N-glycans and metastasis in galectin-3 transgenic mice
Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc...
Uložené v:
| Vydané v: | Biochemical and biophysical research communications Ročník 460; číslo 2; s. 302 - 307 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
01.05.2015
|
| Predmet: | |
| ISSN: | 0006-291X, 1090-2104, 1090-2104 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc not only aids in initial arrest on the organ endothelium but in all the events of extravasation. Inhibition of polyLacNAc synthesis, or competitive inhibition of its interaction with galectin-3 all inhibited these processes and experimental metastasis. Transgenic galectin-3 mice, viz., gal-3+/+ (wild type), gal-3+/− (hemizygous) and gal-3−/− (null) have been used to prove that galectin-3/polyLacNAc interactions are indeed critical for lung specific metastasis.
Gal-3+/− mice which showed <50% expression of galectin-3 on the lungs also showed proportionate decrease in the number of B16F10 melanoma metastatic colonies affirming that galectin-3 and polyLacNAc interactions are indeed key determinants of lung metastasis. However, surprisingly, the number and size of metastatic colonies in gal-3−/− mice was very similar as that seen in gal-3+/+ mice. The levels of lactose binding lectins on the lungs and the transcripts of other galectins (galectin-1, -8 and -9) which are expressed on lungs and have similar sugar binding specificities as galectins-3, remain unchanged in gal-3+/+ and gal-3−/− mice. Further, inhibition of N-glycosylation with Swainsonine (SW) which drastically reduces metastasis of B16F10 cells in gal-3+/+ mice, did not affect lung metastasis when assessed in gal-3−/− mice. Together, these results rule out the possibility of some other galectin taking over the function of galectin-3 in gal-3−/− mice. Chimeric mice generated to assess if absence of any effect on metastasis is due to compromised tumor immunity by replacing bone marrow of gal-3−/− mice with that from gal-3+/+ mice, also failed to impact melanoma metastasis. As galectin-3 regulates several immune functions including maturation of different immune cells, compromised tumor immunity could be the major determinant of melanoma metastasis in gal-3−/− mice and warrants thorough investigation.
•Experimental metastasis has been compared in gal-3 transgenic mice (+/+, +/− and −/−).•Role of gal-3/polyLacNAc in lung specific metastasis has been confirmed.•Experiments in gal-3−/− mice demonstrate importance of host tumor immunity in metastasis. |
|---|---|
| AbstractList | Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc not only aids in initial arrest on the organ endothelium but in all the events of extravasation. Inhibition of polyLacNAc synthesis, or competitive inhibition of its interaction with galectin-3 all inhibited these processes and experimental metastasis. Transgenic galectin-3 mice, viz., gal-3+/+ (wild type), gal-3+/− (hemizygous) and gal-3−/− (null) have been used to prove that galectin-3/polyLacNAc interactions are indeed critical for lung specific metastasis.
Gal-3+/− mice which showed <50% expression of galectin-3 on the lungs also showed proportionate decrease in the number of B16F10 melanoma metastatic colonies affirming that galectin-3 and polyLacNAc interactions are indeed key determinants of lung metastasis. However, surprisingly, the number and size of metastatic colonies in gal-3−/− mice was very similar as that seen in gal-3+/+ mice. The levels of lactose binding lectins on the lungs and the transcripts of other galectins (galectin-1, -8 and -9) which are expressed on lungs and have similar sugar binding specificities as galectins-3, remain unchanged in gal-3+/+ and gal-3−/− mice. Further, inhibition of N-glycosylation with Swainsonine (SW) which drastically reduces metastasis of B16F10 cells in gal-3+/+ mice, did not affect lung metastasis when assessed in gal-3−/− mice. Together, these results rule out the possibility of some other galectin taking over the function of galectin-3 in gal-3−/− mice. Chimeric mice generated to assess if absence of any effect on metastasis is due to compromised tumor immunity by replacing bone marrow of gal-3−/− mice with that from gal-3+/+ mice, also failed to impact melanoma metastasis. As galectin-3 regulates several immune functions including maturation of different immune cells, compromised tumor immunity could be the major determinant of melanoma metastasis in gal-3−/− mice and warrants thorough investigation.
•Experimental metastasis has been compared in gal-3 transgenic mice (+/+, +/− and −/−).•Role of gal-3/polyLacNAc in lung specific metastasis has been confirmed.•Experiments in gal-3−/− mice demonstrate importance of host tumor immunity in metastasis. Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc not only aids in initial arrest on the organ endothelium but in all the events of extravasation. Inhibition of polyLacNAc synthesis, or competitive inhibition of its interaction with galectin-3 all inhibited these processes and experimental metastasis. Transgenic galectin-3 mice, viz., gal-3+/+ (wild type), gal-3+/− (hemizygous) and gal-3−/− (null) have been used to prove that galectin-3/polyLacNAc interactions are indeed critical for lung specific metastasis.Gal-3+/− mice which showed <50% expression of galectin-3 on the lungs also showed proportionate decrease in the number of B16F10 melanoma metastatic colonies affirming that galectin-3 and polyLacNAc interactions are indeed key determinants of lung metastasis. However, surprisingly, the number and size of metastatic colonies in gal-3−/− mice was very similar as that seen in gal-3+/+ mice. The levels of lactose binding lectins on the lungs and the transcripts of other galectins (galectin-1, -8 and -9) which are expressed on lungs and have similar sugar binding specificities as galectins-3, remain unchanged in gal-3+/+ and gal-3−/− mice. Further, inhibition of N-glycosylation with Swainsonine (SW) which drastically reduces metastasis of B16F10 cells in gal-3+/+ mice, did not affect lung metastasis when assessed in gal-3−/− mice. Together, these results rule out the possibility of some other galectin taking over the function of galectin-3 in gal-3−/− mice. Chimeric mice generated to assess if absence of any effect on metastasis is due to compromised tumor immunity by replacing bone marrow of gal-3−/− mice with that from gal-3+/+ mice, also failed to impact melanoma metastasis. As galectin-3 regulates several immune functions including maturation of different immune cells, compromised tumor immunity could be the major determinant of melanoma metastasis in gal-3−/− mice and warrants thorough investigation. Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc not only aids in initial arrest on the organ endothelium but in all the events of extravasation. Inhibition of polyLacNAc synthesis, or competitive inhibition of its interaction with galectin-3 all inhibited these processes and experimental metastasis. Transgenic galectin-3 mice, viz., gal-3(+/+) (wild type), gal-3(+/-) (hemizygous) and gal-3(-/-) (null) have been used to prove that galectin-3/polyLacNAc interactions are indeed critical for lung specific metastasis. Gal-3(+/-) mice which showed <50% expression of galectin-3 on the lungs also showed proportionate decrease in the number of B16F10 melanoma metastatic colonies affirming that galectin-3 and polyLacNAc interactions are indeed key determinants of lung metastasis. However, surprisingly, the number and size of metastatic colonies in gal-3(-/-) mice was very similar as that seen in gal-3(+/+) mice. The levels of lactose binding lectins on the lungs and the transcripts of other galectins (galectin-1, -8 and -9) which are expressed on lungs and have similar sugar binding specificities as galectins-3, remain unchanged in gal-3(+/+) and gal-3(-/-) mice. Further, inhibition of N-glycosylation with Swainsonine (SW) which drastically reduces metastasis of B16F10 cells in gal-3(+/+) mice, did not affect lung metastasis when assessed in gal-3(-/-) mice. Together, these results rule out the possibility of some other galectin taking over the function of galectin-3 in gal-3(-/-) mice. Chimeric mice generated to assess if absence of any effect on metastasis is due to compromised tumor immunity by replacing bone marrow of gal-3(-/-) mice with that from gal-3(+/+) mice, also failed to impact melanoma metastasis. As galectin-3 regulates several immune functions including maturation of different immune cells, compromised tumor immunity could be the major determinant of melanoma metastasis in gal-3(-/-) mice and warrants thorough investigation.Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc not only aids in initial arrest on the organ endothelium but in all the events of extravasation. Inhibition of polyLacNAc synthesis, or competitive inhibition of its interaction with galectin-3 all inhibited these processes and experimental metastasis. Transgenic galectin-3 mice, viz., gal-3(+/+) (wild type), gal-3(+/-) (hemizygous) and gal-3(-/-) (null) have been used to prove that galectin-3/polyLacNAc interactions are indeed critical for lung specific metastasis. Gal-3(+/-) mice which showed <50% expression of galectin-3 on the lungs also showed proportionate decrease in the number of B16F10 melanoma metastatic colonies affirming that galectin-3 and polyLacNAc interactions are indeed key determinants of lung metastasis. However, surprisingly, the number and size of metastatic colonies in gal-3(-/-) mice was very similar as that seen in gal-3(+/+) mice. The levels of lactose binding lectins on the lungs and the transcripts of other galectins (galectin-1, -8 and -9) which are expressed on lungs and have similar sugar binding specificities as galectins-3, remain unchanged in gal-3(+/+) and gal-3(-/-) mice. Further, inhibition of N-glycosylation with Swainsonine (SW) which drastically reduces metastasis of B16F10 cells in gal-3(+/+) mice, did not affect lung metastasis when assessed in gal-3(-/-) mice. Together, these results rule out the possibility of some other galectin taking over the function of galectin-3 in gal-3(-/-) mice. Chimeric mice generated to assess if absence of any effect on metastasis is due to compromised tumor immunity by replacing bone marrow of gal-3(-/-) mice with that from gal-3(+/+) mice, also failed to impact melanoma metastasis. As galectin-3 regulates several immune functions including maturation of different immune cells, compromised tumor immunity could be the major determinant of melanoma metastasis in gal-3(-/-) mice and warrants thorough investigation. Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc not only aids in initial arrest on the organ endothelium but in all the events of extravasation. Inhibition of polyLacNAc synthesis, or competitive inhibition of its interaction with galectin-3 all inhibited these processes and experimental metastasis. Transgenic galectin-3 mice, viz., gal-3(+/+) (wild type), gal-3(+/-) (hemizygous) and gal-3(-/-) (null) have been used to prove that galectin-3/polyLacNAc interactions are indeed critical for lung specific metastasis. Gal-3(+/-) mice which showed <50% expression of galectin-3 on the lungs also showed proportionate decrease in the number of B16F10 melanoma metastatic colonies affirming that galectin-3 and polyLacNAc interactions are indeed key determinants of lung metastasis. However, surprisingly, the number and size of metastatic colonies in gal-3(-/-) mice was very similar as that seen in gal-3(+/+) mice. The levels of lactose binding lectins on the lungs and the transcripts of other galectins (galectin-1, -8 and -9) which are expressed on lungs and have similar sugar binding specificities as galectins-3, remain unchanged in gal-3(+/+) and gal-3(-/-) mice. Further, inhibition of N-glycosylation with Swainsonine (SW) which drastically reduces metastasis of B16F10 cells in gal-3(+/+) mice, did not affect lung metastasis when assessed in gal-3(-/-) mice. Together, these results rule out the possibility of some other galectin taking over the function of galectin-3 in gal-3(-/-) mice. Chimeric mice generated to assess if absence of any effect on metastasis is due to compromised tumor immunity by replacing bone marrow of gal-3(-/-) mice with that from gal-3(+/+) mice, also failed to impact melanoma metastasis. As galectin-3 regulates several immune functions including maturation of different immune cells, compromised tumor immunity could be the major determinant of melanoma metastasis in gal-3(-/-) mice and warrants thorough investigation. |
| Author | Thorat, Rahul A. Ingle, Arvind D. Chiplunkar, Shubhada V. More, Shyam K. Budnar, Srikanth Kalraiya, Rajiv D. Upadhya, Archana Srinivasan, Nithya Bane, Sanjay M. |
| Author_xml | – sequence: 1 givenname: Shyam K. surname: More fullname: More, Shyam K. organization: Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India – sequence: 2 givenname: Nithya surname: Srinivasan fullname: Srinivasan, Nithya organization: Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India – sequence: 3 givenname: Srikanth surname: Budnar fullname: Budnar, Srikanth organization: Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia – sequence: 4 givenname: Sanjay M. surname: Bane fullname: Bane, Sanjay M. organization: Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India – sequence: 5 givenname: Archana surname: Upadhya fullname: Upadhya, Archana organization: SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India – sequence: 6 givenname: Rahul A. surname: Thorat fullname: Thorat, Rahul A. organization: Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India – sequence: 7 givenname: Arvind D. surname: Ingle fullname: Ingle, Arvind D. organization: Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India – sequence: 8 givenname: Shubhada V. surname: Chiplunkar fullname: Chiplunkar, Shubhada V. organization: Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India – sequence: 9 givenname: Rajiv D. surname: Kalraiya fullname: Kalraiya, Rajiv D. email: rkalraiya@actrec.gov.in organization: Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25791476$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtLxDAUhYMoOj7-gAvp0k3Hm3cDbkR8gehGwV1I0-uQoU016Qj-e1tGXbhQ4cDdfOdwOWeXbMY-IiGHFOYUqDpZzus6-TkDKufAR8EGmVEwUDIKYpPMAECVzNCnHbKb8xKAUqHMNtlhUhsqtJoRdVcu2nfvYi5cbIoOB5dHhVyEWCxci34IseTFkEZkgTH4ogse98nWs2szHnzePfJ4efFwfl3e3l_dnJ_dll4YNpQ1aHQoDVUopWikEL6pZGOYAaMEulrVDfW64tooVVWaee2ENlrXouK1Ab5Hjte5L6l_XWEebBeyx7Z1EftVtrRiUjCmuPwb1ZxVoLn8R6rSinOj6ZR69Imu6g4b-5JC59K7_WpwBNga8KnPOeHzN0LBTjPZpZ1mstNMFvio6YHqh8mHwQ2hj2PPof3derq24lj7W8Bksw8YPTYhjWPZpg-_2T8AXVOpmg |
| CitedBy_id | crossref_primary_10_3390_cells10082136 crossref_primary_10_1515_sjecr_2016_0011 crossref_primary_10_1371_journal_pone_0213184 crossref_primary_10_1016_j_semcancer_2017_03_002 crossref_primary_10_1016_j_cbi_2019_108724 crossref_primary_10_1007_s10555_021_10015_1 crossref_primary_10_1186_s12885_016_2679_1 crossref_primary_10_1681_ASN_2015101100 crossref_primary_10_1007_s11010_016_2706_1 crossref_primary_10_1016_j_molimm_2015_09_015 crossref_primary_10_3390_cells13221831 crossref_primary_10_1002_prca_201800014 crossref_primary_10_1016_j_bbcan_2020_188422 |
| Cites_doi | 10.1016/j.autrev.2008.11.009 10.1038/nri2536 10.1007/s10585-005-2036-2 10.1038/nrc865 10.1016/S0002-9440(10)64975-9 10.1016/S0304-4165(02)00311-2 10.3892/ijo.25.4.983 10.1016/S1471-4906(02)02232-9 10.3389/fonc.2014.00138 10.1007/s10719-008-9194-9 10.1038/nm1469 10.4049/jimmunol.176.2.778 10.1007/s10585-011-9383-y 10.1007/s10585-014-9657-2 10.1038/bjc.1997.429 10.1016/j.febslet.2008.01.015 10.1007/s10585-007-9097-3 10.1016/S0021-9258(18)33465-3 10.1002/stem.90 10.1016/j.cell.2006.11.001 10.1016/S0304-4165(99)00167-1 10.1084/jem.183.2.581 10.1016/j.bbagen.2005.12.020 10.1038/nrc1098 10.1016/S0021-9258(18)33746-3 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 8FD FR3 P64 RC3 7S9 L.6 |
| DOI | 10.1016/j.bbrc.2015.03.030 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1090-2104 |
| EndPage | 307 |
| ExternalDocumentID | 25791476 10_1016_j_bbrc_2015_03_030 S0006291X15004659 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADIYS ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 D0L DM4 DOVZS EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K TWZ WH7 XPP XSW ZA5 ZMT ~02 ~G- .55 .GJ .HR 1CY 3O- 9DU 9M8 AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AGRDE AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS FEDTE FGOYB G-2 HLW HVGLF HZ~ MVM OHT R2- SBG SEW UQL WUQ X7M Y6R ZGI ZKB ~HD ~KM CGR CUY CVF ECM EIF NPM SSH 7X8 8FD FR3 P64 RC3 7S9 L.6 |
| ID | FETCH-LOGICAL-c492t-b07eae5916e554d544cd85d9290964eab6bd1c78379668872c7a47977b483b903 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354230300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0006-291X 1090-2104 |
| IngestDate | Sun Sep 28 12:09:30 EDT 2025 Sun Sep 28 08:06:21 EDT 2025 Thu Oct 02 09:49:47 EDT 2025 Thu Apr 03 06:52:42 EDT 2025 Sat Nov 29 07:32:48 EST 2025 Tue Nov 18 22:01:45 EST 2025 Fri Feb 23 02:28:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Galectin-3 transgenic mice Organ specific metastasis Galectin-3 |
| Language | English |
| License | Copyright © 2015 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c492t-b07eae5916e554d544cd85d9290964eab6bd1c78379668872c7a47977b483b903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 25791476 |
| PQID | 1676339715 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_1825422635 proquest_miscellaneous_1732807350 proquest_miscellaneous_1676339715 pubmed_primary_25791476 crossref_primary_10_1016_j_bbrc_2015_03_030 crossref_citationtrail_10_1016_j_bbrc_2015_03_030 elsevier_sciencedirect_doi_10_1016_j_bbrc_2015_03_030 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-05-01 |
| PublicationDateYYYYMMDD | 2015-05-01 |
| PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Biochemical and biophysical research communications |
| PublicationTitleAlternate | Biochem Biophys Res Commun |
| PublicationYear | 2015 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Humphries, Matsumoto, White, Molyneux, Olden (bib23) 1988; 48 Stillman, Hsu, Pang, Brewer, Johnson, Liu, Baum (bib32) 2006; 176 Mace, Restivo, Rinn, Paquet, Chang, Young, Boudreau (bib21) 2009; 27 Cummings, Kornfeld (bib7) 1982; 257 Dange, Srinivasan, More, Bane, Upadhya, Ingle, Gude, Mukhopadhyaya, Kalraiya (bib20) 2014; 31 Yamamoto, Swoger, Greene, Saito, Hurh, Sweeley, Leestma, Mkrdichian, Cerullo, Nishikawa, Ihara, Taniguchi, Moskal (bib12) 2000; 60 Krishnan, Bane, Kawle, Naresh, Kalraiya (bib16) 2005; 22 Radosavljevic, Jovanovic, Majstorovic, Mitrovic, Lisnic, Arsenijevic, Jonjic, Lukic (bib31) 2011; 28 Hsu, Yang, Pan, Yu, Salomon, Fung-Leung, Liu (bib18) 2000; 156 Fortuna-Costa, Gomes, Kozlowski, Stelling, Pavao (bib30) 2014; 4 Fidler (bib2) 2003; 3 Takano, Nose, Nishihira, Kyogoku (bib11) 1990; 137 Biancone, Araki, Araki, Vassalli, Stamenkovic (bib13) 1996; 183 Chambers, Groom, MacDonald (bib6) 2002; 2 Ben-Baruch (bib5) 2008; 25 Weston, Hiller, Mayben, Manousos, Bendt, Liu, Cusack (bib14) 1999; 59 Dennis, Granovsky, Warren (bib9) 1999; 1473 Rabinovich, Toscano (bib27) 2009; 9 Dumic, Dabelic, Flogel (bib29) 2006; 1760 Dhirapong, Lleo, Leung, Gershwin, Liu (bib25) 2009; 8 Paget (bib4) 1989; 8 Cummings, Trowbridge, Kornfeld (bib8) 1982; 257 Fernandes, Sagman, Auger, Demetrio, Dennis (bib10) 1991; 51 Califice, Castronovo, Van Den Brule (bib28) 2004; 25 Srinivasan, Bane, Ahire, Ingle, Kalraiya (bib17) 2009; 26 Chen, Liu, Yang (bib24) 2005; 53 Yamada, Chung, Takatsuka, Arimoto, Sawada, Dohi, Sowa (bib15) 1997; 76 Rabinovich, Baum, Tinari, Paganelli, Natoli, Liu, Iacobelli (bib26) 2002; 23 Hirabayashi, Hashidate, Arata, Nishi, Nakamura, Hirashima, Urashima, Oka, Futai, Muller, Yagi, Kasai (bib22) 2002; 1572 Gupta, Massague (bib1) 2006; 127 Guo, Nairn, Harris, Randolph, Alvarez-Manilla, Moremen, Pierce (bib19) 2008; 582 Steeg (bib3) 2006; 12 Cummings (10.1016/j.bbrc.2015.03.030_bib7) 1982; 257 Hsu (10.1016/j.bbrc.2015.03.030_bib18) 2000; 156 Srinivasan (10.1016/j.bbrc.2015.03.030_bib17) 2009; 26 Paget (10.1016/j.bbrc.2015.03.030_bib4) 1989; 8 Califice (10.1016/j.bbrc.2015.03.030_bib28) 2004; 25 Rabinovich (10.1016/j.bbrc.2015.03.030_bib26) 2002; 23 Dumic (10.1016/j.bbrc.2015.03.030_bib29) 2006; 1760 Fortuna-Costa (10.1016/j.bbrc.2015.03.030_bib30) 2014; 4 Steeg (10.1016/j.bbrc.2015.03.030_bib3) 2006; 12 Chambers (10.1016/j.bbrc.2015.03.030_bib6) 2002; 2 Yamamoto (10.1016/j.bbrc.2015.03.030_bib12) 2000; 60 Mace (10.1016/j.bbrc.2015.03.030_bib21) 2009; 27 Fidler (10.1016/j.bbrc.2015.03.030_bib2) 2003; 3 Radosavljevic (10.1016/j.bbrc.2015.03.030_bib31) 2011; 28 Dennis (10.1016/j.bbrc.2015.03.030_bib9) 1999; 1473 Chen (10.1016/j.bbrc.2015.03.030_bib24) 2005; 53 Stillman (10.1016/j.bbrc.2015.03.030_bib32) 2006; 176 Gupta (10.1016/j.bbrc.2015.03.030_bib1) 2006; 127 Takano (10.1016/j.bbrc.2015.03.030_bib11) 1990; 137 Biancone (10.1016/j.bbrc.2015.03.030_bib13) 1996; 183 Fernandes (10.1016/j.bbrc.2015.03.030_bib10) 1991; 51 Hirabayashi (10.1016/j.bbrc.2015.03.030_bib22) 2002; 1572 Dhirapong (10.1016/j.bbrc.2015.03.030_bib25) 2009; 8 Dange (10.1016/j.bbrc.2015.03.030_bib20) 2014; 31 Yamada (10.1016/j.bbrc.2015.03.030_bib15) 1997; 76 Guo (10.1016/j.bbrc.2015.03.030_bib19) 2008; 582 Weston (10.1016/j.bbrc.2015.03.030_bib14) 1999; 59 Rabinovich (10.1016/j.bbrc.2015.03.030_bib27) 2009; 9 Ben-Baruch (10.1016/j.bbrc.2015.03.030_bib5) 2008; 25 Cummings (10.1016/j.bbrc.2015.03.030_bib8) 1982; 257 Krishnan (10.1016/j.bbrc.2015.03.030_bib16) 2005; 22 Humphries (10.1016/j.bbrc.2015.03.030_bib23) 1988; 48 |
| References_xml | – volume: 28 start-page: 451 year: 2011 end-page: 462 ident: bib31 article-title: Deletion of galectin-3 in the host attenuates metastasis of murine melanoma by modulating tumor adhesion and NK cell activity publication-title: Clin. Exp. Metastasis – volume: 25 start-page: 345 year: 2008 end-page: 356 ident: bib5 article-title: Organ selectivity in metastasis: regulation by chemokines and their receptors publication-title: Clin. Exp. Metastasis – volume: 1760 start-page: 616 year: 2006 end-page: 635 ident: bib29 article-title: Galectin-3: an open-ended story publication-title: Biochim. Biophys. Acta – volume: 127 start-page: 679 year: 2006 end-page: 695 ident: bib1 article-title: Cancer metastasis: building a framework publication-title: Cell – volume: 12 start-page: 895 year: 2006 end-page: 904 ident: bib3 article-title: Tumor metastasis: mechanistic insights and clinical challenges publication-title: Nat. Med. – volume: 8 start-page: 98 year: 1989 end-page: 101 ident: bib4 article-title: The distribution of secondary growths in cancer of the breast. 1889 publication-title: Cancer Metastasis Rev. – volume: 31 start-page: 661 year: 2014 end-page: 673 ident: bib20 article-title: Galectin-3 expressed on different lung compartments promotes organ specific metastasis by facilitating arrest, extravasation and organ colonization via high affinity ligands on melanoma cells publication-title: Clin. Exp. Metastasis – volume: 23 start-page: 313 year: 2002 end-page: 320 ident: bib26 article-title: Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? publication-title: Trends Immunol. – volume: 183 start-page: 581 year: 1996 end-page: 587 ident: bib13 article-title: Redirection of tumor metastasis by expression of E-selectin in vivo publication-title: J. Exp. Med. – volume: 582 start-page: 527 year: 2008 end-page: 535 ident: bib19 article-title: Loss of expression of N-acetylglucosaminyltransferase Va results in altered gene expression of glycosyltransferases and galectins publication-title: FEBS Lett. – volume: 59 start-page: 2127 year: 1999 end-page: 2135 ident: bib14 article-title: Expression of human alpha(1,3)fucosyltransferase antisense sequences inhibits selectin-mediated adhesion and liver metastasis of colon carcinoma cells publication-title: Cancer Res. – volume: 27 start-page: 1654 year: 2009 end-page: 1665 ident: bib21 article-title: HOXA3 modulates injury-induced mobilization and recruitment of bone marrow-derived cells publication-title: Stem Cells – volume: 137 start-page: 1007 year: 1990 end-page: 1011 ident: bib11 article-title: Increase of beta 1-6-branched oligosaccharides in human esophageal carcinomas invasive against surrounding tissue in vivo and in vitro publication-title: Am. J. Pathol. – volume: 1473 start-page: 21 year: 1999 end-page: 34 ident: bib9 article-title: Glycoprotein glycosylation and cancer progression publication-title: Biochim. Biophys. Acta – volume: 25 start-page: 983 year: 2004 end-page: 992 ident: bib28 article-title: Galectin-3 and cancer (Review) publication-title: Int. J. Oncol. – volume: 51 start-page: 718 year: 1991 end-page: 723 ident: bib10 article-title: Beta 1-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia publication-title: Cancer Res. – volume: 8 start-page: 360 year: 2009 end-page: 363 ident: bib25 article-title: The immunological potential of galectin-1 and -3 publication-title: Autoimmun. Rev. – volume: 257 start-page: 11230 year: 1982 end-page: 11234 ident: bib7 article-title: Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins publication-title: J. Biol. Chem. – volume: 9 start-page: 338 year: 2009 end-page: 352 ident: bib27 article-title: Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation publication-title: Nat. Rev. Immunol. – volume: 156 start-page: 1073 year: 2000 end-page: 1083 ident: bib18 article-title: Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses publication-title: Am. J. Pathol. – volume: 53 start-page: 497 year: 2005 end-page: 504 ident: bib24 article-title: Roles of galectin-3 in immune responses publication-title: Arch. Immunol. Ther. Exp. Warsz. – volume: 4 start-page: 138 year: 2014 ident: bib30 article-title: Extracellular galectin-3 in tumor progression and metastasis publication-title: Front. Oncol. – volume: 257 start-page: 13421 year: 1982 end-page: 13427 ident: bib8 article-title: A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: alpha-D-mannoside beta 1,6 N-acetylglucosaminyltransferase publication-title: J. Biol. Chem. – volume: 76 start-page: 582 year: 1997 end-page: 587 ident: bib15 article-title: Increased sialyl Lewis A expression and fucosyltransferase activity with acquisition of a high metastatic capacity in a colon cancer cell line publication-title: Br. J. Cancer – volume: 60 start-page: 134 year: 2000 end-page: 142 ident: bib12 article-title: Beta1,6-N-acetylglucosamine-bearing N-glycans in human gliomas: implications for a role in regulating invasivity publication-title: Cancer Res. – volume: 3 start-page: 453 year: 2003 end-page: 458 ident: bib2 article-title: The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited publication-title: Nat. Rev. Cancer – volume: 22 start-page: 11 year: 2005 end-page: 24 ident: bib16 article-title: Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium publication-title: Clin. Exp. Metastasis – volume: 1572 start-page: 232 year: 2002 end-page: 254 ident: bib22 article-title: Oligosaccharide specificity of galectins: a search by frontal affinity chromatography publication-title: Biochim. Biophys. Acta – volume: 26 start-page: 445 year: 2009 end-page: 456 ident: bib17 article-title: Poly N-acetyllactosamine substitutions on N- and not O-oligosaccharides or Thomsen-Friedenreich antigen facilitate lung specific metastasis of melanoma cells via galectin-3 publication-title: Glycoconj. J. – volume: 48 start-page: 1410 year: 1988 end-page: 1415 ident: bib23 article-title: Augmentation of murine natural killer cell activity by swainsonine, a new antimetastatic immunomodulator publication-title: Cancer Res. – volume: 176 start-page: 778 year: 2006 end-page: 789 ident: bib32 article-title: Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death publication-title: J. Immunol. – volume: 2 start-page: 563 year: 2002 end-page: 572 ident: bib6 article-title: Dissemination and growth of cancer cells in metastatic sites publication-title: Nat. Rev. Cancer – volume: 8 start-page: 360 year: 2009 ident: 10.1016/j.bbrc.2015.03.030_bib25 article-title: The immunological potential of galectin-1 and -3 publication-title: Autoimmun. Rev. doi: 10.1016/j.autrev.2008.11.009 – volume: 8 start-page: 98 year: 1989 ident: 10.1016/j.bbrc.2015.03.030_bib4 article-title: The distribution of secondary growths in cancer of the breast. 1889 publication-title: Cancer Metastasis Rev. – volume: 53 start-page: 497 year: 2005 ident: 10.1016/j.bbrc.2015.03.030_bib24 article-title: Roles of galectin-3 in immune responses publication-title: Arch. Immunol. Ther. Exp. Warsz. – volume: 9 start-page: 338 year: 2009 ident: 10.1016/j.bbrc.2015.03.030_bib27 article-title: Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2536 – volume: 22 start-page: 11 year: 2005 ident: 10.1016/j.bbrc.2015.03.030_bib16 article-title: Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium publication-title: Clin. Exp. Metastasis doi: 10.1007/s10585-005-2036-2 – volume: 48 start-page: 1410 year: 1988 ident: 10.1016/j.bbrc.2015.03.030_bib23 article-title: Augmentation of murine natural killer cell activity by swainsonine, a new antimetastatic immunomodulator publication-title: Cancer Res. – volume: 2 start-page: 563 year: 2002 ident: 10.1016/j.bbrc.2015.03.030_bib6 article-title: Dissemination and growth of cancer cells in metastatic sites publication-title: Nat. Rev. Cancer doi: 10.1038/nrc865 – volume: 156 start-page: 1073 year: 2000 ident: 10.1016/j.bbrc.2015.03.030_bib18 article-title: Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)64975-9 – volume: 1572 start-page: 232 year: 2002 ident: 10.1016/j.bbrc.2015.03.030_bib22 article-title: Oligosaccharide specificity of galectins: a search by frontal affinity chromatography publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4165(02)00311-2 – volume: 25 start-page: 983 year: 2004 ident: 10.1016/j.bbrc.2015.03.030_bib28 article-title: Galectin-3 and cancer (Review) publication-title: Int. J. Oncol. doi: 10.3892/ijo.25.4.983 – volume: 23 start-page: 313 year: 2002 ident: 10.1016/j.bbrc.2015.03.030_bib26 article-title: Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? publication-title: Trends Immunol. doi: 10.1016/S1471-4906(02)02232-9 – volume: 4 start-page: 138 year: 2014 ident: 10.1016/j.bbrc.2015.03.030_bib30 article-title: Extracellular galectin-3 in tumor progression and metastasis publication-title: Front. Oncol. doi: 10.3389/fonc.2014.00138 – volume: 26 start-page: 445 year: 2009 ident: 10.1016/j.bbrc.2015.03.030_bib17 article-title: Poly N-acetyllactosamine substitutions on N- and not O-oligosaccharides or Thomsen-Friedenreich antigen facilitate lung specific metastasis of melanoma cells via galectin-3 publication-title: Glycoconj. J. doi: 10.1007/s10719-008-9194-9 – volume: 12 start-page: 895 year: 2006 ident: 10.1016/j.bbrc.2015.03.030_bib3 article-title: Tumor metastasis: mechanistic insights and clinical challenges publication-title: Nat. Med. doi: 10.1038/nm1469 – volume: 176 start-page: 778 year: 2006 ident: 10.1016/j.bbrc.2015.03.030_bib32 article-title: Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death publication-title: J. Immunol. doi: 10.4049/jimmunol.176.2.778 – volume: 28 start-page: 451 year: 2011 ident: 10.1016/j.bbrc.2015.03.030_bib31 article-title: Deletion of galectin-3 in the host attenuates metastasis of murine melanoma by modulating tumor adhesion and NK cell activity publication-title: Clin. Exp. Metastasis doi: 10.1007/s10585-011-9383-y – volume: 31 start-page: 661 year: 2014 ident: 10.1016/j.bbrc.2015.03.030_bib20 article-title: Galectin-3 expressed on different lung compartments promotes organ specific metastasis by facilitating arrest, extravasation and organ colonization via high affinity ligands on melanoma cells publication-title: Clin. Exp. Metastasis doi: 10.1007/s10585-014-9657-2 – volume: 76 start-page: 582 year: 1997 ident: 10.1016/j.bbrc.2015.03.030_bib15 article-title: Increased sialyl Lewis A expression and fucosyltransferase activity with acquisition of a high metastatic capacity in a colon cancer cell line publication-title: Br. J. Cancer doi: 10.1038/bjc.1997.429 – volume: 582 start-page: 527 year: 2008 ident: 10.1016/j.bbrc.2015.03.030_bib19 article-title: Loss of expression of N-acetylglucosaminyltransferase Va results in altered gene expression of glycosyltransferases and galectins publication-title: FEBS Lett. doi: 10.1016/j.febslet.2008.01.015 – volume: 51 start-page: 718 year: 1991 ident: 10.1016/j.bbrc.2015.03.030_bib10 article-title: Beta 1-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia publication-title: Cancer Res. – volume: 25 start-page: 345 year: 2008 ident: 10.1016/j.bbrc.2015.03.030_bib5 article-title: Organ selectivity in metastasis: regulation by chemokines and their receptors publication-title: Clin. Exp. Metastasis doi: 10.1007/s10585-007-9097-3 – volume: 257 start-page: 13421 year: 1982 ident: 10.1016/j.bbrc.2015.03.030_bib8 article-title: A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: alpha-D-mannoside beta 1,6 N-acetylglucosaminyltransferase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)33465-3 – volume: 27 start-page: 1654 year: 2009 ident: 10.1016/j.bbrc.2015.03.030_bib21 article-title: HOXA3 modulates injury-induced mobilization and recruitment of bone marrow-derived cells publication-title: Stem Cells doi: 10.1002/stem.90 – volume: 127 start-page: 679 year: 2006 ident: 10.1016/j.bbrc.2015.03.030_bib1 article-title: Cancer metastasis: building a framework publication-title: Cell doi: 10.1016/j.cell.2006.11.001 – volume: 59 start-page: 2127 year: 1999 ident: 10.1016/j.bbrc.2015.03.030_bib14 article-title: Expression of human alpha(1,3)fucosyltransferase antisense sequences inhibits selectin-mediated adhesion and liver metastasis of colon carcinoma cells publication-title: Cancer Res. – volume: 1473 start-page: 21 year: 1999 ident: 10.1016/j.bbrc.2015.03.030_bib9 article-title: Glycoprotein glycosylation and cancer progression publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4165(99)00167-1 – volume: 183 start-page: 581 year: 1996 ident: 10.1016/j.bbrc.2015.03.030_bib13 article-title: Redirection of tumor metastasis by expression of E-selectin in vivo publication-title: J. Exp. Med. doi: 10.1084/jem.183.2.581 – volume: 1760 start-page: 616 year: 2006 ident: 10.1016/j.bbrc.2015.03.030_bib29 article-title: Galectin-3: an open-ended story publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2005.12.020 – volume: 3 start-page: 453 year: 2003 ident: 10.1016/j.bbrc.2015.03.030_bib2 article-title: The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1098 – volume: 137 start-page: 1007 year: 1990 ident: 10.1016/j.bbrc.2015.03.030_bib11 article-title: Increase of beta 1-6-branched oligosaccharides in human esophageal carcinomas invasive against surrounding tissue in vivo and in vitro publication-title: Am. J. Pathol. – volume: 60 start-page: 134 year: 2000 ident: 10.1016/j.bbrc.2015.03.030_bib12 article-title: Beta1,6-N-acetylglucosamine-bearing N-glycans in human gliomas: implications for a role in regulating invasivity publication-title: Cancer Res. – volume: 257 start-page: 11230 year: 1982 ident: 10.1016/j.bbrc.2015.03.030_bib7 article-title: Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)33746-3 |
| SSID | ssj0011469 |
| Score | 2.2385757 |
| Snippet | Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3,... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 302 |
| SubjectTerms | Animals Base Sequence bone marrow carbohydrate binding Cell Line, Tumor chimerism DNA Primers endothelium Galectin 3 - genetics Galectin 3 - physiology Galectin-3 Galectin-3 transgenic mice immunity lactose lectins ligands Lung Neoplasms - secondary lungs melanoma Melanoma, Experimental - pathology metastasis Mice Mice, Transgenic Neoplasm Metastasis Organ specific metastasis Polymerase Chain Reaction Polysaccharides - physiology swainsonine transgenic animals |
| Title | N-glycans and metastasis in galectin-3 transgenic mice |
| URI | https://dx.doi.org/10.1016/j.bbrc.2015.03.030 https://www.ncbi.nlm.nih.gov/pubmed/25791476 https://www.proquest.com/docview/1676339715 https://www.proquest.com/docview/1732807350 https://www.proquest.com/docview/1825422635 |
| Volume | 460 |
| WOSCitedRecordID | wos000354230300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011469 issn: 0006-291X databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1ra9swUKTtxvZlbO0e3aN4MPbFKPghW9bHtHTs1TBIN_LNSLKzOUuUkDih-Sf7uTtZsp1uNGyDQTDGSI58d9K97xB6BTJwQolgOJMkxMSXPuaZJ7DPRnHIKSe8Sh_78pH2-8lwyD51Oj_qXJj1hCqVXF2x-X9FNTwDZOvU2b9Ad_NSeAD3gHS4Atrh-keI7-Ovkw0AzBRfnuYlBwFQlx0plKvZARxwCoe6N4RawksK6U5t_Fvj3C10G622joAoZvManbY4kA5X38osaQTzCxu2O_i24VP3Q7cx4GhH0Zovjbm1XwB5tJaAVaZMmDeM-g6YbizUpzYQd8DVmG_ci-62jcKP2ohAYzirk2euxXZqTokDVnXMAVZkzl-PeTiwHYnrA5qYjgOWEoOt4zb0gi3OHZr-ub8xBWOfGHeFWOiilX5UlbW17qDrxbYHelF6TSAneySO2B46CGjE4Lw86L07H75vPFTAYaxqZT7CJmSZ2MFf_-kmoecmpaYSbi7vo3tWK3F6hpoeoE6uDtFRT_FyNt04r50qTrhywByi26f13Z2zulvgEYobsnOAZJyW7JxCOS3ZOS3ZOZrsHqLPb84vz95i25MDS8KCEguP5jyPQKnIQRDNIkJklkQZCNmgC5Oci1hkvqRJSEGPBgYWSNjvFJQMQZJQMC98hPbVTOVPkJMJSUeaY8iRB6dFIkBUBH0vD0QCem7iHSO_BloqbcF63TdlktaRieNUAzrVgE69EH4wx23mzE25lp2joxoXqRU4jSCZAunsnPeyRlwKYNYuNtgPs9Uy9WPg1yDi-9GOMbo-FnDWaNd7tOEm0IWijtFjQxnN9wDImE9o_PQfV_8M3W336HO0Xy5W-Qt0S67LYrk4QXt0mJxYav8JJODOzA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-glycans+and+metastasis+in+galectin-3+transgenic+mice&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=More%2C+Shyam+K.&rft.au=Srinivasan%2C+Nithya&rft.au=Budnar%2C+Srikanth&rft.au=Bane%2C+Sanjay+M.&rft.date=2015-05-01&rft.pub=Elsevier+Inc&rft.issn=0006-291X&rft.eissn=1090-2104&rft.volume=460&rft.issue=2&rft.spage=302&rft.epage=307&rft_id=info:doi/10.1016%2Fj.bbrc.2015.03.030&rft.externalDocID=S0006291X15004659 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon |