Distribution-Free Predictive Inference for Regression

We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preser...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association Vol. 113; no. 523; pp. 1094 - 1111
Main Authors: Lei, Jing, G'Sell, Max, Rinaldo, Alessandro, Tibshirani, Ryan J., Wasserman, Larry
Format: Journal Article
Language:English
Published: Alexandria Taylor & Francis 03.07.2018
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Subjects:
ISSN:0162-1459, 1537-274X, 1537-274X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformal framework: full conformal inference and split conformal inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformal inference, which has essentially the same computational efficiency as split conformal inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, to adapt to heteroscedasticity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this article is an R package conformalInference that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package.
AbstractList We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformal framework: full conformal inference and split conformal inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformal inference, which has essentially the same computational efficiency as split conformal inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, to adapt to heteroscedasticity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this article is an R package conformalInference that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package.
We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformal framework: full conformal inference and split conformal inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformal inference, which has essentially the same computational efficiency as split conformal inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, to adapt to heteroscedasticity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this article is an R package conformalInference that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package.
We develop a general framework for distribution-free predictive inference in regression, using conformai inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformai framework: full conformai inference and split conformai inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformai inference, which has essentially the same computational efficiency as split conformai inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, to adapt to heteroscedasticity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this article is an R package conformal Inference that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package.
Author G'Sell, Max
Wasserman, Larry
Tibshirani, Ryan J.
Lei, Jing
Rinaldo, Alessandro
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0003-3104-9387
  surname: Lei
  fullname: Lei, Jing
  email: jinglei@andrew.cmu.edu
  organization: Department of Statistics, Carnegie Mellon University
– sequence: 2
  givenname: Max
  surname: G'Sell
  fullname: G'Sell, Max
  organization: Department of Statistics, Carnegie Mellon University
– sequence: 3
  givenname: Alessandro
  surname: Rinaldo
  fullname: Rinaldo, Alessandro
  organization: Department of Statistics, Carnegie Mellon University
– sequence: 4
  givenname: Ryan J.
  orcidid: 0000-0002-2158-8304
  surname: Tibshirani
  fullname: Tibshirani, Ryan J.
  organization: Department of Statistics, Carnegie Mellon University
– sequence: 5
  givenname: Larry
  surname: Wasserman
  fullname: Wasserman, Larry
  organization: Department of Statistics, Carnegie Mellon University
BookMark eNqFkEFLHTEQx0Ox4FP7EYQHXnrZ10w22ezixWK1FQSLWPAWsnEieexL7CSv4rdvlmd78NCGQA7z-2dmfgdsL6aIjB0DXwHv-ScOnQCphpXgoFfQcg3QvWMLUK1uhJb3e2wxM80M7bODnNe8Ht33C6a-hFwojNsSUmwuCXH5nfAhuBJ-4fIqeiSMDpc-0fIWHwlzruARe-_tlPHD63vIflxe3J1_a65vvl6df75unBxEaSwf3NB57rT1fOyl9eDqDN5KrNePg9bec9HpUfVDO0KHnR-VHFENUoMe20P2cffvE6WfW8zFbEJ2OE02YtpmI4QADpIrqOjJG3SdthTrdEZozXvotO4qdbqjHKWcCb1xodh590I2TAa4mZWaP0rNrNS8Kq1p9Sb9RGFj6eW_ueNdbp1Lor8hqbgYdNvW-tmuHmL1vLHPiaYHU-zLlMiTjS5k0_67xW9IDpeV
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102472
crossref_primary_10_1016_j_ress_2025_111177
crossref_primary_10_1186_s13059_023_02920_1
crossref_primary_10_1080_10618600_2025_2554671
crossref_primary_10_1109_TNNLS_2022_3185742
crossref_primary_10_1038_s41592_024_02184_y
crossref_primary_10_1093_jrsssb_qkaf022
crossref_primary_10_1371_journal_pcbi_1013133
crossref_primary_10_1007_s40304_023_00360_8
crossref_primary_10_1002_for_3185
crossref_primary_10_1016_j_ijar_2021_07_013
crossref_primary_10_1214_19_STS748
crossref_primary_10_1029_2024JH000349
crossref_primary_10_1038_s44387_025_00018_6
crossref_primary_10_1093_jssam_smae032
crossref_primary_10_1007_s10618_023_00967_z
crossref_primary_10_1016_j_csda_2022_107597
crossref_primary_10_3390_en17174348
crossref_primary_10_1016_j_spl_2024_110350
crossref_primary_10_1080_08839514_2024_2430867
crossref_primary_10_1016_j_future_2024_04_044
crossref_primary_10_1093_jrsssb_qkaf016
crossref_primary_10_3390_jne3040014
crossref_primary_10_1016_j_jmva_2021_104879
crossref_primary_10_1109_MSP_2022_3155906
crossref_primary_10_1016_j_rse_2021_112408
crossref_primary_10_1073_pnas_2214889120
crossref_primary_10_1109_TASE_2023_3297984
crossref_primary_10_1007_s11222_021_10057_z
crossref_primary_10_1073_pnas_2322376121
crossref_primary_10_1109_ACCESS_2022_3216617
crossref_primary_10_1080_01621459_2021_2003200
crossref_primary_10_1007_s10994_025_06812_2
crossref_primary_10_1007_s11749_023_00884_9
crossref_primary_10_1111_biom_13077
crossref_primary_10_1109_TITS_2024_3365721
crossref_primary_10_1016_j_compchemeng_2025_109136
crossref_primary_10_1088_2632_2153_aca7b1
crossref_primary_10_1016_j_geoderma_2022_115953
crossref_primary_10_1080_01621459_2019_1672556
crossref_primary_10_1109_TCAD_2024_3438072
crossref_primary_10_1073_pnas_2111453118
crossref_primary_10_1007_s42979_025_03706_x
crossref_primary_10_1007_s11229_022_03485_5
crossref_primary_10_1016_j_cageo_2024_105833
crossref_primary_10_1038_s41596_019_0289_5
crossref_primary_10_14778_3742728_3742755
crossref_primary_10_1080_07350015_2020_1813589
crossref_primary_10_1007_s00362_024_01631_4
crossref_primary_10_1016_j_ijmedinf_2025_105957
crossref_primary_10_1080_01621459_2021_1928514
crossref_primary_10_1016_j_epsr_2024_110541
crossref_primary_10_1002_cem_3457
crossref_primary_10_1080_00031305_2022_2107568
crossref_primary_10_3390_en15197193
crossref_primary_10_1007_s11517_024_03029_8
crossref_primary_10_1080_02331888_2024_2426043
crossref_primary_10_1088_2632_2153_acb9d5
crossref_primary_10_1190_geo2020_0811_1
crossref_primary_10_1080_01621459_2024_2366030
crossref_primary_10_1080_09599916_2020_1861066
crossref_primary_10_1016_j_neunet_2020_03_022
crossref_primary_10_1177_0962280219829885
crossref_primary_10_1017_S0022109023000133
crossref_primary_10_1016_j_eja_2022_126589
crossref_primary_10_1146_annurev_statistics_033021_120649
crossref_primary_10_1103_PhysRevE_111_L033301
crossref_primary_10_1109_TKDE_2023_3312261
crossref_primary_10_1016_j_neuroimage_2022_119534
crossref_primary_10_3389_fdata_2021_704182
crossref_primary_10_1007_s00439_021_02387_9
crossref_primary_10_1080_01621459_2021_1942012
crossref_primary_10_1093_infdis_jiaf219
crossref_primary_10_1007_s13198_025_02786_5
crossref_primary_10_1016_j_patcog_2021_108507
crossref_primary_10_1080_01621459_2024_2344700
crossref_primary_10_1080_01621459_2025_2506198
crossref_primary_10_1214_20_AOAS1424
crossref_primary_10_1007_s10994_024_06713_w
crossref_primary_10_1073_pnas_2107794118
crossref_primary_10_1080_19466315_2020_1797867
crossref_primary_10_1109_TIT_2025_3588335
crossref_primary_10_1016_j_arbres_2023_07_018
crossref_primary_10_14778_3749646_3749721
crossref_primary_10_3390_e24050687
crossref_primary_10_1093_biomet_asac040
crossref_primary_10_3390_electronics14030571
crossref_primary_10_1002_cite_70000
crossref_primary_10_1007_s10994_024_06627_7
crossref_primary_10_1016_j_engappai_2024_109436
crossref_primary_10_1111_insr_12448
crossref_primary_10_1016_j_spl_2022_109395
crossref_primary_10_1007_s11222_024_10398_5
crossref_primary_10_1214_18_AOS1784
crossref_primary_10_3233_IDT_230065
crossref_primary_10_1093_jrsssb_qkae009
crossref_primary_10_1016_j_jeconom_2025_106061
crossref_primary_10_1093_jrsssb_qkae120
crossref_primary_10_1002_gepi_70008
crossref_primary_10_1007_s41237_025_00266_5
crossref_primary_10_1021_acs_jcim_5c01037
crossref_primary_10_3390_fire5050152
crossref_primary_10_1016_j_asoc_2020_106807
crossref_primary_10_1080_01605682_2020_1865846
crossref_primary_10_1016_j_jmva_2025_105494
crossref_primary_10_12677_sa_2025_149270
crossref_primary_10_1109_TNSE_2023_3335626
crossref_primary_10_1109_LRA_2023_3292071
crossref_primary_10_1093_jrsssb_qkae117
crossref_primary_10_1093_jrsssb_qkad069
crossref_primary_10_1038_s41598_023_33981_8
crossref_primary_10_1080_00031305_2019_1585288
crossref_primary_10_1080_01621459_2022_2102503
crossref_primary_10_1080_01621459_2022_2147531
crossref_primary_10_1214_19_STS762
crossref_primary_10_1016_j_cmpb_2021_106399
crossref_primary_10_1080_01621459_2023_2282644
crossref_primary_10_1109_ACCESS_2024_3434629
crossref_primary_10_5194_tc_19_2431_2025
crossref_primary_10_1016_j_eswa_2021_115165
crossref_primary_10_3934_math_2025236
crossref_primary_10_1145_3736766
crossref_primary_10_1038_s41598_021_98879_9
crossref_primary_10_1093_sysbio_syad074
crossref_primary_10_1007_s43681_023_00400_7
crossref_primary_10_1002_cjs_11542
crossref_primary_10_1016_j_rse_2023_113682
crossref_primary_10_1093_biomet_asae010
crossref_primary_10_1109_TMC_2022_3147191
crossref_primary_10_1155_2022_7495651
crossref_primary_10_1016_j_cmpb_2022_106905
crossref_primary_10_1109_JSTSP_2024_3431996
crossref_primary_10_1007_s11749_022_00826_x
crossref_primary_10_1007_s10472_023_09847_0
crossref_primary_10_1109_ACCESS_2021_3116481
crossref_primary_10_1016_j_inffus_2021_11_017
crossref_primary_10_1002_sta4_261
crossref_primary_10_1016_j_datak_2024_102402
crossref_primary_10_1016_j_ress_2022_108720
crossref_primary_10_1016_j_ins_2024_121369
crossref_primary_10_2139_ssrn_3758451
crossref_primary_10_1080_01621459_2020_1844718
crossref_primary_10_1080_01621459_2024_2356886
crossref_primary_10_1109_TQE_2023_3333224
crossref_primary_10_1007_s11023_024_09691_z
crossref_primary_10_1080_01621459_2020_1762618
crossref_primary_10_1109_TKDE_2024_3420180
crossref_primary_10_1007_s44163_025_00377_8
crossref_primary_10_1371_journal_pcbi_1013098
crossref_primary_10_1007_s00158_024_03906_8
crossref_primary_10_1016_j_jbi_2024_104750
crossref_primary_10_1146_annurev_criminol_051520_012342
crossref_primary_10_1109_JIOT_2023_3287678
crossref_primary_10_1038_s41598_025_85323_5
crossref_primary_10_1080_17538947_2024_2376274
crossref_primary_10_15252_msb_202110724
crossref_primary_10_1109_ACCESS_2024_3387858
crossref_primary_10_1145_3748818
crossref_primary_10_1109_TAI_2025_3550913
crossref_primary_10_1214_22_AOS2198
crossref_primary_10_1111_rssb_12445
crossref_primary_10_3390_axioms13030137
crossref_primary_10_1109_TPAMI_2024_3393364
crossref_primary_10_1080_01621459_2022_2060112
crossref_primary_10_1016_j_ailsci_2025_100137
crossref_primary_10_1002_bimj_202400042
crossref_primary_10_1016_j_jbi_2020_103655
crossref_primary_10_1007_s42979_024_02810_8
crossref_primary_10_1111_deci_12642
crossref_primary_10_1162_tacl_a_00715
crossref_primary_10_1111_insr_12412
crossref_primary_10_1111_insr_12415
crossref_primary_10_1080_01621459_2020_1762614
crossref_primary_10_1007_s13042_024_02421_y
crossref_primary_10_1016_j_srs_2024_100180
crossref_primary_10_1214_21_AOAS1459
crossref_primary_10_1002_cjs_11654
crossref_primary_10_1016_j_inffus_2023_101805
crossref_primary_10_1146_annurev_statistics_040120_030919
crossref_primary_10_1111_sjos_12766
crossref_primary_10_1214_20_AOS1965
crossref_primary_10_1109_TPAMI_2023_3343031
crossref_primary_10_1146_annurev_statistics_112723_034225
crossref_primary_10_1109_LRA_2019_2891500
crossref_primary_10_1002_sta4_633
crossref_primary_10_1093_bioinformatics_btaf387
crossref_primary_10_1007_s00362_020_01193_1
crossref_primary_10_1080_10618600_2021_1923520
crossref_primary_10_3390_stats7010002
crossref_primary_10_1007_s10618_023_00924_w
crossref_primary_10_1214_23_AOS2276
crossref_primary_10_3390_stats4040063
crossref_primary_10_1002_sam_11710
crossref_primary_10_1002_sim_9448
crossref_primary_10_1056_NEJMra2212850
crossref_primary_10_1002_cli2_61
crossref_primary_10_1016_j_engappai_2025_110363
crossref_primary_10_1214_24_STS937
crossref_primary_10_1016_j_energy_2022_123497
crossref_primary_10_1145_3588711
crossref_primary_10_1080_01621459_2022_2089573
crossref_primary_10_3390_make3030027
crossref_primary_10_1111_rssb_12542
crossref_primary_10_1007_s10994_024_06721_w
crossref_primary_10_1093_jrsssb_qkad138
crossref_primary_10_1093_jrsssb_qkae108
crossref_primary_10_1093_jrsssb_qkae103
crossref_primary_10_1016_j_jmva_2023_105226
crossref_primary_10_1016_j_watres_2024_122079
crossref_primary_10_1137_23M1546129
crossref_primary_10_1007_s11518_023_5560_1
crossref_primary_10_1109_TGRS_2021_3139930
crossref_primary_10_1214_25_AOS2510
crossref_primary_10_1111_1540_6229_12416
crossref_primary_10_1080_00031305_2023_2283199
crossref_primary_10_1109_TII_2025_3529920
crossref_primary_10_1080_01621459_2023_2177165
crossref_primary_10_1016_j_neucom_2025_130542
crossref_primary_10_1088_3050_2454_adcef2
crossref_primary_10_1080_01621459_2021_1938581
crossref_primary_10_1016_j_rse_2025_114758
crossref_primary_10_1016_j_patcog_2021_108496
crossref_primary_10_1080_01621459_2023_2199814
crossref_primary_10_1093_jrsssb_qkae091
crossref_primary_10_1093_imaiai_iaaf013
crossref_primary_10_1109_TGRS_2022_3208454
crossref_primary_10_1007_s10994_022_06233_5
crossref_primary_10_1080_24694452_2025_2516091
crossref_primary_10_3390_app15147925
crossref_primary_10_3390_rs17162753
crossref_primary_10_1016_j_eswa_2023_122322
crossref_primary_10_1007_s00146_022_01521_z
crossref_primary_10_1002_sam_70033
crossref_primary_10_1145_3757892_3757905
crossref_primary_10_1016_j_patcog_2025_112347
crossref_primary_10_1016_j_neucom_2019_07_113
crossref_primary_10_3389_frai_2023_1220476
crossref_primary_10_1007_s40747_023_01044_0
crossref_primary_10_1080_00401706_2025_2483531
crossref_primary_10_1007_s10618_022_00901_9
crossref_primary_10_1002_sta4_522
crossref_primary_10_1214_25_AOS2495
crossref_primary_10_1214_25_AOS2493
crossref_primary_10_1109_ACCESS_2018_2870052
crossref_primary_10_1007_s10940_020_09488_0
crossref_primary_10_1214_21_STS842
crossref_primary_10_1080_10618600_2025_2520584
crossref_primary_10_1109_TKDE_2023_3270581
crossref_primary_10_1093_biomtc_ujaf063
crossref_primary_10_1109_ACCESS_2024_3402446
crossref_primary_10_1002_alz_70539
crossref_primary_10_1080_00330124_2020_1730195
crossref_primary_10_1111_biom_13392
crossref_primary_10_1080_00207721_2025_2490618
crossref_primary_10_1109_TNNLS_2024_3356512
crossref_primary_10_1016_j_neucom_2020_07_074
crossref_primary_10_1016_j_jprocont_2023_103036
crossref_primary_10_1145_3736575
crossref_primary_10_1080_01621459_2023_2298037
crossref_primary_10_1111_exsy_13118
crossref_primary_10_1080_01621459_2021_1920957
crossref_primary_10_1080_03610926_2021_1887238
crossref_primary_10_1016_j_ijar_2021_09_001
crossref_primary_10_1016_j_artmed_2023_102616
crossref_primary_10_1007_s10182_023_00477_9
crossref_primary_10_1093_biomet_asz046
crossref_primary_10_1145_3709671
crossref_primary_10_1214_22_AOS2250
crossref_primary_10_1007_s10639_022_11221_2
crossref_primary_10_1073_pnas_2204569119
crossref_primary_10_1080_03610918_2022_2093370
crossref_primary_10_1145_3635160
crossref_primary_10_1016_j_jcp_2025_114012
crossref_primary_10_1007_s41060_025_00862_4
crossref_primary_10_1002_sta4_70052
crossref_primary_10_1093_jrsssb_qkac004
crossref_primary_10_1016_j_artmed_2023_102741
crossref_primary_10_1007_s10618_022_00840_5
crossref_primary_10_1016_j_engappai_2024_109724
crossref_primary_10_1038_s41524_024_01254_1
crossref_primary_10_1214_24_STS973
crossref_primary_10_3982_ECTA20720
crossref_primary_10_1002_aaai_12173
crossref_primary_10_1016_j_rinam_2025_100589
crossref_primary_10_1007_s10994_021_06030_6
crossref_primary_10_1080_03610926_2022_2032171
Cites_doi 10.1007/s10472-013-9366-6
10.1214/17-AOS1564
10.1214/15-AOS1371
10.1111/j.1467-9868.2005.00503.x
10.1007/3-540-36755-1_29
10.1214/08-AOS620
10.3150/12-BEJSP11
10.1080/01621459.1980.10477567
10.1023/A:1010933404324
10.1214/13-AOS1175E
10.1080/01621459.2015.1108848
10.1111/j.1467-9868.2009.00718.x
10.3982/ECTA9626
10.1214/12-AOS1077
10.1111/j.1467-9868.2010.00740.x
10.1111/rssb.12026
10.1214/07-EJS008
10.1214/14-AOS1221
10.1007/s10994-013-5355-6
10.1093/biomet/asu038
10.1007/s11222-009-9167-2
10.1080/01621459.2012.751873
10.1111/sjos.12261
10.1111/rssb.12021
10.1214/08-AOS622
10.1111/j.2517-6161.1996.tb02080.x
ContentType Journal Article
Copyright 2018 American Statistical Association 2018
Copyright © 2018 American Statistical Association
2018 American Statistical Association
Copyright_xml – notice: 2018 American Statistical Association 2018
– notice: Copyright © 2018 American Statistical Association
– notice: 2018 American Statistical Association
DBID AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2017.1307116
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
International Bibliography of the Social Sciences (IBSS)


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 1111
ExternalDocumentID 10_1080_01621459_2017_1307116
45029733
1307116
Genre Article
GrantInformation_xml – fundername: Division of Mathematical Sciences
  grantid: 1553884
  funderid: 10.13039/100000121
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABRLO
ABTAI
ABUFD
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADXHL
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
ZUP
~S~
ADYSH
AFSUE
ALIPV
AMPGV
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
ID FETCH-LOGICAL-c492t-a09c96f0c7af0b84af1c145fa4ea4efb977ff0267b5893b16e6fb54be594717b3
IEDL.DBID TFW
ISICitedReferencesCount 480
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446710500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
1537-274X
IngestDate Fri Oct 03 00:04:45 EDT 2025
Sun Nov 09 13:42:07 EST 2025
Sat Nov 29 03:56:42 EST 2025
Tue Nov 18 21:32:28 EST 2025
Thu May 29 09:01:31 EDT 2025
Mon Oct 20 23:50:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 523
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-a09c96f0c7af0b84af1c145fa4ea4efb977ff0267b5893b16e6fb54be594717b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2158-8304
0000-0003-3104-9387
PQID 2770816776
PQPubID 41715
PageCount 18
ParticipantIDs informaworld_taylorfrancis_310_1080_01621459_2017_1307116
proquest_miscellaneous_2221014051
crossref_citationtrail_10_1080_01621459_2017_1307116
crossref_primary_10_1080_01621459_2017_1307116
proquest_journals_2770816776
jstor_primary_45029733
PublicationCentury 2000
PublicationDate 2018-07-03
PublicationDateYYYYMMDD 2018-07-03
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-03
  day: 03
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group,LLC
– name: Taylor & Francis Ltd
References cit0011
cit0033
cit0012
cit0034
cit0031
cit0032
Javanmard A. (cit0013) 2014; 15
Tibshirani R. (cit0026) 1996
Vovk V. (cit0030) 2005
cit0019
cit0017
cit0018
cit0015
cit0016
cit0014
cit0022
cit0001
Thakurta A. G. (cit0023) 2013
cit0020
cit0021
Tian X. (cit0024) 2017; 44
Burnaev E. (cit0008) 2014; 25
Efroymson M. A. (cit0010) 1960; 1
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0005
cit0027
cit0002
cit0003
cit0025
References_xml – ident: cit0016
  doi: 10.1007/s10472-013-9366-6
– ident: cit0025
  doi: 10.1214/17-AOS1564
– ident: cit0011
– ident: cit0014
  doi: 10.1214/15-AOS1371
– volume-title: Algorithmic Learning in a Random World
  year: 2005
  ident: cit0030
– ident: cit0034
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: cit0020
  doi: 10.1007/3-540-36755-1_29
– ident: cit0003
  doi: 10.1214/08-AOS620
– ident: cit0005
  doi: 10.3150/12-BEJSP11
– ident: cit0009
  doi: 10.1080/01621459.1980.10477567
– ident: cit0004
  doi: 10.1023/A:1010933404324
– ident: cit0032
  doi: 10.1214/13-AOS1175E
– ident: cit0027
  doi: 10.1080/01621459.2015.1108848
– ident: cit0021
  doi: 10.1111/j.1467-9868.2009.00718.x
– ident: cit0006
– volume: 1
  start-page: 191
  year: 1960
  ident: cit0010
  publication-title: Mathematical Methods for Digital Computers
– ident: cit0001
  doi: 10.3982/ECTA9626
– ident: cit0002
  doi: 10.1214/12-AOS1077
– volume: 15
  start-page: 2869
  year: 2014
  ident: cit0013
  publication-title: Journal of Machine Learning Research
– ident: cit0019
  doi: 10.1111/j.1467-9868.2010.00740.x
– ident: cit0033
  doi: 10.1111/rssb.12026
– volume: 25
  start-page: 605
  year: 2014
  ident: cit0008
  publication-title: Proceedings of the Annual Conference on Learning Theory
– ident: cit0007
  doi: 10.1214/07-EJS008
– ident: cit0028
  doi: 10.1214/14-AOS1221
– ident: cit0029
  doi: 10.1007/s10994-013-5355-6
– ident: cit0015
  doi: 10.1093/biomet/asu038
– ident: cit0012
  doi: 10.1007/s11222-009-9167-2
– ident: cit0017
  doi: 10.1080/01621459.2012.751873
– volume: 44
  start-page: 480
  year: 2017
  ident: cit0024
  publication-title: Scandinavian Journal of Statistics
  doi: 10.1111/sjos.12261
– ident: cit0022
– ident: cit0018
  doi: 10.1111/rssb.12021
– start-page: 819
  year: 2013
  ident: cit0023
  publication-title: Conference on Learning Theory
– ident: cit0031
  doi: 10.1214/08-AOS622
– start-page: 267
  year: 1996
  ident: cit0026
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1996.tb02080.x
SSID ssj0000788
Score 2.7064023
Snippet We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the...
We develop a general framework for distribution-free predictive inference in regression, using conformai inference. The proposed methodology allows for the...
SourceID proquest
crossref
jstor
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1094
SubjectTerms Computational efficiency
computer software
Computing time
Distribution-free
Empirical analysis
equations
heteroskedasticity
Inference
Intervals
Model misspecification
prediction
Prediction band
Predictions
Property
Regression
Regression analysis
Reproducibility
Statistical analysis
Statistical methods
Statistics
Theory and Methods
Variable importance
Variants
Title Distribution-Free Predictive Inference for Regression
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1307116
https://www.jstor.org/stable/45029733
https://www.proquest.com/docview/2770816776
https://www.proquest.com/docview/2221014051
Volume 113
WOSCitedRecordID wos000446710500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOzi93A6pYLXaj_SpjmKOvQyhkzcLSRp4kU66Tb_ft9L0-kQ2UGhl9K-NnnJ-2jz8vsRcilNZCGSl2EJ2XpIczSpIuNhXNKokJpZRrUjm2CjUTGd8rGvJpz7skr8hrYNUITz1WjcUs3birhryFIQXxu3mcQM6YxZHCPoNoR-NM3J8OXLFzPHPIkSIYq0e3h-e8padFrDLm3rFX_4bBeIhrv_0IU9suOz0OCmmTb7ZMtUB6SLiWeD23xIsjtE1PVkWOGwNiYY17iog-4xeGy3CQbQ9ODJvDbVtNUReR7eT24fQk-xEGrKk0UoI655biPNpI1UQaWNNbTLSmrgsAqyQ2uRpEplkNioODe5VRlVJuMQ1ZhKe6RTzSpzTAIWKQQTM0ZCzzTknUVUcmNTKxOpcpn0CW1VK7THH0cajDcRtzClXikClSK8UvrkaiX23gBwbBLg38dNLNyfD9vQlIh0g2zPDfLqTTRz5F5pnwzaURfeyOciYQxpSxgDuYvVZTBPXHORlZkt4Z4kQTZkcH0nf2jXKenCaeHKhNMB6SzqpTkj2_oDZkV97qb8J2OK-Sg
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58gV58L66uWsFrtY-0aY-iLoq6iKzoLSRp4kW6Uld_vzNpu7qIeFDorZ02mSQz02Tm-wAOpQksevLCLzBa91lKSypLcj8sWJBJzS1n2pFN8MEge3zMv9bCUFol_UPbGijC2Wpa3LQZ3abEHWOYQgDbVGcScuIz5mGYzsJ8gr6W8POH_YdPa8wd9ySJ-CTTVvH89Jop_zSFXtpmLH6z2s4V9Vf-oxOrsNwEot5JPXPWYMaU67BEsWcN3bwByRmB6jZ8WH6_Msa7rehchyykd9lWCnrYdu_OPNUJteUm3PfPh6cXfsOy4GuWR2NfBrnOUxtoLm2gMiZtqLFdVjKDl1UYIFpLPFUqwdhGhalJrUqYMkmOjo2ruANz5ag0W-DxQBGemDESe6Yx9MyCIjc2tjKSKpVRF1irW6EbCHJiwngWYYtU2ihFkFJEo5QuHE3EXmoMjt8E8q8DJ8Zu88PWTCUi_kW240Z58iWWOH6vuAu9dthFs85fRcQ5MZdwjnIHk9u4QunYRZZm9IbPRBERIqP12_5Du_Zh8WJ4cy2uLwdXO7CEtzKXNRz3YG5cvZldWNDvOEOqPTf_PwA7Uf1S
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58IV58L67PCl6rfaRNexS1KMqyiKK3kKSJF6myrv5-Z9J0VUQ8KPSWTptMZibTZvJ9AAfSRBZX8jqsMVsPWU4uVWRlGNcsKqTmljPtyCb4YFDc35dDX0344ssq6RvatkARLlaTcz_XtquIO8IshfC16ZhJzInOmMdxPg2zmDrnZOQ31d1HMOaOepJEQpLpDvH89Jgvy9MX8NKuYPFb0HYrUbX0D2NYhkWfhgbHrd2swJRpVmGBMs8WuHkNslOC1PVsWGE1MiYYjmhXh-JjcNGdEwyw68G1eWjLaZt1uK3Obk7OQ8-xEGpWJuNQRqUucxtpLm2kCiZtrLFfVjKDl1WYHlpLLFUqw8xGxbnJrcqYMlmJyxpXaQ9mmqfGbEDAI0VoYsZIHJnGxLOI6tLY1MpEqlwmfWCdaoX2AOTEg_Eo4g6n1CtFkFKEV0ofDidizy0Cx28C5ed5E2P368O2PCUi_UW25yZ58iaWOXavtA_b3awL7-UvIuGceEs4R7n9STP6J226yMY8veI9SUJ0yBj7Nv_Qrz2YH55W4upicLkFC9hSuJLhdBtmxqNXswNz-g0NZLTrrP8dM8D8BA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution-Free+Predictive+Inference+for+Regression&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Lei%2C+Jing&rft.au=Max+G%E2%80%99Sell&rft.au=Rinaldo%2C+Alessandro&rft.au=Tibshirani%2C+Ryan+J&rft.date=2018-07-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=113&rft.issue=523&rft.spage=1094&rft.epage=1111&rft_id=info:doi/10.1080%2F01621459.2017.1307116&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon