 2002 ident: CR7 article-title: The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West publication-title: BMC Ecology doi: 10.1186/1472-6785-2-7 – volume: 29 start-page: 113 year: 2019 end-page: 125 ident: CR55 article-title: Influence of annual climatic variations, climate changes, and sociological factors on the production of the Périgord black truffle (Tuber melanosporum Vittad.) from 1903–1904 to 1988–1989 in the Vaucluse (France) publication-title: Mycorrhiza doi: 10.1007/s00572-018-0877-1 – volume: 43 start-page: 28 issue: 02 year: 2021 end-page: 33 ident: CR57 article-title: Detection and diameter measurement method of agaricus bisporus based on “Submerged Method publication-title: J. Agric. Mech. Res. doi: 10.13427/j.cnki.njyi.2021.02.005 – volume: 372 start-page: 1160 issue: 6547 year: 2021 end-page: 1160 ident: CR5 article-title: Include macrofungi in biodiversity targets publication-title: Science doi: 10.1126/science.abj5479 – volume: 137 start-page: 1939 year: 2019 end-page: 1948 ident: CR81 article-title: Simulation of precipitation time series using tree-rings, earlywood vessel features, and artificial neural network publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-018-2702-3 – volume: 23 start-page: 30 year: 2016 end-page: 41 ident: CR9 article-title: Meteorological conditions and site characteristics driving edible mushroom production in Pinus pinaster forests of Central Spain publication-title: Fungal Ecology doi: 10.1016/j.funeco.2016.05.008 – volume: 169 start-page: 187 issue: 3 year: 2002 end-page: 202 ident: CR10 article-title: Periodicity, fluctuations and successions of macrofungi in fir forests (Abies alba Miller) in Tuscany, Italy publication-title: For. Ecol. Manag. doi: 10.1016/s0378-1127(01)00672-7 – volume: 86 start-page: 1497 issue: 12 year: 2008 end-page: 1502 ident: CR8 article-title: Mushroom crops in relation to weather in the southwestern Yukon publication-title: Botany doi: 10.1139/B08-094 – ident: CR19 – volume: 64 start-page: 873 issue: 4 year: 2007 end-page: 876 ident: CR4 article-title: How to build a fungal fruit body: From uniform cells to specialized tissue publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2007.05711.x – volume: 20 start-page: 60 issue: 1 year: 2015 end-page: 68 ident: CR23 article-title: Diversity, resource utilization, and phenology of fruiting bodies of litter-decomposing macrofungi in subtropical, temperate, and subalpine forests publication-title: J. For. Res. doi: 10.1007/s10310-014-0459-9 – volume: 65 start-page: 206 year: 2008 ident: CR6 article-title: Empirical models for predicting the production of wild mushrooms in Scots pine ( L.) forests in the Central Pyrenees publication-title: Ann. For. Sci. doi: 10.1051/forest:2007089 – volume: 52 start-page: 429 issue: 2 year: 1986 end-page: 437 ident: CR15 article-title: Pilzsukzession auf Kiefernstümpfen II publication-title: Zeitschrift für Mykologie – volume: 40 start-page: 9 issue: 2 year: 2016 ident: CR32 article-title: A modeling study with an artificial neural network: Developing estimationmodels for the tomato plant leaf area publication-title: Turk. J. Agric. For. doi: 10.3906/tar-1408-28 – volume: 11 start-page: 770 issue: 5 year: 2022 ident: CR69 article-title: section species in the mediterranean basin: Destroying angels reviewed publication-title: Biology doi: 10.3390/biology11050770 – volume: 37 start-page: 981 issue: 3 year: 1994 end-page: 988 ident: CR30 article-title: Neural network models for predicting flowering and physiological maturity of soybean publication-title: Trans. ASAE doi: 10.13031/2013.28168 – volume: 213 start-page: 173 year: 2015 end-page: 182 ident: CR62 article-title: Climate-sensitive models for mushroom yields and diversity in Cistus ladanifer scrublands publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.07.001 – volume: 8 start-page: 94 issue: 1 year: 2018 end-page: 100 ident: CR42 article-title: Mushroom classification using ANN and ANFIS algorithm publication-title: IOSR J. Eng. – volume: 4 start-page: 603 issue: 4 year: 2010 end-page: 609 ident: CR46 article-title: Genetic algorithm-artificial neural network modeling of moisture and oil content of pretreated fried mushroom publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-010-0401-x – volume: 49 start-page: 53 issue: 1 year: 1995 end-page: 56 ident: CR80 article-title: Graphical interpretation of variance inflation factors publication-title: Am. Stat. doi: 10.1080/0031305.1995.10476113 – volume: 15 start-page: 52 issue: 5 year: 2018 end-page: 57 ident: CR41 article-title: Mushroom recognition using neural network publication-title: Int. J. Comput. Sci. Iss. doi: 10.5281/zenodo.146765952 – volume: 327 start-page: 105 issue: 1–3 year: 2004 end-page: 122 ident: CR26 article-title: Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks publication-title: Sci. Tot. Environ. doi: 10.1016/j.scitotenv.2004.01.06 – volume: 164 year: 2019 ident: CR39 article-title: Application of artificial neural networks for predicting tree survival and mortality in the Hyrcanian forest of Iran publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104929 – volume: 11 start-page: 531 issue: 4 year: 2022 ident: CR24 article-title: Diversity Patterns of Macrofungi in Xerothermic Grasslands from the Nida Basin (Małopolska Upland, Southern Poland): A Case Study publication-title: Biology doi: 10.3390/biology11040531 – volume: 198 year: 2022 ident: CR50 article-title: Computer vision and machine learning applied in the mushroom industry: A critical review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107015 – volume: 55 start-page: 17 issue: 1 year: 1989 end-page: 30 ident: CR16 article-title: Elfjährige Pilzkundliche Untersuchungen im nordöstlichen Sauerland publication-title: Zeitschrift für Mykologie – ident: CR18 – ident: CR43 – volume: 3 start-page: 1 issue: 2 year: 2019 end-page: 5 ident: CR59 article-title: Classification of mushroom using artificial neural network publication-title: Int. J. Acad. Appl. Res. – volume: 16 start-page: 986 issue: 2 year: 2016 end-page: 989 ident: CR63 article-title: Weather prerequisites for fructification of mushroom publication-title: Plant Arch. – year: 2019 ident: CR35 article-title: Modelling the influence of environmental parameters over marine planktonic microbial communities using artificial neural networks publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.04.009 – ident: CR14 – volume: 4 start-page: 871 year: 2013 end-page: 924 ident: CR71 article-title: Sixty-one macrofungi species new to Hungary in Őrség National Park publication-title: Mycosphere doi: 10.5943/mycosphere/4/5/3 – volume: 88 start-page: 145 issue: 1–2 year: 2001 end-page: 172 ident: CR22 article-title: Review of methods used in macrofungal coenology /In Hungarian/ publication-title: Botanikai Közlemények – volume: 3 start-page: 109 issue: 1 year: 1990 end-page: 118 ident: CR92 article-title: Probabilistic neural networks publication-title: Neural networks doi: 10.1016/0893-6080(90)90049-Q – volume: 26 start-page: 339 issue: 4 year: 2018 end-page: 350 ident: CR11 article-title: Application of machine-learning methods in forest ecology: Recent progress and future challenges publication-title: Environ. Rev. doi: 10.1139/er-2018-0034 – volume: 12 start-page: 1 issue: 1 year: 2001 end-page: 15 ident: CR87 article-title: Approximation of nonlinear systems with radial basis function neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.896792 – year: 2020 ident: CR36 article-title: A deep neural networks based model for uninterrupted marine environment monitoring publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.04.004 – volume: 436 start-page: 131 issue: 1/3 year: 2000 end-page: 143 ident: CR31 article-title: An artificial neural network approach for studying phytoplankton succession publication-title: Hydrobiologia doi: 10.1023/a:1026575418649 – volume: 2012 year: 2012 ident: CR88 article-title: Using radial basis function networks for function approximation and classification publication-title: Int. Schol. Res. Not. doi: 10.5402/2012/324194 – ident: CR79 – volume: 9 start-page: 17656 issue: 1 year: 2019 ident: CR27 article-title: Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery publication-title: Sci. Rep. doi: 10.1038/s41598-019-53797-9 – volume: 1524 year: 2020 ident: CR40 article-title: Backpropagation artificial neural network for prediction plant seedling growth publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/1524/1/012147 – volume: 14 start-page: 101 issue: 2 year: 2022 ident: CR65 article-title: Two New Species in Section from Thailand publication-title: Diversity doi: 10.3390/d14020101 – year: 1992 ident: CR17 publication-title: Die Makromyceten im Raum von Wien – volume: 5 start-page: 115 issue: 4 year: 1943 end-page: 133 ident: CR25 article-title: A logical calculus of ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – volume: 79 start-page: 1855 issue: 9 year: 1998 end-page: 1870 ident: CR37 article-title: Applying neural network models to prediction and data analysis in meteorology and oceanography publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1998)079<1855:ANNMTP>2.0.CO;2 – volume: 10 start-page: 12230 issue: 1 year: 2020 ident: CR29 article-title: Improving prediction of rare species’ distribution from community data publication-title: Sci. Rep. doi: 10.1038/s41598-020-69157-x – volume: 28 start-page: 7376 issue: 24 year: 2022 end-page: 7390 ident: CR56 article-title: The fall of the summer truffle: Recurring hot, dry summers result in declining fruitbody production of Tuber aestivum in Central Europe publication-title: Glob. Change Biol. doi: 10.1111/gcb.16424 – ident: CR73 – volume: 2 start-page: 568 issue: 6 year: 1991 end-page: 576 ident: CR89 article-title: A general regression neural network publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.97934 – ident: CR90 – ident: CR38 – volume: 37 start-page: 1671 issue: 5 year: 1994 end-page: 1677 ident: CR52 article-title: Grading of mushrooms using a machine vision system publication-title: Trans. ASAE doi: 10.13031/2013.28255 – volume: 22 start-page: 13 year: 2021 end-page: 28 ident: CR72 article-title: Revealing hidden drivers of macrofungal species richness by analyzing fungal guilds in temperate forests, West Hungary publication-title: Community Ecol. doi: 10.1007/s42974-020-00031-6 – volume: 10 start-page: 20 year: 2014 end-page: 33 ident: CR2 article-title: Climate variation effects on fungal fruiting publication-title: Fungal Ecol. doi: 10.1016/j.funeco.2013.10.006 – volume: 113 year: 2020 ident: CR28 article-title: Determination of plant communities based on bryophytes: The combined use of Kohonen artificial neural network and indicator species analysis publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2020.106160 – ident: CR76 – ident: CR83 – volume: 61 start-page: 145 issue: 06 year: 2018 ident: CR13 article-title: Survey methods and indicator system of assessment for macrofungal diversity in China publication-title: J. Nanjing For. Univ. – volume: 11 start-page: 1633 year: 2007 end-page: 1644 ident: CR78 article-title: Updated world map of the Köppen–Geiger climate classification publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-11-1633-2007 – volume: 60 year: 2022 ident: CR3 article-title: Climate-induced long-term changes in the phenology of Mediterranean fungi publication-title: Fungal Ecol. doi: 10.1016/j.funeco.2022.101166 – ident: CR20 – year: 2018 ident: CR34 article-title: Artificial neural networks model for estimating growth of polyculture microalgae in an open raceway pond publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.10.002 – volume: 5 start-page: 128 issue: 3 year: 2021 end-page: 137 ident: CR60 article-title: ANN for mushroom prediction publication-title: Int. J. Acad. Multidiscip. Res. – volume: 2009 start-page: 111 year: 2009 end-page: 115 ident: CR86 article-title: Comparing the performance of different neural networks for binary classification problems publication-title: Eighth International Symposium on Natural Language Processing, Bangkok, Thailand doi: 10.1109/SNLP.2009.5340935 – volume: 87 start-page: 295 issue: 2 year: 2012 end-page: 302 ident: CR47 article-title: Modelling molecular and inorganic data of Amanita ponderosa mushrooms using artificial neural networks publication-title: Agrofor. Syst. doi: 10.1007/s10457-012-9548-y – volume: 187 start-page: 263 year: 2015 end-page: 269 ident: CR48 article-title: Effect of thermal treatment on secondary structure and conformational change of mushroom polyphenol oxidase (PPO) as food quality related enzyme: A FTIR study publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.04.09 – volume: 2 start-page: 183 issue: 5–6 year: 1991 ident: 50638_CR85 publication-title: Neurocomputing doi: 10.1016/0925-2312(91)90023-5 – year: 2018 ident: 50638_CR34 publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.10.002 – volume: 213 start-page: 173 year: 2015 ident: 50638_CR62 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.07.001 – volume: 2009 start-page: 111 year: 2009 ident: 50638_CR86 publication-title: Eighth International Symposium on Natural Language Processing, Bangkok, Thailand doi: 10.1109/SNLP.2009.5340935 – ident: 50638_CR20 doi: 10.1007/978-94-011-2414-0_2 – volume: 49 start-page: 53 issue: 1 year: 1995 ident: 50638_CR80 publication-title: Am. Stat. doi: 10.1080/0031305.1995.10476113 – ident: 50638_CR76 – volume: 164 year: 2019 ident: 50638_CR39 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104929 – volume: 440 start-page: 55 issue: 1 year: 2020 ident: 50638_CR68 publication-title: Phytotaxa doi: 10.11646/phytotaxa.440.1.3 – volume: 12 start-page: 1 issue: 1 year: 2001 ident: 50638_CR87 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.896792 – volume: 169 start-page: 187 issue: 3 year: 2002 ident: 50638_CR10 publication-title: For. Ecol. Manag. doi: 10.1016/s0378-1127(01)00672-7 – ident: 50638_CR14 – volume: 55 start-page: 17 issue: 1 year: 1989 ident: 50638_CR16 publication-title: Zeitschrift für Mykologie – year: 2018 ident: 50638_CR49 publication-title: J. Food Process Eng. doi: 10.1111/jfpe.12849 – volume: 28 start-page: 7376 issue: 24 year: 2022 ident: 50638_CR56 publication-title: Glob. Change Biol. doi: 10.1111/gcb.16424 – ident: 50638_CR58 doi: 10.3785/j.issn.1008-9209.2016.04.113 – volume: 5 start-page: 115 issue: 4 year: 1943 ident: 50638_CR25 publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – volume: 9 start-page: 17656 issue: 1 year: 2019 ident: 50638_CR27 publication-title: Sci. Rep. doi: 10.1038/s41598-019-53797-9 – ident: 50638_CR18 – volume: 34 start-page: 256 issue: 07 year: 2018 ident: 50638_CR54 publication-title: Trans. Chin. Soc. Agric. Eng. doi: 10.11975/j.issn.1002-6819.2018.07.033 – ident: 50638_CR79 – year: 2020 ident: 50638_CR36 publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.04.004 – ident: 50638_CR43 doi: 10.1145/3375959.3375982 – volume: 79 start-page: 1855 issue: 9 year: 1998 ident: 50638_CR37 publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1998)079<1855:ANNMTP>2.0.CO;2 – volume: 2012 year: 2012 ident: 50638_CR88 publication-title: Int. Schol. Res. Not. doi: 10.5402/2012/324194 – volume: 87 start-page: 295 issue: 2 year: 2012 ident: 50638_CR47 publication-title: Agrofor. Syst. doi: 10.1007/s10457-012-9548-y – volume: 61 start-page: 145 issue: 06 year: 2018 ident: 50638_CR13 publication-title: J. Nanjing For. Univ. – ident: 50638_CR61 doi: 10.1109/isesd.2016.7886713 – volume: 62 start-page: 29 issue: 1 year: 2021 ident: 50638_CR66 publication-title: Mycoscience doi: 10.47371/mycosci.2020.08.003 – volume: 45 start-page: 3 issue: 1–3 year: 2006 ident: 50638_CR70 publication-title: Clusiana – volume: 22 start-page: 13 year: 2021 ident: 50638_CR72 publication-title: Community Ecol. doi: 10.1007/s42974-020-00031-6 – ident: 50638_CR19 – volume: 89 start-page: 187 issue: 2 year: 1987 ident: 50638_CR21 publication-title: Trans. Br. Mycol. Soc. doi: 10.1016/S0007-1536(87)80151-1 – volume: 5 start-page: 128 issue: 3 year: 2021 ident: 50638_CR60 publication-title: Int. J. Acad. Multidiscip. Res. – volume: 91 start-page: 5 year: 2018 ident: 50638_CR67 publication-title: Fungal Divers. doi: 10.1007/s13225-018-0405-9 – volume: 65 start-page: 206 year: 2008 ident: 50638_CR6 publication-title: Ann. For. Sci. doi: 10.1051/forest:2007089 – volume: 12 start-page: 738 issue: 1 year: 2018 ident: 50638_CR33 publication-title: Eng. Appl. Comput. Fluid Mech. doi: 10.1080/19942060.2018.1526119 – ident: 50638_CR93 doi: 10.1201/9781315374116 – volume: 10 start-page: 20 year: 2014 ident: 50638_CR2 publication-title: Fungal Ecol. doi: 10.1016/j.funeco.2013.10.006 – volume: 10 start-page: 12230 issue: 1 year: 2020 ident: 50638_CR29 publication-title: Sci. Rep. doi: 10.1038/s41598-020-69157-x – volume: 14 start-page: 101 issue: 2 year: 2022 ident: 50638_CR65 publication-title: Diversity doi: 10.3390/d14020101 – volume: 86 start-page: 1497 issue: 12 year: 2008 ident: 50638_CR8 publication-title: Botany doi: 10.1139/B08-094 – volume: 4 start-page: 603 issue: 4 year: 2010 ident: 50638_CR46 publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-010-0401-x – volume: 2 start-page: 568 issue: 6 year: 1991 ident: 50638_CR89 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.97934 – volume: 2008 start-page: 1 year: 2008 ident: 50638_CR91 publication-title: International Symposium on Biometrics and Security Technologies – volume: 327 start-page: 105 issue: 1–3 year: 2004 ident: 50638_CR26 publication-title: Sci. Tot. Environ. doi: 10.1016/j.scitotenv.2004.01.06 – volume: 1524 year: 2020 ident: 50638_CR40 publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/1524/1/012147 – volume: 15 start-page: 52 issue: 5 year: 2018 ident: 50638_CR41 publication-title: Int. J. Comput. Sci. Iss. doi: 10.5281/zenodo.146765952 – volume: 27 start-page: 352 issue: 5 year: 2004 ident: 50638_CR53 publication-title: J. Food Qual. doi: 10.1111/j.1745-4557.2004.00642.x – volume: 43 start-page: 28 issue: 02 year: 2021 ident: 50638_CR57 publication-title: J. Agric. Mech. Res. doi: 10.13427/j.cnki.njyi.2021.02.005 – ident: 50638_CR38 doi: 10.1109/icccnt.2018.8494024 – volume: 4 start-page: 871 year: 2013 ident: 50638_CR71 publication-title: Mycosphere doi: 10.5943/mycosphere/4/5/3 – ident: 50638_CR74 – volume: 64 start-page: 873 issue: 4 year: 2007 ident: 50638_CR4 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2007.05711.x – volume: 3 start-page: 1 issue: 2 year: 2019 ident: 50638_CR59 publication-title: Int. J. Acad. Appl. Res. – volume: 13 start-page: 309 year: 2017 ident: 50638_CR44 publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2017.08.008 – volume: 40 start-page: 9 issue: 2 year: 2016 ident: 50638_CR32 publication-title: Turk. J. Agric. For. doi: 10.3906/tar-1408-28 – volume: 372 start-page: 1160 issue: 6547 year: 2021 ident: 50638_CR5 publication-title: Science doi: 10.1126/science.abj5479 – volume: 37 start-page: 981 issue: 3 year: 1994 ident: 50638_CR30 publication-title: Trans. ASAE doi: 10.13031/2013.28168 – volume: 16 start-page: 986 issue: 2 year: 2016 ident: 50638_CR63 publication-title: Plant Arch. – volume: 109 start-page: 1235 issue: 11 year: 2005 ident: 50638_CR75 publication-title: Mycol. Res. doi: 10.1017/s0953756205003953 – volume: 32 start-page: 236 year: 2018 ident: 50638_CR1 publication-title: Fungal Biol. Rev. doi: 10.1016/j.fbr.2018.02.003 – volume: 11 start-page: 1633 year: 2007 ident: 50638_CR78 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-11-1633-2007 – volume: 2 start-page: 7 year: 2002 ident: 50638_CR7 publication-title: BMC Ecology doi: 10.1186/1472-6785-2-7 – ident: 50638_CR12 – volume: 88 start-page: 145 issue: 1–2 year: 2001 ident: 50638_CR22 publication-title: Botanikai Közlemények – volume: 436 start-page: 131 issue: 1/3 year: 2000 ident: 50638_CR31 publication-title: Hydrobiologia doi: 10.1023/a:1026575418649 – ident: 50638_CR84 – volume: 26 start-page: 339 issue: 4 year: 2018 ident: 50638_CR11 publication-title: Environ. Rev. doi: 10.1139/er-2018-0034 – ident: 50638_CR51 doi: 10.13031/aim.201900505 – volume: 11 start-page: 770 issue: 5 year: 2022 ident: 50638_CR69 publication-title: Biology doi: 10.3390/biology11050770 – volume: 52 start-page: 429 issue: 2 year: 1986 ident: 50638_CR15 publication-title: Zeitschrift für Mykologie – volume: 29 start-page: 113 year: 2019 ident: 50638_CR55 publication-title: Mycorrhiza doi: 10.1007/s00572-018-0877-1 – ident: 50638_CR77 – year: 2019 ident: 50638_CR35 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.04.009 – volume: 3 start-page: 109 issue: 1 year: 1990 ident: 50638_CR92 publication-title: Neural networks doi: 10.1016/0893-6080(90)90049-Q – volume: 8 start-page: 94 issue: 1 year: 2018 ident: 50638_CR42 publication-title: IOSR J. Eng. – ident: 50638_CR73 – volume: 113 year: 2020 ident: 50638_CR28 publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2020.106160 – ident: 50638_CR90 doi: 10.1007/978-3-540-40046-2_5 – volume: 228 start-page: 339 year: 2016 ident: 50638_CR64 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2016.07.013 – volume: 37 start-page: 1671 issue: 5 year: 1994 ident: 50638_CR52 publication-title: Trans. ASAE doi: 10.13031/2013.28255 – volume: 137 start-page: 1939 year: 2019 ident: 50638_CR81 publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-018-2702-3 – volume: 198 year: 2022 ident: 50638_CR50 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107015 – volume: 11 start-page: 135 issue: 2 year: 1997 ident: 50638_CR82 publication-title: J. Comput. Aided Mol. Des. doi: 10.1023/a:1008074223811 – ident: 50638_CR83 – volume-title: Die Makromyceten im Raum von Wien year: 1992 ident: 50638_CR17 – volume: 11 start-page: 531 issue: 4 year: 2022 ident: 50638_CR24 publication-title: Biology doi: 10.3390/biology11040531 – ident: 50638_CR45 doi: 10.1007/978-3-030-36841-8 – volume: 187 start-page: 263 year: 2015 ident: 50638_CR48 publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.04.09 – volume: 60 year: 2022 ident: 50638_CR3 publication-title: Fungal Ecol. doi: 10.1016/j.funeco.2022.101166 – volume: 20 start-page: 60 issue: 1 year: 2015 ident: 50638_CR23 publication-title: J. For. Res. doi: 10.1007/s10310-014-0459-9 – volume: 23 start-page: 30 year: 2016 ident: 50638_CR9 publication-title: Fungal Ecology doi: 10.1016/j.funeco.2016.05.008 |
| SSID | ssj0000529419 |
| Score | 2.4084764 |
| Snippet | The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the... Abstract The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 278 |
| SubjectTerms | 631/158 631/449 704/158 704/172 Agaricales Algorithms Classification Fruit bodies Humanities and Social Sciences Machine Learning multidisciplinary Mycorrhizae Neural networks Neural Networks, Computer Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkJG4QdTEj8Q-IUBUHKDqAVBvll9p90CyZHdB_ffMON5Uy-vCJYniJHLyjWe-zHjGhDyPtYsMNoCAq0phlSitlLH0NZJj4LsipEThD-3RkTo50cfZ4bbK0yq3OjEp6jB49JEfMF1p0Kx1Vb1afitx1SiMruYlNC6TK8BsapzS9ZEdzz4WjGKJWudcmYqrgxXYK8wpY7yUaKxLtWOPUtn-P3HN36dM_hI3Tebo8Ob_vsgtciMTUfp6kpzb5FLs75Br09KU53fJ6RcQzS479GgqQkvh4Gz4Qb9aVN6gJOD2btws1m6AxjkLkgJY1EW6HDEGBISWunOKAjrVqqBYQTPt0vzze-Tz4btPb9-XeVGG0gvN1qXzijvdReWrNngnQUl5oL421JYJq7kUDptFCJUScFaoqGvpWGitD1Y6fp_s9UMfHxLKu1ZIZYETwV-ds50WvhFB2wZIZ8tELMiLLTRmOdXeMClmzpWZgDQApElAGlWQN4jefCXWzU4nhvHU5GForGQ2cAfWASsdcuiz0k2nIwYIWdXAQ_a3oJk8mFfmArGCPJubYRhibMX2cdjgNTVm5bctPOLBJCpzTzA2q6RoCqJ2hGinq7st_eIslfqu0c3UKF6Ql1t5u-jX37_Fo3-_xmNynQE3S54ktk_21uMmPiFX_ff1YjU-TWPoJ16MJR0 priority: 102 providerName: ProQuest |
| Title | Verification study on how macrofungal fruitbody formation can be predicted by artificial neural network |
| URI | https://link.springer.com/article/10.1038/s41598-023-50638-8 https://www.ncbi.nlm.nih.gov/pubmed/38168546 https://www.proquest.com/docview/2909067100 https://www.proquest.com/docview/2910190778 https://pubmed.ncbi.nlm.nih.gov/PMC10761683 https://doaj.org/article/a52ad3b467344731a2896f9e01092068 |
| Volume | 14 |
| WOSCitedRecordID | wos001163663800087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxIXxJtAWRmJG0RN_IjtI0WtQKKrFQK0nCw7cdo9kK32Aeq_Z8bJLl0e4sJlEtlJZM0jM_Z4PgO8iGWIHAlKIBS59EbmXqmY1yUFxxjvyiYVCr_X47GZTu3kylFftCeshwfuGXfoFfeNCGjPhE0nSo8zhKq1kVI6vKhSmW-h7ZXJVI_qza0s7VAlUwhzuERPRdVkXOSK3HRudjxRAuz_U5T5-2bJXzKmyRGd3IHbQwTJXvcjvwvXYncPbvZnSl7eh7PPqFPtsBLHEnosw5vz-Xf21dNfF60bX28X69kqzLFzW77IkMssRHaxoOQNRqIsXDJiUA8ywQj6Ml3SxvEH8Onk-OObt_lwmkJeS8tXeaiNCLaNpi50UweFf5caY1bfIEult0LJQN2yaQojsVWaaEsVeKN93XgVxEPY6-ZdfAxMtFoq4zGYwelY8K2VdSUb6yuMFjWXMYOXG866ix40w6VktzCul4NDObgkB2cyOCLmb58kwOvUgGrgBjVw_1KDDA42onODFS4dt4VFb1wWRQbPt91oP5QU8V2cr-mZksrptcZPPOolvR0JJVWNklUGZkcHdoa629PNzhNGd0nrQ5URGbzaqMvPcf2dF0_-By-ewi2OoVdaKOIHsLdarOMzuFF_W82WixFc11OdqBnB_tHxePJhlIwH6SmfENVI9yfvTidffgDokxxg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQwEhwgqiJ4yT2ASG2qlWHUQ8F9WbsxGnnQDLMQjV_it_Ie85SDdutBy4zozhjOcn33vvyNgM8c7F1HD_wCdgoFEaK0KSpC4uYyDHyXVH6QuFRPh7LoyN1sAE_-loYSqvsdaJX1GVTkI98m6tIoWaNo-j19FtIu0ZRdLXfQqOFxb5bneIr2_zV3nt8vs853_lw-G437HYVCAuh-CK0hUysqpwsorwsbIpSViB3M2VsuDAqSYWlYVGWkRR4VEin4tTyMjdFaVKb4LwX4KKgzmKUKsgPBp8ORc1ErLranCiR23O0j1TDxpMwJXIQyjX757cJ-BO3_T1F85c4rTd_O9f_txt3A651RJu9aSXjJmy4-hZcbrfeXN2G488oelXnsGS-yS7DHyfNKftqyDihEsS_V7PlZGEbHByqPBmCkVnHpjOKcSFhZ3bFSADbXhyMOoT6L59ffwc-nctV3oXNuqndfWBJlYtUGuR8-NZqTaVEkYlSmQxJdc6FC-BFDwU9bXuLaJ8TkEjdAkcjcLQHjpYBvCW0DGdSX3B_oJkd607NaJNyUyYWrR91ckxwzVJllXIUAOVRhpNs9SDRnbKa6zOEBPB0GEY1Q7EjU7tmSefE1HUgz3GKey00h5VQ7FmmIgtAroF2banrI_XkxLcyj8mNlskkgJc9vs_W9fd78eDfl_EEruwefhzp0d54_yFc5chDvdeMb8HmYrZ0j-BS8X0xmc8ee_ll8OW8cf8T5yuFqg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCouvCmBAosEJ7Bir9f27gEhoERELVEOgNrTsmuv2xyIQx5U-Wv8OmbWdqrwuvXAJYm8zmptfzPzeV4L8NRF1nH8wCdgw0AYKQKTJC7IIyLHyHdF4QuFD7PhUB4dqdEW_GhrYSitstWJXlEXVU4-8h5XoULNGoVhr2zSIkb7_VfTbwHtIEWR1nY7jRoiB251hq9v85eDfXzWzzjvv_v49n3Q7DAQ5ELxRWBzGVtVOpmHWZHbBCUuRx5nishwYVScCEvDoihCKfCokE5FieVFZvLCJDbGeS_BNlJywTuwPRp8GB2vPTwUQxORaip1wlj25mgtqaKNx0FCVCGQG9bQbxrwJ6b7e8LmL1Fbbwz71__n23gDrjUUnL2uZeYmbLnJLbhSb8q5ug0nn1Eoy8aVyXz7XYY_Tqsz9tWQ2UL1iH8vZ8vxwlY4uK7_ZAhTZh2bzij6hVSe2RUj0ay7dDDqHeq_fOb9Hfh0IVd5FzqTauLuAYvLTCTSIBvE91lrSiXyVBTKpEi3My5cF563sNDTuuuI9tkCsdQ1iDSCSHsQadmFN4Sc9ZnUMdwfqGYnulFA2iTcFLFFu0g9HmNcs1RpqRyFRnmY4iR7LWB0o8bm-hwtXXiyHkYFRFElM3HVks6JqB9BluEUuzVM1yuhqLRMRNoFuQHgjaVujkzGp77JeUQOtlTGXXjRYv18XX-_F_f_fRmPYQfhrg8Hw4MHcJUjQfXuNL4HncVs6R7C5fz7YjyfPWqEmcGXiwb-T8yXj_M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Verification+study+on+how+macrofungal+fruitbody+formation+can+be+predicted+by+artificial+neural+network&rft.jtitle=Scientific+reports&rft.au=Somfalvi-T%C3%B3th%2C+Katalin&rft.au=J%C3%B3cs%C3%A1k%2C+Ildik%C3%B3&rft.au=P%C3%A1l-F%C3%A1m%2C+Ferenc&rft.date=2024-01-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-50638-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_50638_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |