Automated video analysis of emotion and dystonia in epileptic seizures

To investigate the accuracy of deep learning methods applied to seizure video data, in discriminating individual semiologic features of dystonia and emotion in epileptic seizures. A dataset of epileptic seizure videos was used from patients explored with stereo-EEG for focal pharmacoresistant epilep...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Epilepsy research Ročník 184; s. 106953
Hlavní autoři: Hou, Jen-Cheng, Thonnat, Monique, Bartolomei, Fabrice, McGonigal, Aileen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2022
Elsevier
Témata:
ISSN:0920-1211, 1872-6844, 1872-6844
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To investigate the accuracy of deep learning methods applied to seizure video data, in discriminating individual semiologic features of dystonia and emotion in epileptic seizures. A dataset of epileptic seizure videos was used from patients explored with stereo-EEG for focal pharmacoresistant epilepsy. All patients had hyperkinetic (HKN) seizures according to ILAE definition. Presence or absence of (1) dystonia and (2) emotional features in each seizure was documented by an experienced clinician. A deep learning multi-stream model with appearance and skeletal keypoints, face and body information, using graph convolutional neural networks, was used to test discrimination of dystonia and emotion. Classification accuracy was assessed using a leave-one-subject-out analysis. We studied 38 HKN seizure videos in 19 patients. By visual analysis based on ILAE criteria, 9/19 patients were considered to have dystonia and 9/19 patients were considered to have emotional signs. Two patients had both dystonia and emotional signs. Applying the deep learning multistream model, spatiotemporal features of facial appearance showed best accuracy for emotion detection (F1 score 0.84), while skeletal keypoint detection performed best for dystonia (F1 score 0.83). Here, we investigated deep learning of video data for analyzing individual semiologic features of dystonia and emotion in hyperkinetic seizures. Automated classification of individual semiologic features is possible and merits further study. •Deep learning analysis of seizure videos allows automated classification of semiology.•Presence of dystonia and/or emotion in hyperkinetic seizures was assessed.•Dystonia was best detected by skeletal keypoints, and emotional signs by facial appearance.•Spatiotemporal facial features were superior to facial keypoints for emotion detection.•Skeletal keypoints topology was superior to spatiotemporal model for dystonia detection.
AbstractList To investigate the accuracy of deep learning methods applied to seizure video data, in discriminating individual semiologic features of dystonia and emotion in epileptic seizures.OBJECTIVETo investigate the accuracy of deep learning methods applied to seizure video data, in discriminating individual semiologic features of dystonia and emotion in epileptic seizures.A dataset of epileptic seizure videos was used from patients explored with stereo-EEG for focal pharmacoresistant epilepsy. All patients had hyperkinetic (HKN) seizures according to ILAE definition. Presence or absence of (1) dystonia and (2) emotional features in each seizure was documented by an experienced clinician. A deep learning multi-stream model with appearance and skeletal keypoints, face and body information, using graph convolutional neural networks, was used to test discrimination of dystonia and emotion. Classification accuracy was assessed using a leave-one-subject-out analysis.METHODSA dataset of epileptic seizure videos was used from patients explored with stereo-EEG for focal pharmacoresistant epilepsy. All patients had hyperkinetic (HKN) seizures according to ILAE definition. Presence or absence of (1) dystonia and (2) emotional features in each seizure was documented by an experienced clinician. A deep learning multi-stream model with appearance and skeletal keypoints, face and body information, using graph convolutional neural networks, was used to test discrimination of dystonia and emotion. Classification accuracy was assessed using a leave-one-subject-out analysis.We studied 38 HKN seizure videos in 19 patients. By visual analysis based on ILAE criteria, 9/19 patients were considered to have dystonia and 9/19 patients were considered to have emotional signs. Two patients had both dystonia and emotional signs. Applying the deep learning multistream model, spatiotemporal features of facial appearance showed best accuracy for emotion detection (F1 score 0.84), while skeletal keypoint detection performed best for dystonia (F1 score 0.83).RESULTSWe studied 38 HKN seizure videos in 19 patients. By visual analysis based on ILAE criteria, 9/19 patients were considered to have dystonia and 9/19 patients were considered to have emotional signs. Two patients had both dystonia and emotional signs. Applying the deep learning multistream model, spatiotemporal features of facial appearance showed best accuracy for emotion detection (F1 score 0.84), while skeletal keypoint detection performed best for dystonia (F1 score 0.83).Here, we investigated deep learning of video data for analyzing individual semiologic features of dystonia and emotion in hyperkinetic seizures. Automated classification of individual semiologic features is possible and merits further study.SIGNIFICANCEHere, we investigated deep learning of video data for analyzing individual semiologic features of dystonia and emotion in hyperkinetic seizures. Automated classification of individual semiologic features is possible and merits further study.
To investigate the accuracy of deep learning methods applied to seizure video data, in discriminating individual semiologic features of dystonia and emotion in epileptic seizures. A dataset of epileptic seizure videos was used from patients explored with stereo-EEG for focal pharmacoresistant epilepsy. All patients had hyperkinetic (HKN) seizures according to ILAE definition. Presence or absence of (1) dystonia and (2) emotional features in each seizure was documented by an experienced clinician. A deep learning multi-stream model with appearance and skeletal keypoints, face and body information, using graph convolutional neural networks, was used to test discrimination of dystonia and emotion. Classification accuracy was assessed using a leave-one-subject-out analysis.We studied 38 HKN seizure videos in 19 patients. By visual analysis based on ILAE criteria, 9/19 patients were considered to have dystonia and 9/19 patients were considered to have emotional signs. Two patients had both dystonia and emotional signs. Applying the deep learning multistream model, spatiotemporal features of facial appearance showed best accuracy for emotion detection (F1 score 0.84), while skeletal keypoint detection performed best for dystonia (F1 score 0.83).Here, we investigated deep learning of video data for analyzing individual semiologic features of dystonia and emotion in hyperkinetic seizures. Automated classification of individual semiologic features is possible and merits further study.
To investigate the accuracy of deep learning methods applied to seizure video data, in discriminating individual semiologic features of dystonia and emotion in epileptic seizures. A dataset of epileptic seizure videos was used from patients explored with stereo-EEG for focal pharmacoresistant epilepsy. All patients had hyperkinetic (HKN) seizures according to ILAE definition. Presence or absence of (1) dystonia and (2) emotional features in each seizure was documented by an experienced clinician. A deep learning multi-stream model with appearance and skeletal keypoints, face and body information, using graph convolutional neural networks, was used to test discrimination of dystonia and emotion. Classification accuracy was assessed using a leave-one-subject-out analysis. We studied 38 HKN seizure videos in 19 patients. By visual analysis based on ILAE criteria, 9/19 patients were considered to have dystonia and 9/19 patients were considered to have emotional signs. Two patients had both dystonia and emotional signs. Applying the deep learning multistream model, spatiotemporal features of facial appearance showed best accuracy for emotion detection (F1 score 0.84), while skeletal keypoint detection performed best for dystonia (F1 score 0.83). Here, we investigated deep learning of video data for analyzing individual semiologic features of dystonia and emotion in hyperkinetic seizures. Automated classification of individual semiologic features is possible and merits further study. •Deep learning analysis of seizure videos allows automated classification of semiology.•Presence of dystonia and/or emotion in hyperkinetic seizures was assessed.•Dystonia was best detected by skeletal keypoints, and emotional signs by facial appearance.•Spatiotemporal facial features were superior to facial keypoints for emotion detection.•Skeletal keypoints topology was superior to spatiotemporal model for dystonia detection.
ArticleNumber 106953
Author Hou, Jen-Cheng
McGonigal, Aileen
Bartolomei, Fabrice
Thonnat, Monique
Author_xml – sequence: 1
  givenname: Jen-Cheng
  surname: Hou
  fullname: Hou, Jen-Cheng
  organization: INRIA Université Nice Côte d′Azur, France
– sequence: 2
  givenname: Monique
  surname: Thonnat
  fullname: Thonnat, Monique
  organization: INRIA Université Nice Côte d′Azur, France
– sequence: 3
  givenname: Fabrice
  surname: Bartolomei
  fullname: Bartolomei, Fabrice
  organization: Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
– sequence: 4
  givenname: Aileen
  surname: McGonigal
  fullname: McGonigal, Aileen
  email: a.mcgonigal@uq.edu.au
  organization: Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
BackLink https://hal.science/hal-03817305$$DView record in HAL
BookMark eNqNkE1rGzEQhkVJoM7Hf9CxOayjL6-1l1IT4qRg6KU9C600S8aVV5uVbNj8-shsaaGX9jTDyzvPwHNFLvrYAyGUsyVnvL7fL2EIMKRphLQUTIgS181KfiALrteiqrVSF2TBGsEqLjj_SK5S2jPG1kypBdlujjkebAZPT-ghUtvbMCVMNHYUDjFj7EvmqZ9Sjj1aij2FAcvLjI4mwLdj-XxDLjsbEtz-mtfkx_bx-8Nztfv29PVhs6ucakSuWq2F71a1lBokMNHwFrz3yjPXNbqVXLau7tbClk1527SrFrTomk4Jy6AGeU3uZu6LDWYY8WDHyUSL5nmzM-eMSc3Xkq1OvHQ_zd1hjK9HSNkcMDkIwfYQj8mIWnOluBa6VPVcdWNMaYTuN5szc9Zs9uaPZnPWbGbN5fTzX6cOsz1ry6PF8D-ALzMAircTwmhcwB6dDT9hMj7ivxHvUYqiRQ
CitedBy_id crossref_primary_10_1111_epi_17833
crossref_primary_10_1016_j_yebeh_2025_110486
crossref_primary_10_3389_fneur_2023_1270482
crossref_primary_10_1016_j_artmed_2024_102952
crossref_primary_10_1111_epi_17926
crossref_primary_10_1186_s12938_025_01396_3
crossref_primary_10_1007_s11910_023_01318_7
crossref_primary_10_1016_j_yebeh_2024_109735
crossref_primary_10_1016_j_neurol_2023_07_006
crossref_primary_10_1016_j_mcpdig_2023_10_004
crossref_primary_10_1002_mds_30327
crossref_primary_10_1111_epi_18372
crossref_primary_10_1002_epd2_20284
crossref_primary_10_1145_3552512
crossref_primary_10_14581_jer_25002
Cites_doi 10.1046/j.1528-1157.2001.22001.x
10.1016/j.jns.2015.09.065
10.1038/s41591-021-01461-z
10.1038/s41746-020-00376-2
10.1001/jamaneurol.2019.2384
10.1111/epi.13670
10.1016/j.yebeh.2018.07.028
10.1111/epi.16510
10.1111/epi.12490
10.1111/epi.16994
10.1111/epi.13907
10.1109/IJCNN.2017.7966210
10.1111/epi.16633
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7X8
1XC
VOOES
DOI 10.1016/j.eplepsyres.2022.106953
DatabaseName CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
Computer Science
EISSN 1872-6844
ExternalDocumentID oai:HAL:hal-03817305v1
10_1016_j_eplepsyres_2022_106953
S0920121122001048
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDW
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LX8
M29
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SEL
SES
SEW
SNS
SPCBC
SSH
SSN
SSZ
T5K
UNMZH
WUQ
Z5R
~G-
~HD
9DU
AAYXX
CITATION
7X8
1XC
VOOES
ID FETCH-LOGICAL-c492t-b882df56338e3e0291beddd4d0cf98b313bc6f72a3134da9b5be82f9f42a0e6e3
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000822907800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-1211
1872-6844
IngestDate Tue Oct 14 20:46:25 EDT 2025
Mon Sep 29 06:40:20 EDT 2025
Sat Nov 29 07:19:10 EST 2025
Tue Nov 18 22:33:52 EST 2025
Tue Oct 14 19:35:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neural network
Dystonia
Emotion
Artificial intelligence
Hyperkinetic
Semiology
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c492t-b882df56338e3e0291beddd4d0cf98b313bc6f72a3134da9b5be82f9f42a0e6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7088-5399
OpenAccessLink https://hal.science/hal-03817305
PQID 2681441828
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_03817305v1
proquest_miscellaneous_2681441828
crossref_primary_10_1016_j_eplepsyres_2022_106953
crossref_citationtrail_10_1016_j_eplepsyres_2022_106953
elsevier_clinicalkey_doi_10_1016_j_eplepsyres_2022_106953
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
2022-08
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Epilepsy research
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bonini, McGonigal, Trébuchon, Gavaret, Bartolomei, Giusiano, Chauvel (bib6) 2014
Fayerstein, McGonigal, Pizzo, Bonini, Lagarde, Braquet, Trébuchon, Carron, Scavarda, Julia (bib9) 2020; 61
Goodfellow, Erhan, Carrier, Courville, Mirza, Hamner, Cukierski, Tang, Thaler, Lee (bib11) 2013
Pérez-García, Scott, Sparks, Diehl, Ourselin (bib22) 2021
Tjoa, Guan (bib24) 2020
Achilles, Belagiannis, Tombari, Loesch, Cunha, Navab, Noachtar (bib1) 2015; 357
Karácsony, Loesch-Biffar, Vollmar, Noachtar, Cunha (bib15) 2020
McGonigal, Bartolomei, Chauvel (bib21) 2021; 62
Deng, Dong, Socher, Li, Li, Fei-Fei (bib7) 2009
Kundu (bib17) 2021; 27
Hou, McGonigal, Bartolomei, Thonnat (bib13) 2021
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (bib14) 2017; 1704
Lhatoo, Bernasconi, Blumcke, Braun, Buchhalter, Denaxas, Galanopoulou, Josephson, Kobow, Lowenstein (bib18) 2020; 61
Simonyan, Zisserman (bib23) 2014; 1409
Beniczky, Tatum, Blumenfeld, Stefan, Mani, Maillard, Fahoum, Vinayan, Mayor, Vlachou (bib4) 2022
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (bib19) 2014
Fisher, Cross, French, Higurashi, Hirsch, Jansen, Lagae, Moshé, Peltola, Roulet Perez (bib10) 2017; 58
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib20) 2016
Ahmedt-Aristizabal, Fookes, Denman, Nguyen, Fernando, Sridharan, Dionisio (bib2) 2018; 87
Wu, Sharma, Blumenstein (bib25) 2017
Esteva, Chou, Yeung, Naik, Madani, Mottaghi, Liu, Topol, Dean, Socher (bib8) 2021; 4
Ahmedt‐Aristizabal, Fookes, Dionisio, Nguyen, Cunha, Sridharan (bib3) 2017; 58
Blume, Lüders, Mizrahi, Tassinari, van Emde Boas, Engel (bib5) 2001; 42
Kearney, Byrne, Cavalleri, Delanty (bib16) 2019; 76
He, Gkioxari, Dollár, Girshick (bib12) 2017
Hou (10.1016/j.eplepsyres.2022.106953_bib13) 2021
Lhatoo (10.1016/j.eplepsyres.2022.106953_bib18) 2020; 61
Simonyan (10.1016/j.eplepsyres.2022.106953_bib23) 2014; 1409
Fayerstein (10.1016/j.eplepsyres.2022.106953_bib9) 2020; 61
Kearney (10.1016/j.eplepsyres.2022.106953_bib16) 2019; 76
McGonigal (10.1016/j.eplepsyres.2022.106953_bib21) 2021; 62
Karácsony (10.1016/j.eplepsyres.2022.106953_bib15) 2020
Pérez-García (10.1016/j.eplepsyres.2022.106953_bib22) 2021
Goodfellow (10.1016/j.eplepsyres.2022.106953_bib11) 2013
Lin (10.1016/j.eplepsyres.2022.106953_bib19) 2014
Liu (10.1016/j.eplepsyres.2022.106953_bib20) 2016
Blume (10.1016/j.eplepsyres.2022.106953_bib5) 2001; 42
Howard (10.1016/j.eplepsyres.2022.106953_bib14) 2017; 1704
Deng (10.1016/j.eplepsyres.2022.106953_bib7) 2009
Fisher (10.1016/j.eplepsyres.2022.106953_bib10) 2017; 58
Esteva (10.1016/j.eplepsyres.2022.106953_bib8) 2021; 4
Kundu (10.1016/j.eplepsyres.2022.106953_bib17) 2021; 27
Ahmedt-Aristizabal (10.1016/j.eplepsyres.2022.106953_bib2) 2018; 87
Wu (10.1016/j.eplepsyres.2022.106953_bib25) 2017
Achilles (10.1016/j.eplepsyres.2022.106953_bib1) 2015; 357
He (10.1016/j.eplepsyres.2022.106953_bib12) 2017
Beniczky (10.1016/j.eplepsyres.2022.106953_bib4) 2022
Tjoa (10.1016/j.eplepsyres.2022.106953_bib24) 2020
Ahmedt‐Aristizabal (10.1016/j.eplepsyres.2022.106953_bib3) 2017; 58
Bonini (10.1016/j.eplepsyres.2022.106953_bib6) 2014
References_xml – volume: 61
  start-page: 1869
  year: 2020
  end-page: 1883
  ident: bib18
  article-title: Big data in epilepsy: clinical and research considerations. Report from the epilepsy big data task force of the international league against epilepsy
  publication-title: Epilepsia
– volume: 357
  year: 2015
  ident: bib1
  article-title: Deep convolutional neural networks for automatic identification of epileptic seizures in infrared and depth images
  publication-title: J. Neurol. Sci.
– volume: 27
  year: 2021
  ident: bib17
  article-title: AI in medicine must be explainable
  publication-title: Nat. Med.
– volume: 1704
  start-page: 04861
  year: 2017
  ident: bib14
  article-title: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
  publication-title: Comput. Sci.
– start-page: 740
  year: 2014
  end-page: 755
  ident: bib19
  article-title: Microsoft coco: Common objects in context
  publication-title: European conference on computer vision
– year: 2020
  ident: bib24
  article-title: A survey on explainable artificial intelligence (xai): toward medical xai
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1
  year: 2022
  ident: bib4
  article-title: Seizure semiology: ILAE glossary of terms and their significance
  publication-title: Epileptic Disord.s
– start-page: 2961
  year: 2017
  end-page: 2969
  ident: bib12
  publication-title: Mask r-cnn
– volume: 4
  start-page: 1
  year: 2021
  end-page: 9
  ident: bib8
  article-title: Deep learning-enabled medical computer vision
  publication-title: NPJ Digit. Med.
– volume: 87
  start-page: 46
  year: 2018
  end-page: 58
  ident: bib2
  article-title: A hierarchical multimodal system for motion analysis in patients with epilepsy
  publication-title: Epilepsy Behav.
– volume: 62
  start-page: 2019
  year: 2021
  end-page: 2035
  ident: bib21
  article-title: On seizure semiology
  publication-title: Epilepsia
– volume: 76
  start-page: 1109
  year: 2019
  end-page: 1116
  ident: bib16
  article-title: Tackling epilepsy with high-definition precision medicine: a review
  publication-title: JAMA Neurol.
– start-page: 21
  year: 2016
  end-page: 37
  ident: bib20
  article-title: Ssd: Single shot multibox detector
– start-page: 1
  year: 2021
  end-page: 8
  ident: bib13
  article-title: A Multi-Stream Approach for Seizure Classification with Knowledge Distillation
  publication-title: 17th IEEE Int. Conf. Adv. Video Signal Based Surveill. ((AVSS)). IEEE
– volume: 61
  start-page: 1019
  year: 2020
  end-page: 1026
  ident: bib9
  article-title: Quantitative analysis of hyperkinetic seizures and correlation with seizure onset zone
  publication-title: Epilepsia
– volume: 58
  start-page: 522
  year: 2017
  end-page: 530
  ident: bib10
  article-title: Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE commission for classification and terminology
  publication-title: Epilepsia
– volume: 1409
  start-page: 1556
  year: 2014
  ident: bib23
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint arXiv
– start-page: 2865
  year: 2017
  end-page: 2872
  ident: bib25
  article-title: Recent advances in video-based human action recognition using deep learning: a review
  publication-title: 2017 Int. Joint Conf. Neural Netw. ((IJCNN)). IEEE
– start-page: 4117
  year: 2020
  end-page: 4121
  ident: bib15
  article-title: A deep learning architecture for epileptic seizure classification based on object and action recognition
  publication-title: IEEE Conf. Acoust. Speech Signal Process.
– start-page: 334
  year: 2021
  end-page: 344
  ident: bib22
  article-title: Transfer Learning of Deep Spatiotemporal Networks to Model Arbitrarily Long Videos of Seizures
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 117
  year: 2013
  end-page: 124
  ident: bib11
  article-title: Challenges in Representation Learning: A Report on Three Machine Learning Contests
– volume: 58
  start-page: 1817
  year: 2017
  end-page: 1831
  ident: bib3
  article-title: Automated analysis of seizure semiology and brain electrical activity in presurgery evaluation of epilepsy: a focused survey
  publication-title: Epilepsia
– start-page: 264
  year: 2014
  end-page: 277
  ident: bib6
  article-title: Frontal lobe seizures: from clinical semiology to localization
  publication-title: Epilepsia 55. 2
– volume: 42
  start-page: 1212
  year: 2001
  end-page: 1218
  ident: bib5
  article-title: Glossary of descriptive terminology for ictal semiology: report of the ILAE task force on classification and terminology
  publication-title: Epilepsia
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib7
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: Ieee
– volume: 42
  start-page: 1212
  year: 2001
  ident: 10.1016/j.eplepsyres.2022.106953_bib5
  article-title: Glossary of descriptive terminology for ictal semiology: report of the ILAE task force on classification and terminology
  publication-title: Epilepsia
  doi: 10.1046/j.1528-1157.2001.22001.x
– volume: 357
  year: 2015
  ident: 10.1016/j.eplepsyres.2022.106953_bib1
  article-title: Deep convolutional neural networks for automatic identification of epileptic seizures in infrared and depth images
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2015.09.065
– start-page: 334
  year: 2021
  ident: 10.1016/j.eplepsyres.2022.106953_bib22
  article-title: Transfer Learning of Deep Spatiotemporal Networks to Model Arbitrarily Long Videos of Seizures
– start-page: 1
  year: 2021
  ident: 10.1016/j.eplepsyres.2022.106953_bib13
  article-title: A Multi-Stream Approach for Seizure Classification with Knowledge Distillation
  publication-title: 17th IEEE Int. Conf. Adv. Video Signal Based Surveill. ((AVSS)). IEEE
– start-page: 4117
  year: 2020
  ident: 10.1016/j.eplepsyres.2022.106953_bib15
  article-title: A deep learning architecture for epileptic seizure classification based on object and action recognition
  publication-title: IEEE Conf. Acoust. Speech Signal Process.
– volume: 27
  year: 2021
  ident: 10.1016/j.eplepsyres.2022.106953_bib17
  article-title: AI in medicine must be explainable
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01461-z
– volume: 4
  start-page: 1
  year: 2021
  ident: 10.1016/j.eplepsyres.2022.106953_bib8
  article-title: Deep learning-enabled medical computer vision
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-020-00376-2
– volume: 76
  start-page: 1109
  year: 2019
  ident: 10.1016/j.eplepsyres.2022.106953_bib16
  article-title: Tackling epilepsy with high-definition precision medicine: a review
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2019.2384
– volume: 58
  start-page: 522
  year: 2017
  ident: 10.1016/j.eplepsyres.2022.106953_bib10
  article-title: Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE commission for classification and terminology
  publication-title: Epilepsia
  doi: 10.1111/epi.13670
– volume: 87
  start-page: 46
  year: 2018
  ident: 10.1016/j.eplepsyres.2022.106953_bib2
  article-title: A hierarchical multimodal system for motion analysis in patients with epilepsy
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2018.07.028
– volume: 61
  start-page: 1019
  year: 2020
  ident: 10.1016/j.eplepsyres.2022.106953_bib9
  article-title: Quantitative analysis of hyperkinetic seizures and correlation with seizure onset zone
  publication-title: Epilepsia
  doi: 10.1111/epi.16510
– volume: 1409
  start-page: 1556
  year: 2014
  ident: 10.1016/j.eplepsyres.2022.106953_bib23
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint arXiv
– year: 2020
  ident: 10.1016/j.eplepsyres.2022.106953_bib24
  article-title: A survey on explainable artificial intelligence (xai): toward medical xai
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 264
  year: 2014
  ident: 10.1016/j.eplepsyres.2022.106953_bib6
  article-title: Frontal lobe seizures: from clinical semiology to localization
  publication-title: Epilepsia 55. 2
  doi: 10.1111/epi.12490
– volume: 62
  start-page: 2019
  year: 2021
  ident: 10.1016/j.eplepsyres.2022.106953_bib21
  article-title: On seizure semiology
  publication-title: Epilepsia
  doi: 10.1111/epi.16994
– volume: 58
  start-page: 1817
  year: 2017
  ident: 10.1016/j.eplepsyres.2022.106953_bib3
  article-title: Automated analysis of seizure semiology and brain electrical activity in presurgery evaluation of epilepsy: a focused survey
  publication-title: Epilepsia
  doi: 10.1111/epi.13907
– start-page: 117
  year: 2013
  ident: 10.1016/j.eplepsyres.2022.106953_bib11
– start-page: 248
  year: 2009
  ident: 10.1016/j.eplepsyres.2022.106953_bib7
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: Ieee
– start-page: 2961
  year: 2017
  ident: 10.1016/j.eplepsyres.2022.106953_bib12
  publication-title: Mask r-cnn
– volume: 1704
  start-page: 04861
  year: 2017
  ident: 10.1016/j.eplepsyres.2022.106953_bib14
  article-title: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
  publication-title: Comput. Sci.
– start-page: 21
  year: 2016
  ident: 10.1016/j.eplepsyres.2022.106953_bib20
– start-page: 740
  year: 2014
  ident: 10.1016/j.eplepsyres.2022.106953_bib19
  article-title: Microsoft coco: Common objects in context
– start-page: 1
  year: 2022
  ident: 10.1016/j.eplepsyres.2022.106953_bib4
  article-title: Seizure semiology: ILAE glossary of terms and their significance
  publication-title: Epileptic Disord.s
– start-page: 2865
  year: 2017
  ident: 10.1016/j.eplepsyres.2022.106953_bib25
  article-title: Recent advances in video-based human action recognition using deep learning: a review
  publication-title: 2017 Int. Joint Conf. Neural Netw. ((IJCNN)). IEEE
  doi: 10.1109/IJCNN.2017.7966210
– volume: 61
  start-page: 1869
  year: 2020
  ident: 10.1016/j.eplepsyres.2022.106953_bib18
  article-title: Big data in epilepsy: clinical and research considerations. Report from the epilepsy big data task force of the international league against epilepsy
  publication-title: Epilepsia
  doi: 10.1111/epi.16633
SSID ssj0007044
Score 2.484376
Snippet To investigate the accuracy of deep learning methods applied to seizure video data, in discriminating individual semiologic features of dystonia and emotion in...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106953
SubjectTerms Artificial intelligence
Computer Science
Computer Vision and Pattern Recognition
Dystonia
Emotion
Hyperkinetic
Neural network
Semiology
Title Automated video analysis of emotion and dystonia in epileptic seizures
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0920121122001048
https://www.proquest.com/docview/2681441828
https://hal.science/hal-03817305
Volume 184
WOSCitedRecordID wos000822907800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-6844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007044
  issn: 0920-1211
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbaDSFeEAwQ4zIZhPayBbWJk9iP1bRSEJsqrUh9i-zYYZlGUvWmlV_P8S2ZxpCKEC9R5NR2nO_Uxz7-_BmhD7FUoaQiCaJEFAEBnxdwIkQgiF7GyrWeCzWHTaTn53Q6ZeNO58LvhVlfp1VFb27Y7L9CDWkAtt46-xdwN4VCAtwD6HAF2OG6FfCD1bKGYSgMJPUWu_qI35IdUfbQHrNiIDd63FdyIxoyg85hprVbF6r8uZo7YqGP2Juni82RUwZqIsijeuUYMsHJpXI-0LJMqopbIkhtFGLbgOlcH5j7QxkSwZCLedma1ln-CX79nVveQKlJHreDEjCf9ZQ4Fyn7bbeMDTmGmgniOtem9yX39uQ2qHAFTtm0EBr4UVcEDxJm5YXv6GRf6OJ16WFoRIdoF-2Gacygq9sdfD6dfmkcdNozZ_w2r-MIXpb2d399fxq1dC81ffaOFzdDk8kT9NjNKfDA2sJT1FHVHnp45lgTe-hwbPXJN8d40m63WxzjQzxulcs3z9CwsR1sbAd728F1gZ3tQJrE3nZwWeHGdrC3nefo2_B0cjIK3EEbQU5YuAwETLNkESdRRFWkeiHrCyWlJLKXF4yKqB-JPCnSkMMdkZyJWCgaFqwgIe-pREUv0E5VV-olfMgkJ5IoxvsKJv4yojntCVLEBYmlxmUfpf5DZrlTodeHoVxnnm54lbUQZBqCzEKwj_pNzplVYtkiD_NYZX6nMfjGDIxsi7zvAdymKi3DPhp8zXSakbUER7mG5rzz2GfQL-vFNl6pegUlJVTHKmhIX_3DS7xGj9q_1xu0s5yv1Fv0IF8vy8X8AHXTKT1w5v0LQIS6cA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+video+analysis+of+emotion+and+dystonia+in+epileptic+seizures&rft.jtitle=Epilepsy+research&rft.au=Hou%2C+Jen-Cheng&rft.au=Thonnat%2C+Monique&rft.au=Bartolomei%2C+Fabrice&rft.au=McGonigal%2C+Aileen&rft.date=2022-08-01&rft.pub=Elsevier+B.V&rft.issn=0920-1211&rft.volume=184&rft_id=info:doi/10.1016%2Fj.eplepsyres.2022.106953&rft.externalDocID=S0920121122001048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-1211&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-1211&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-1211&client=summon