Estimation and Inference of Heterogeneous Treatment Effects using Random Forests

Many scientific and engineering challenges-ranging from personalized medicine to customized marketing recommendations-require an understanding of treatment effect heterogeneity. In this article, we develop a nonparametric causal forest for estimating heterogeneous treatment effects that extends Brei...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American Statistical Association Ročník 113; číslo 523; s. 1228 - 1242
Hlavní autoři: Wager, Stefan, Athey, Susan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Alexandria Taylor & Francis 03.07.2018
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Témata:
ISSN:0162-1459, 1537-274X, 1537-274X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Many scientific and engineering challenges-ranging from personalized medicine to customized marketing recommendations-require an understanding of treatment effect heterogeneity. In this article, we develop a nonparametric causal forest for estimating heterogeneous treatment effects that extends Breiman's widely used random forest algorithm. In the potential outcomes framework with unconfoundedness, we show that causal forests are pointwise consistent for the true treatment effect and have an asymptotically Gaussian and centered sampling distribution. We also discuss a practical method for constructing asymptotic confidence intervals for the true treatment effect that are centered at the causal forest estimates. Our theoretical results rely on a generic Gaussian theory for a large family of random forest algorithms. To our knowledge, this is the first set of results that allows any type of random forest, including classification and regression forests, to be used for provably valid statistical inference. In experiments, we find causal forests to be substantially more powerful than classical methods based on nearest-neighbor matching, especially in the presence of irrelevant covariates.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-1459
1537-274X
1537-274X
DOI:10.1080/01621459.2017.1319839