N-glycans and metastasis in galectin-3 transgenic mice

Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biochemical and biophysical research communications Ročník 460; číslo 2; s. 302 - 307
Hlavní autori: More, Shyam K., Srinivasan, Nithya, Budnar, Srikanth, Bane, Sanjay M., Upadhya, Archana, Thorat, Rahul A., Ingle, Arvind D., Chiplunkar, Shubhada V., Kalraiya, Rajiv D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 01.05.2015
Predmet:
ISSN:0006-291X, 1090-2104, 1090-2104
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc not only aids in initial arrest on the organ endothelium but in all the events of extravasation. Inhibition of polyLacNAc synthesis, or competitive inhibition of its interaction with galectin-3 all inhibited these processes and experimental metastasis. Transgenic galectin-3 mice, viz., gal-3+/+ (wild type), gal-3+/− (hemizygous) and gal-3−/− (null) have been used to prove that galectin-3/polyLacNAc interactions are indeed critical for lung specific metastasis. Gal-3+/− mice which showed <50% expression of galectin-3 on the lungs also showed proportionate decrease in the number of B16F10 melanoma metastatic colonies affirming that galectin-3 and polyLacNAc interactions are indeed key determinants of lung metastasis. However, surprisingly, the number and size of metastatic colonies in gal-3−/− mice was very similar as that seen in gal-3+/+ mice. The levels of lactose binding lectins on the lungs and the transcripts of other galectins (galectin-1, -8 and -9) which are expressed on lungs and have similar sugar binding specificities as galectins-3, remain unchanged in gal-3+/+ and gal-3−/− mice. Further, inhibition of N-glycosylation with Swainsonine (SW) which drastically reduces metastasis of B16F10 cells in gal-3+/+ mice, did not affect lung metastasis when assessed in gal-3−/− mice. Together, these results rule out the possibility of some other galectin taking over the function of galectin-3 in gal-3−/− mice. Chimeric mice generated to assess if absence of any effect on metastasis is due to compromised tumor immunity by replacing bone marrow of gal-3−/− mice with that from gal-3+/+ mice, also failed to impact melanoma metastasis. As galectin-3 regulates several immune functions including maturation of different immune cells, compromised tumor immunity could be the major determinant of melanoma metastasis in gal-3−/− mice and warrants thorough investigation. •Experimental metastasis has been compared in gal-3 transgenic mice (+/+, +/− and −/−).•Role of gal-3/polyLacNAc in lung specific metastasis has been confirmed.•Experiments in gal-3−/− mice demonstrate importance of host tumor immunity in metastasis.
AbstractList Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc not only aids in initial arrest on the organ endothelium but in all the events of extravasation. Inhibition of polyLacNAc synthesis, or competitive inhibition of its interaction with galectin-3 all inhibited these processes and experimental metastasis. Transgenic galectin-3 mice, viz., gal-3+/+ (wild type), gal-3+/− (hemizygous) and gal-3−/− (null) have been used to prove that galectin-3/polyLacNAc interactions are indeed critical for lung specific metastasis. Gal-3+/− mice which showed <50% expression of galectin-3 on the lungs also showed proportionate decrease in the number of B16F10 melanoma metastatic colonies affirming that galectin-3 and polyLacNAc interactions are indeed key determinants of lung metastasis. However, surprisingly, the number and size of metastatic colonies in gal-3−/− mice was very similar as that seen in gal-3+/+ mice. The levels of lactose binding lectins on the lungs and the transcripts of other galectins (galectin-1, -8 and -9) which are expressed on lungs and have similar sugar binding specificities as galectins-3, remain unchanged in gal-3+/+ and gal-3−/− mice. Further, inhibition of N-glycosylation with Swainsonine (SW) which drastically reduces metastasis of B16F10 cells in gal-3+/+ mice, did not affect lung metastasis when assessed in gal-3−/− mice. Together, these results rule out the possibility of some other galectin taking over the function of galectin-3 in gal-3−/− mice. Chimeric mice generated to assess if absence of any effect on metastasis is due to compromised tumor immunity by replacing bone marrow of gal-3−/− mice with that from gal-3+/+ mice, also failed to impact melanoma metastasis. As galectin-3 regulates several immune functions including maturation of different immune cells, compromised tumor immunity could be the major determinant of melanoma metastasis in gal-3−/− mice and warrants thorough investigation. •Experimental metastasis has been compared in gal-3 transgenic mice (+/+, +/− and −/−).•Role of gal-3/polyLacNAc in lung specific metastasis has been confirmed.•Experiments in gal-3−/− mice demonstrate importance of host tumor immunity in metastasis.
Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc not only aids in initial arrest on the organ endothelium but in all the events of extravasation. Inhibition of polyLacNAc synthesis, or competitive inhibition of its interaction with galectin-3 all inhibited these processes and experimental metastasis. Transgenic galectin-3 mice, viz., gal-3+/+ (wild type), gal-3+/− (hemizygous) and gal-3−/− (null) have been used to prove that galectin-3/polyLacNAc interactions are indeed critical for lung specific metastasis.Gal-3+/− mice which showed <50% expression of galectin-3 on the lungs also showed proportionate decrease in the number of B16F10 melanoma metastatic colonies affirming that galectin-3 and polyLacNAc interactions are indeed key determinants of lung metastasis. However, surprisingly, the number and size of metastatic colonies in gal-3−/− mice was very similar as that seen in gal-3+/+ mice. The levels of lactose binding lectins on the lungs and the transcripts of other galectins (galectin-1, -8 and -9) which are expressed on lungs and have similar sugar binding specificities as galectins-3, remain unchanged in gal-3+/+ and gal-3−/− mice. Further, inhibition of N-glycosylation with Swainsonine (SW) which drastically reduces metastasis of B16F10 cells in gal-3+/+ mice, did not affect lung metastasis when assessed in gal-3−/− mice. Together, these results rule out the possibility of some other galectin taking over the function of galectin-3 in gal-3−/− mice. Chimeric mice generated to assess if absence of any effect on metastasis is due to compromised tumor immunity by replacing bone marrow of gal-3−/− mice with that from gal-3+/+ mice, also failed to impact melanoma metastasis. As galectin-3 regulates several immune functions including maturation of different immune cells, compromised tumor immunity could be the major determinant of melanoma metastasis in gal-3−/− mice and warrants thorough investigation.
Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc not only aids in initial arrest on the organ endothelium but in all the events of extravasation. Inhibition of polyLacNAc synthesis, or competitive inhibition of its interaction with galectin-3 all inhibited these processes and experimental metastasis. Transgenic galectin-3 mice, viz., gal-3(+/+) (wild type), gal-3(+/-) (hemizygous) and gal-3(-/-) (null) have been used to prove that galectin-3/polyLacNAc interactions are indeed critical for lung specific metastasis. Gal-3(+/-) mice which showed <50% expression of galectin-3 on the lungs also showed proportionate decrease in the number of B16F10 melanoma metastatic colonies affirming that galectin-3 and polyLacNAc interactions are indeed key determinants of lung metastasis. However, surprisingly, the number and size of metastatic colonies in gal-3(-/-) mice was very similar as that seen in gal-3(+/+) mice. The levels of lactose binding lectins on the lungs and the transcripts of other galectins (galectin-1, -8 and -9) which are expressed on lungs and have similar sugar binding specificities as galectins-3, remain unchanged in gal-3(+/+) and gal-3(-/-) mice. Further, inhibition of N-glycosylation with Swainsonine (SW) which drastically reduces metastasis of B16F10 cells in gal-3(+/+) mice, did not affect lung metastasis when assessed in gal-3(-/-) mice. Together, these results rule out the possibility of some other galectin taking over the function of galectin-3 in gal-3(-/-) mice. Chimeric mice generated to assess if absence of any effect on metastasis is due to compromised tumor immunity by replacing bone marrow of gal-3(-/-) mice with that from gal-3(+/+) mice, also failed to impact melanoma metastasis. As galectin-3 regulates several immune functions including maturation of different immune cells, compromised tumor immunity could be the major determinant of melanoma metastasis in gal-3(-/-) mice and warrants thorough investigation.Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc not only aids in initial arrest on the organ endothelium but in all the events of extravasation. Inhibition of polyLacNAc synthesis, or competitive inhibition of its interaction with galectin-3 all inhibited these processes and experimental metastasis. Transgenic galectin-3 mice, viz., gal-3(+/+) (wild type), gal-3(+/-) (hemizygous) and gal-3(-/-) (null) have been used to prove that galectin-3/polyLacNAc interactions are indeed critical for lung specific metastasis. Gal-3(+/-) mice which showed <50% expression of galectin-3 on the lungs also showed proportionate decrease in the number of B16F10 melanoma metastatic colonies affirming that galectin-3 and polyLacNAc interactions are indeed key determinants of lung metastasis. However, surprisingly, the number and size of metastatic colonies in gal-3(-/-) mice was very similar as that seen in gal-3(+/+) mice. The levels of lactose binding lectins on the lungs and the transcripts of other galectins (galectin-1, -8 and -9) which are expressed on lungs and have similar sugar binding specificities as galectins-3, remain unchanged in gal-3(+/+) and gal-3(-/-) mice. Further, inhibition of N-glycosylation with Swainsonine (SW) which drastically reduces metastasis of B16F10 cells in gal-3(+/+) mice, did not affect lung metastasis when assessed in gal-3(-/-) mice. Together, these results rule out the possibility of some other galectin taking over the function of galectin-3 in gal-3(-/-) mice. Chimeric mice generated to assess if absence of any effect on metastasis is due to compromised tumor immunity by replacing bone marrow of gal-3(-/-) mice with that from gal-3(+/+) mice, also failed to impact melanoma metastasis. As galectin-3 regulates several immune functions including maturation of different immune cells, compromised tumor immunity could be the major determinant of melanoma metastasis in gal-3(-/-) mice and warrants thorough investigation.
Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc not only aids in initial arrest on the organ endothelium but in all the events of extravasation. Inhibition of polyLacNAc synthesis, or competitive inhibition of its interaction with galectin-3 all inhibited these processes and experimental metastasis. Transgenic galectin-3 mice, viz., gal-3(+/+) (wild type), gal-3(+/-) (hemizygous) and gal-3(-/-) (null) have been used to prove that galectin-3/polyLacNAc interactions are indeed critical for lung specific metastasis. Gal-3(+/-) mice which showed <50% expression of galectin-3 on the lungs also showed proportionate decrease in the number of B16F10 melanoma metastatic colonies affirming that galectin-3 and polyLacNAc interactions are indeed key determinants of lung metastasis. However, surprisingly, the number and size of metastatic colonies in gal-3(-/-) mice was very similar as that seen in gal-3(+/+) mice. The levels of lactose binding lectins on the lungs and the transcripts of other galectins (galectin-1, -8 and -9) which are expressed on lungs and have similar sugar binding specificities as galectins-3, remain unchanged in gal-3(+/+) and gal-3(-/-) mice. Further, inhibition of N-glycosylation with Swainsonine (SW) which drastically reduces metastasis of B16F10 cells in gal-3(+/+) mice, did not affect lung metastasis when assessed in gal-3(-/-) mice. Together, these results rule out the possibility of some other galectin taking over the function of galectin-3 in gal-3(-/-) mice. Chimeric mice generated to assess if absence of any effect on metastasis is due to compromised tumor immunity by replacing bone marrow of gal-3(-/-) mice with that from gal-3(+/+) mice, also failed to impact melanoma metastasis. As galectin-3 regulates several immune functions including maturation of different immune cells, compromised tumor immunity could be the major determinant of melanoma metastasis in gal-3(-/-) mice and warrants thorough investigation.
Author Thorat, Rahul A.
Ingle, Arvind D.
Chiplunkar, Shubhada V.
More, Shyam K.
Budnar, Srikanth
Kalraiya, Rajiv D.
Upadhya, Archana
Srinivasan, Nithya
Bane, Sanjay M.
Author_xml – sequence: 1
  givenname: Shyam K.
  surname: More
  fullname: More, Shyam K.
  organization: Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
– sequence: 2
  givenname: Nithya
  surname: Srinivasan
  fullname: Srinivasan, Nithya
  organization: Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
– sequence: 3
  givenname: Srikanth
  surname: Budnar
  fullname: Budnar, Srikanth
  organization: Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
– sequence: 4
  givenname: Sanjay M.
  surname: Bane
  fullname: Bane, Sanjay M.
  organization: Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
– sequence: 5
  givenname: Archana
  surname: Upadhya
  fullname: Upadhya, Archana
  organization: SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
– sequence: 6
  givenname: Rahul A.
  surname: Thorat
  fullname: Thorat, Rahul A.
  organization: Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
– sequence: 7
  givenname: Arvind D.
  surname: Ingle
  fullname: Ingle, Arvind D.
  organization: Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
– sequence: 8
  givenname: Shubhada V.
  surname: Chiplunkar
  fullname: Chiplunkar, Shubhada V.
  organization: Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
– sequence: 9
  givenname: Rajiv D.
  surname: Kalraiya
  fullname: Kalraiya, Rajiv D.
  email: rkalraiya@actrec.gov.in
  organization: Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25791476$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtLxDAUhYMoOj7-gAvp0k3Hm3cDbkR8gehGwV1I0-uQoU016Qj-e1tGXbhQ4cDdfOdwOWeXbMY-IiGHFOYUqDpZzus6-TkDKufAR8EGmVEwUDIKYpPMAECVzNCnHbKb8xKAUqHMNtlhUhsqtJoRdVcu2nfvYi5cbIoOB5dHhVyEWCxci34IseTFkEZkgTH4ogse98nWs2szHnzePfJ4efFwfl3e3l_dnJ_dll4YNpQ1aHQoDVUopWikEL6pZGOYAaMEulrVDfW64tooVVWaee2ENlrXouK1Ab5Hjte5L6l_XWEebBeyx7Z1EftVtrRiUjCmuPwb1ZxVoLn8R6rSinOj6ZR69Imu6g4b-5JC59K7_WpwBNga8KnPOeHzN0LBTjPZpZ1mstNMFvio6YHqh8mHwQ2hj2PPof3derq24lj7W8Bksw8YPTYhjWPZpg-_2T8AXVOpmg
CitedBy_id crossref_primary_10_3390_cells10082136
crossref_primary_10_1515_sjecr_2016_0011
crossref_primary_10_1371_journal_pone_0213184
crossref_primary_10_1016_j_semcancer_2017_03_002
crossref_primary_10_1016_j_cbi_2019_108724
crossref_primary_10_1007_s10555_021_10015_1
crossref_primary_10_1186_s12885_016_2679_1
crossref_primary_10_1681_ASN_2015101100
crossref_primary_10_1007_s11010_016_2706_1
crossref_primary_10_1016_j_molimm_2015_09_015
crossref_primary_10_3390_cells13221831
crossref_primary_10_1002_prca_201800014
crossref_primary_10_1016_j_bbcan_2020_188422
Cites_doi 10.1016/j.autrev.2008.11.009
10.1038/nri2536
10.1007/s10585-005-2036-2
10.1038/nrc865
10.1016/S0002-9440(10)64975-9
10.1016/S0304-4165(02)00311-2
10.3892/ijo.25.4.983
10.1016/S1471-4906(02)02232-9
10.3389/fonc.2014.00138
10.1007/s10719-008-9194-9
10.1038/nm1469
10.4049/jimmunol.176.2.778
10.1007/s10585-011-9383-y
10.1007/s10585-014-9657-2
10.1038/bjc.1997.429
10.1016/j.febslet.2008.01.015
10.1007/s10585-007-9097-3
10.1016/S0021-9258(18)33465-3
10.1002/stem.90
10.1016/j.cell.2006.11.001
10.1016/S0304-4165(99)00167-1
10.1084/jem.183.2.581
10.1016/j.bbagen.2005.12.020
10.1038/nrc1098
10.1016/S0021-9258(18)33746-3
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
8FD
FR3
P64
RC3
7S9
L.6
DOI 10.1016/j.bbrc.2015.03.030
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1090-2104
EndPage 307
ExternalDocumentID 25791476
10_1016_j_bbrc_2015_03_030
S0006291X15004659
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADIYS
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
DOVZS
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
TWZ
WH7
XPP
XSW
ZA5
ZMT
~02
~G-
.55
.GJ
.HR
1CY
3O-
9DU
9M8
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
OHT
R2-
SBG
SEW
UQL
WUQ
X7M
Y6R
ZGI
ZKB
~HD
~KM
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
8FD
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c492t-b07eae5916e554d544cd85d9290964eab6bd1c78379668872c7a47977b483b903
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354230300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-291X
1090-2104
IngestDate Sun Sep 28 12:09:30 EDT 2025
Sun Sep 28 08:06:21 EDT 2025
Thu Oct 02 09:49:47 EDT 2025
Thu Apr 03 06:52:42 EDT 2025
Sat Nov 29 07:32:48 EST 2025
Tue Nov 18 22:01:45 EST 2025
Fri Feb 23 02:28:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Galectin-3 transgenic mice
Organ specific metastasis
Galectin-3
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c492t-b07eae5916e554d544cd85d9290964eab6bd1c78379668872c7a47977b483b903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25791476
PQID 1676339715
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1825422635
proquest_miscellaneous_1732807350
proquest_miscellaneous_1676339715
pubmed_primary_25791476
crossref_primary_10_1016_j_bbrc_2015_03_030
crossref_citationtrail_10_1016_j_bbrc_2015_03_030
elsevier_sciencedirect_doi_10_1016_j_bbrc_2015_03_030
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemical and biophysical research communications
PublicationTitleAlternate Biochem Biophys Res Commun
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Humphries, Matsumoto, White, Molyneux, Olden (bib23) 1988; 48
Stillman, Hsu, Pang, Brewer, Johnson, Liu, Baum (bib32) 2006; 176
Mace, Restivo, Rinn, Paquet, Chang, Young, Boudreau (bib21) 2009; 27
Cummings, Kornfeld (bib7) 1982; 257
Dange, Srinivasan, More, Bane, Upadhya, Ingle, Gude, Mukhopadhyaya, Kalraiya (bib20) 2014; 31
Yamamoto, Swoger, Greene, Saito, Hurh, Sweeley, Leestma, Mkrdichian, Cerullo, Nishikawa, Ihara, Taniguchi, Moskal (bib12) 2000; 60
Krishnan, Bane, Kawle, Naresh, Kalraiya (bib16) 2005; 22
Radosavljevic, Jovanovic, Majstorovic, Mitrovic, Lisnic, Arsenijevic, Jonjic, Lukic (bib31) 2011; 28
Hsu, Yang, Pan, Yu, Salomon, Fung-Leung, Liu (bib18) 2000; 156
Fortuna-Costa, Gomes, Kozlowski, Stelling, Pavao (bib30) 2014; 4
Fidler (bib2) 2003; 3
Takano, Nose, Nishihira, Kyogoku (bib11) 1990; 137
Biancone, Araki, Araki, Vassalli, Stamenkovic (bib13) 1996; 183
Chambers, Groom, MacDonald (bib6) 2002; 2
Ben-Baruch (bib5) 2008; 25
Weston, Hiller, Mayben, Manousos, Bendt, Liu, Cusack (bib14) 1999; 59
Dennis, Granovsky, Warren (bib9) 1999; 1473
Rabinovich, Toscano (bib27) 2009; 9
Dumic, Dabelic, Flogel (bib29) 2006; 1760
Dhirapong, Lleo, Leung, Gershwin, Liu (bib25) 2009; 8
Paget (bib4) 1989; 8
Cummings, Trowbridge, Kornfeld (bib8) 1982; 257
Fernandes, Sagman, Auger, Demetrio, Dennis (bib10) 1991; 51
Califice, Castronovo, Van Den Brule (bib28) 2004; 25
Srinivasan, Bane, Ahire, Ingle, Kalraiya (bib17) 2009; 26
Chen, Liu, Yang (bib24) 2005; 53
Yamada, Chung, Takatsuka, Arimoto, Sawada, Dohi, Sowa (bib15) 1997; 76
Rabinovich, Baum, Tinari, Paganelli, Natoli, Liu, Iacobelli (bib26) 2002; 23
Hirabayashi, Hashidate, Arata, Nishi, Nakamura, Hirashima, Urashima, Oka, Futai, Muller, Yagi, Kasai (bib22) 2002; 1572
Gupta, Massague (bib1) 2006; 127
Guo, Nairn, Harris, Randolph, Alvarez-Manilla, Moremen, Pierce (bib19) 2008; 582
Steeg (bib3) 2006; 12
Cummings (10.1016/j.bbrc.2015.03.030_bib7) 1982; 257
Hsu (10.1016/j.bbrc.2015.03.030_bib18) 2000; 156
Srinivasan (10.1016/j.bbrc.2015.03.030_bib17) 2009; 26
Paget (10.1016/j.bbrc.2015.03.030_bib4) 1989; 8
Califice (10.1016/j.bbrc.2015.03.030_bib28) 2004; 25
Rabinovich (10.1016/j.bbrc.2015.03.030_bib26) 2002; 23
Dumic (10.1016/j.bbrc.2015.03.030_bib29) 2006; 1760
Fortuna-Costa (10.1016/j.bbrc.2015.03.030_bib30) 2014; 4
Steeg (10.1016/j.bbrc.2015.03.030_bib3) 2006; 12
Chambers (10.1016/j.bbrc.2015.03.030_bib6) 2002; 2
Yamamoto (10.1016/j.bbrc.2015.03.030_bib12) 2000; 60
Mace (10.1016/j.bbrc.2015.03.030_bib21) 2009; 27
Fidler (10.1016/j.bbrc.2015.03.030_bib2) 2003; 3
Radosavljevic (10.1016/j.bbrc.2015.03.030_bib31) 2011; 28
Dennis (10.1016/j.bbrc.2015.03.030_bib9) 1999; 1473
Chen (10.1016/j.bbrc.2015.03.030_bib24) 2005; 53
Stillman (10.1016/j.bbrc.2015.03.030_bib32) 2006; 176
Gupta (10.1016/j.bbrc.2015.03.030_bib1) 2006; 127
Takano (10.1016/j.bbrc.2015.03.030_bib11) 1990; 137
Biancone (10.1016/j.bbrc.2015.03.030_bib13) 1996; 183
Fernandes (10.1016/j.bbrc.2015.03.030_bib10) 1991; 51
Hirabayashi (10.1016/j.bbrc.2015.03.030_bib22) 2002; 1572
Dhirapong (10.1016/j.bbrc.2015.03.030_bib25) 2009; 8
Dange (10.1016/j.bbrc.2015.03.030_bib20) 2014; 31
Yamada (10.1016/j.bbrc.2015.03.030_bib15) 1997; 76
Guo (10.1016/j.bbrc.2015.03.030_bib19) 2008; 582
Weston (10.1016/j.bbrc.2015.03.030_bib14) 1999; 59
Rabinovich (10.1016/j.bbrc.2015.03.030_bib27) 2009; 9
Ben-Baruch (10.1016/j.bbrc.2015.03.030_bib5) 2008; 25
Cummings (10.1016/j.bbrc.2015.03.030_bib8) 1982; 257
Krishnan (10.1016/j.bbrc.2015.03.030_bib16) 2005; 22
Humphries (10.1016/j.bbrc.2015.03.030_bib23) 1988; 48
References_xml – volume: 28
  start-page: 451
  year: 2011
  end-page: 462
  ident: bib31
  article-title: Deletion of galectin-3 in the host attenuates metastasis of murine melanoma by modulating tumor adhesion and NK cell activity
  publication-title: Clin. Exp. Metastasis
– volume: 25
  start-page: 345
  year: 2008
  end-page: 356
  ident: bib5
  article-title: Organ selectivity in metastasis: regulation by chemokines and their receptors
  publication-title: Clin. Exp. Metastasis
– volume: 1760
  start-page: 616
  year: 2006
  end-page: 635
  ident: bib29
  article-title: Galectin-3: an open-ended story
  publication-title: Biochim. Biophys. Acta
– volume: 127
  start-page: 679
  year: 2006
  end-page: 695
  ident: bib1
  article-title: Cancer metastasis: building a framework
  publication-title: Cell
– volume: 12
  start-page: 895
  year: 2006
  end-page: 904
  ident: bib3
  article-title: Tumor metastasis: mechanistic insights and clinical challenges
  publication-title: Nat. Med.
– volume: 8
  start-page: 98
  year: 1989
  end-page: 101
  ident: bib4
  article-title: The distribution of secondary growths in cancer of the breast. 1889
  publication-title: Cancer Metastasis Rev.
– volume: 31
  start-page: 661
  year: 2014
  end-page: 673
  ident: bib20
  article-title: Galectin-3 expressed on different lung compartments promotes organ specific metastasis by facilitating arrest, extravasation and organ colonization via high affinity ligands on melanoma cells
  publication-title: Clin. Exp. Metastasis
– volume: 23
  start-page: 313
  year: 2002
  end-page: 320
  ident: bib26
  article-title: Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response?
  publication-title: Trends Immunol.
– volume: 183
  start-page: 581
  year: 1996
  end-page: 587
  ident: bib13
  article-title: Redirection of tumor metastasis by expression of E-selectin in vivo
  publication-title: J. Exp. Med.
– volume: 582
  start-page: 527
  year: 2008
  end-page: 535
  ident: bib19
  article-title: Loss of expression of N-acetylglucosaminyltransferase Va results in altered gene expression of glycosyltransferases and galectins
  publication-title: FEBS Lett.
– volume: 59
  start-page: 2127
  year: 1999
  end-page: 2135
  ident: bib14
  article-title: Expression of human alpha(1,3)fucosyltransferase antisense sequences inhibits selectin-mediated adhesion and liver metastasis of colon carcinoma cells
  publication-title: Cancer Res.
– volume: 27
  start-page: 1654
  year: 2009
  end-page: 1665
  ident: bib21
  article-title: HOXA3 modulates injury-induced mobilization and recruitment of bone marrow-derived cells
  publication-title: Stem Cells
– volume: 137
  start-page: 1007
  year: 1990
  end-page: 1011
  ident: bib11
  article-title: Increase of beta 1-6-branched oligosaccharides in human esophageal carcinomas invasive against surrounding tissue in vivo and in vitro
  publication-title: Am. J. Pathol.
– volume: 1473
  start-page: 21
  year: 1999
  end-page: 34
  ident: bib9
  article-title: Glycoprotein glycosylation and cancer progression
  publication-title: Biochim. Biophys. Acta
– volume: 25
  start-page: 983
  year: 2004
  end-page: 992
  ident: bib28
  article-title: Galectin-3 and cancer (Review)
  publication-title: Int. J. Oncol.
– volume: 51
  start-page: 718
  year: 1991
  end-page: 723
  ident: bib10
  article-title: Beta 1-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia
  publication-title: Cancer Res.
– volume: 8
  start-page: 360
  year: 2009
  end-page: 363
  ident: bib25
  article-title: The immunological potential of galectin-1 and -3
  publication-title: Autoimmun. Rev.
– volume: 257
  start-page: 11230
  year: 1982
  end-page: 11234
  ident: bib7
  article-title: Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 338
  year: 2009
  end-page: 352
  ident: bib27
  article-title: Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation
  publication-title: Nat. Rev. Immunol.
– volume: 156
  start-page: 1073
  year: 2000
  end-page: 1083
  ident: bib18
  article-title: Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses
  publication-title: Am. J. Pathol.
– volume: 53
  start-page: 497
  year: 2005
  end-page: 504
  ident: bib24
  article-title: Roles of galectin-3 in immune responses
  publication-title: Arch. Immunol. Ther. Exp. Warsz.
– volume: 4
  start-page: 138
  year: 2014
  ident: bib30
  article-title: Extracellular galectin-3 in tumor progression and metastasis
  publication-title: Front. Oncol.
– volume: 257
  start-page: 13421
  year: 1982
  end-page: 13427
  ident: bib8
  article-title: A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: alpha-D-mannoside beta 1,6 N-acetylglucosaminyltransferase
  publication-title: J. Biol. Chem.
– volume: 76
  start-page: 582
  year: 1997
  end-page: 587
  ident: bib15
  article-title: Increased sialyl Lewis A expression and fucosyltransferase activity with acquisition of a high metastatic capacity in a colon cancer cell line
  publication-title: Br. J. Cancer
– volume: 60
  start-page: 134
  year: 2000
  end-page: 142
  ident: bib12
  article-title: Beta1,6-N-acetylglucosamine-bearing N-glycans in human gliomas: implications for a role in regulating invasivity
  publication-title: Cancer Res.
– volume: 3
  start-page: 453
  year: 2003
  end-page: 458
  ident: bib2
  article-title: The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited
  publication-title: Nat. Rev. Cancer
– volume: 22
  start-page: 11
  year: 2005
  end-page: 24
  ident: bib16
  article-title: Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium
  publication-title: Clin. Exp. Metastasis
– volume: 1572
  start-page: 232
  year: 2002
  end-page: 254
  ident: bib22
  article-title: Oligosaccharide specificity of galectins: a search by frontal affinity chromatography
  publication-title: Biochim. Biophys. Acta
– volume: 26
  start-page: 445
  year: 2009
  end-page: 456
  ident: bib17
  article-title: Poly N-acetyllactosamine substitutions on N- and not O-oligosaccharides or Thomsen-Friedenreich antigen facilitate lung specific metastasis of melanoma cells via galectin-3
  publication-title: Glycoconj. J.
– volume: 48
  start-page: 1410
  year: 1988
  end-page: 1415
  ident: bib23
  article-title: Augmentation of murine natural killer cell activity by swainsonine, a new antimetastatic immunomodulator
  publication-title: Cancer Res.
– volume: 176
  start-page: 778
  year: 2006
  end-page: 789
  ident: bib32
  article-title: Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death
  publication-title: J. Immunol.
– volume: 2
  start-page: 563
  year: 2002
  end-page: 572
  ident: bib6
  article-title: Dissemination and growth of cancer cells in metastatic sites
  publication-title: Nat. Rev. Cancer
– volume: 8
  start-page: 360
  year: 2009
  ident: 10.1016/j.bbrc.2015.03.030_bib25
  article-title: The immunological potential of galectin-1 and -3
  publication-title: Autoimmun. Rev.
  doi: 10.1016/j.autrev.2008.11.009
– volume: 8
  start-page: 98
  year: 1989
  ident: 10.1016/j.bbrc.2015.03.030_bib4
  article-title: The distribution of secondary growths in cancer of the breast. 1889
  publication-title: Cancer Metastasis Rev.
– volume: 53
  start-page: 497
  year: 2005
  ident: 10.1016/j.bbrc.2015.03.030_bib24
  article-title: Roles of galectin-3 in immune responses
  publication-title: Arch. Immunol. Ther. Exp. Warsz.
– volume: 9
  start-page: 338
  year: 2009
  ident: 10.1016/j.bbrc.2015.03.030_bib27
  article-title: Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2536
– volume: 22
  start-page: 11
  year: 2005
  ident: 10.1016/j.bbrc.2015.03.030_bib16
  article-title: Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium
  publication-title: Clin. Exp. Metastasis
  doi: 10.1007/s10585-005-2036-2
– volume: 48
  start-page: 1410
  year: 1988
  ident: 10.1016/j.bbrc.2015.03.030_bib23
  article-title: Augmentation of murine natural killer cell activity by swainsonine, a new antimetastatic immunomodulator
  publication-title: Cancer Res.
– volume: 2
  start-page: 563
  year: 2002
  ident: 10.1016/j.bbrc.2015.03.030_bib6
  article-title: Dissemination and growth of cancer cells in metastatic sites
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc865
– volume: 156
  start-page: 1073
  year: 2000
  ident: 10.1016/j.bbrc.2015.03.030_bib18
  article-title: Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)64975-9
– volume: 1572
  start-page: 232
  year: 2002
  ident: 10.1016/j.bbrc.2015.03.030_bib22
  article-title: Oligosaccharide specificity of galectins: a search by frontal affinity chromatography
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4165(02)00311-2
– volume: 25
  start-page: 983
  year: 2004
  ident: 10.1016/j.bbrc.2015.03.030_bib28
  article-title: Galectin-3 and cancer (Review)
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.25.4.983
– volume: 23
  start-page: 313
  year: 2002
  ident: 10.1016/j.bbrc.2015.03.030_bib26
  article-title: Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response?
  publication-title: Trends Immunol.
  doi: 10.1016/S1471-4906(02)02232-9
– volume: 4
  start-page: 138
  year: 2014
  ident: 10.1016/j.bbrc.2015.03.030_bib30
  article-title: Extracellular galectin-3 in tumor progression and metastasis
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2014.00138
– volume: 26
  start-page: 445
  year: 2009
  ident: 10.1016/j.bbrc.2015.03.030_bib17
  article-title: Poly N-acetyllactosamine substitutions on N- and not O-oligosaccharides or Thomsen-Friedenreich antigen facilitate lung specific metastasis of melanoma cells via galectin-3
  publication-title: Glycoconj. J.
  doi: 10.1007/s10719-008-9194-9
– volume: 12
  start-page: 895
  year: 2006
  ident: 10.1016/j.bbrc.2015.03.030_bib3
  article-title: Tumor metastasis: mechanistic insights and clinical challenges
  publication-title: Nat. Med.
  doi: 10.1038/nm1469
– volume: 176
  start-page: 778
  year: 2006
  ident: 10.1016/j.bbrc.2015.03.030_bib32
  article-title: Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.2.778
– volume: 28
  start-page: 451
  year: 2011
  ident: 10.1016/j.bbrc.2015.03.030_bib31
  article-title: Deletion of galectin-3 in the host attenuates metastasis of murine melanoma by modulating tumor adhesion and NK cell activity
  publication-title: Clin. Exp. Metastasis
  doi: 10.1007/s10585-011-9383-y
– volume: 31
  start-page: 661
  year: 2014
  ident: 10.1016/j.bbrc.2015.03.030_bib20
  article-title: Galectin-3 expressed on different lung compartments promotes organ specific metastasis by facilitating arrest, extravasation and organ colonization via high affinity ligands on melanoma cells
  publication-title: Clin. Exp. Metastasis
  doi: 10.1007/s10585-014-9657-2
– volume: 76
  start-page: 582
  year: 1997
  ident: 10.1016/j.bbrc.2015.03.030_bib15
  article-title: Increased sialyl Lewis A expression and fucosyltransferase activity with acquisition of a high metastatic capacity in a colon cancer cell line
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1997.429
– volume: 582
  start-page: 527
  year: 2008
  ident: 10.1016/j.bbrc.2015.03.030_bib19
  article-title: Loss of expression of N-acetylglucosaminyltransferase Va results in altered gene expression of glycosyltransferases and galectins
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2008.01.015
– volume: 51
  start-page: 718
  year: 1991
  ident: 10.1016/j.bbrc.2015.03.030_bib10
  article-title: Beta 1-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia
  publication-title: Cancer Res.
– volume: 25
  start-page: 345
  year: 2008
  ident: 10.1016/j.bbrc.2015.03.030_bib5
  article-title: Organ selectivity in metastasis: regulation by chemokines and their receptors
  publication-title: Clin. Exp. Metastasis
  doi: 10.1007/s10585-007-9097-3
– volume: 257
  start-page: 13421
  year: 1982
  ident: 10.1016/j.bbrc.2015.03.030_bib8
  article-title: A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: alpha-D-mannoside beta 1,6 N-acetylglucosaminyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)33465-3
– volume: 27
  start-page: 1654
  year: 2009
  ident: 10.1016/j.bbrc.2015.03.030_bib21
  article-title: HOXA3 modulates injury-induced mobilization and recruitment of bone marrow-derived cells
  publication-title: Stem Cells
  doi: 10.1002/stem.90
– volume: 127
  start-page: 679
  year: 2006
  ident: 10.1016/j.bbrc.2015.03.030_bib1
  article-title: Cancer metastasis: building a framework
  publication-title: Cell
  doi: 10.1016/j.cell.2006.11.001
– volume: 59
  start-page: 2127
  year: 1999
  ident: 10.1016/j.bbrc.2015.03.030_bib14
  article-title: Expression of human alpha(1,3)fucosyltransferase antisense sequences inhibits selectin-mediated adhesion and liver metastasis of colon carcinoma cells
  publication-title: Cancer Res.
– volume: 1473
  start-page: 21
  year: 1999
  ident: 10.1016/j.bbrc.2015.03.030_bib9
  article-title: Glycoprotein glycosylation and cancer progression
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4165(99)00167-1
– volume: 183
  start-page: 581
  year: 1996
  ident: 10.1016/j.bbrc.2015.03.030_bib13
  article-title: Redirection of tumor metastasis by expression of E-selectin in vivo
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.183.2.581
– volume: 1760
  start-page: 616
  year: 2006
  ident: 10.1016/j.bbrc.2015.03.030_bib29
  article-title: Galectin-3: an open-ended story
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2005.12.020
– volume: 3
  start-page: 453
  year: 2003
  ident: 10.1016/j.bbrc.2015.03.030_bib2
  article-title: The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1098
– volume: 137
  start-page: 1007
  year: 1990
  ident: 10.1016/j.bbrc.2015.03.030_bib11
  article-title: Increase of beta 1-6-branched oligosaccharides in human esophageal carcinomas invasive against surrounding tissue in vivo and in vitro
  publication-title: Am. J. Pathol.
– volume: 60
  start-page: 134
  year: 2000
  ident: 10.1016/j.bbrc.2015.03.030_bib12
  article-title: Beta1,6-N-acetylglucosamine-bearing N-glycans in human gliomas: implications for a role in regulating invasivity
  publication-title: Cancer Res.
– volume: 257
  start-page: 11230
  year: 1982
  ident: 10.1016/j.bbrc.2015.03.030_bib7
  article-title: Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)33746-3
SSID ssj0011469
Score 2.2385757
Snippet Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 302
SubjectTerms Animals
Base Sequence
bone marrow
carbohydrate binding
Cell Line, Tumor
chimerism
DNA Primers
endothelium
Galectin 3 - genetics
Galectin 3 - physiology
Galectin-3
Galectin-3 transgenic mice
immunity
lactose
lectins
ligands
Lung Neoplasms - secondary
lungs
melanoma
Melanoma, Experimental - pathology
metastasis
Mice
Mice, Transgenic
Neoplasm Metastasis
Organ specific metastasis
Polymerase Chain Reaction
Polysaccharides - physiology
swainsonine
transgenic animals
Title N-glycans and metastasis in galectin-3 transgenic mice
URI https://dx.doi.org/10.1016/j.bbrc.2015.03.030
https://www.ncbi.nlm.nih.gov/pubmed/25791476
https://www.proquest.com/docview/1676339715
https://www.proquest.com/docview/1732807350
https://www.proquest.com/docview/1825422635
Volume 460
WOSCitedRecordID wos000354230300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2104
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011469
  issn: 0006-291X
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1ra9swUKTtxvZlbO0e3aN4MPbFKPghW9bHtHTs1TBIN_LNSLKzOUuUkDih-Sf7uTtZsp1uNGyDQTDGSI58d9K97xB6BTJwQolgOJMkxMSXPuaZJ7DPRnHIKSe8Sh_78pH2-8lwyD51Oj_qXJj1hCqVXF2x-X9FNTwDZOvU2b9Ad_NSeAD3gHS4Atrh-keI7-Ovkw0AzBRfnuYlBwFQlx0plKvZARxwCoe6N4RawksK6U5t_Fvj3C10G622joAoZvManbY4kA5X38osaQTzCxu2O_i24VP3Q7cx4GhH0Zovjbm1XwB5tJaAVaZMmDeM-g6YbizUpzYQd8DVmG_ci-62jcKP2ohAYzirk2euxXZqTokDVnXMAVZkzl-PeTiwHYnrA5qYjgOWEoOt4zb0gi3OHZr-ub8xBWOfGHeFWOiilX5UlbW17qDrxbYHelF6TSAneySO2B46CGjE4Lw86L07H75vPFTAYaxqZT7CJmSZ2MFf_-kmoecmpaYSbi7vo3tWK3F6hpoeoE6uDtFRT_FyNt04r50qTrhywByi26f13Z2zulvgEYobsnOAZJyW7JxCOS3ZOS3ZOZrsHqLPb84vz95i25MDS8KCEguP5jyPQKnIQRDNIkJklkQZCNmgC5Oci1hkvqRJSEGPBgYWSNjvFJQMQZJQMC98hPbVTOVPkJMJSUeaY8iRB6dFIkBUBH0vD0QCem7iHSO_BloqbcF63TdlktaRieNUAzrVgE69EH4wx23mzE25lp2joxoXqRU4jSCZAunsnPeyRlwKYNYuNtgPs9Uy9WPg1yDi-9GOMbo-FnDWaNd7tOEm0IWijtFjQxnN9wDImE9o_PQfV_8M3W336HO0Xy5W-Qt0S67LYrk4QXt0mJxYav8JJODOzA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-glycans+and+metastasis+in+galectin-3+transgenic+mice&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=More%2C+Shyam+K.&rft.au=Srinivasan%2C+Nithya&rft.au=Budnar%2C+Srikanth&rft.au=Bane%2C+Sanjay+M.&rft.date=2015-05-01&rft.pub=Elsevier+Inc&rft.issn=0006-291X&rft.eissn=1090-2104&rft.volume=460&rft.issue=2&rft.spage=302&rft.epage=307&rft_id=info:doi/10.1016%2Fj.bbrc.2015.03.030&rft.externalDocID=S0006291X15004659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon