Distribution-Free Predictive Inference for Regression
We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preser...
Saved in:
| Published in: | Journal of the American Statistical Association Vol. 113; no. 523; pp. 1094 - 1111 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Alexandria
Taylor & Francis
03.07.2018
Taylor & Francis Group,LLC Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0162-1459, 1537-274X, 1537-274X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformal framework: full conformal inference and split conformal inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformal inference, which has essentially the same computational efficiency as split conformal inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, to adapt to heteroscedasticity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this article is an R package
conformalInference
that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package. |
|---|---|
| AbstractList | We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformal framework: full conformal inference and split conformal inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformal inference, which has essentially the same computational efficiency as split conformal inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, to adapt to heteroscedasticity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this article is an R package conformalInference that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package. We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformal framework: full conformal inference and split conformal inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformal inference, which has essentially the same computational efficiency as split conformal inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, to adapt to heteroscedasticity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this article is an R package conformalInference that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package. We develop a general framework for distribution-free predictive inference in regression, using conformai inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformai framework: full conformai inference and split conformai inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformai inference, which has essentially the same computational efficiency as split conformai inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, to adapt to heteroscedasticity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this article is an R package conformal Inference that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package. |
| Author | G'Sell, Max Wasserman, Larry Tibshirani, Ryan J. Lei, Jing Rinaldo, Alessandro |
| Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0003-3104-9387 surname: Lei fullname: Lei, Jing email: jinglei@andrew.cmu.edu organization: Department of Statistics, Carnegie Mellon University – sequence: 2 givenname: Max surname: G'Sell fullname: G'Sell, Max organization: Department of Statistics, Carnegie Mellon University – sequence: 3 givenname: Alessandro surname: Rinaldo fullname: Rinaldo, Alessandro organization: Department of Statistics, Carnegie Mellon University – sequence: 4 givenname: Ryan J. orcidid: 0000-0002-2158-8304 surname: Tibshirani fullname: Tibshirani, Ryan J. organization: Department of Statistics, Carnegie Mellon University – sequence: 5 givenname: Larry surname: Wasserman fullname: Wasserman, Larry organization: Department of Statistics, Carnegie Mellon University |
| BookMark | eNqFkEFLHTEQx0Ox4FP7EYQHXnrZ10w22ezixWK1FQSLWPAWsnEieexL7CSv4rdvlmd78NCGQA7z-2dmfgdsL6aIjB0DXwHv-ScOnQCphpXgoFfQcg3QvWMLUK1uhJb3e2wxM80M7bODnNe8Ht33C6a-hFwojNsSUmwuCXH5nfAhuBJ-4fIqeiSMDpc-0fIWHwlzruARe-_tlPHD63vIflxe3J1_a65vvl6df75unBxEaSwf3NB57rT1fOyl9eDqDN5KrNePg9bec9HpUfVDO0KHnR-VHFENUoMe20P2cffvE6WfW8zFbEJ2OE02YtpmI4QADpIrqOjJG3SdthTrdEZozXvotO4qdbqjHKWcCb1xodh590I2TAa4mZWaP0rNrNS8Kq1p9Sb9RGFj6eW_ueNdbp1Lor8hqbgYdNvW-tmuHmL1vLHPiaYHU-zLlMiTjS5k0_67xW9IDpeV |
| CitedBy_id | crossref_primary_10_1016_j_inffus_2024_102472 crossref_primary_10_1016_j_ress_2025_111177 crossref_primary_10_1186_s13059_023_02920_1 crossref_primary_10_1080_10618600_2025_2554671 crossref_primary_10_1109_TNNLS_2022_3185742 crossref_primary_10_1038_s41592_024_02184_y crossref_primary_10_1093_jrsssb_qkaf022 crossref_primary_10_1371_journal_pcbi_1013133 crossref_primary_10_1007_s40304_023_00360_8 crossref_primary_10_1002_for_3185 crossref_primary_10_1016_j_ijar_2021_07_013 crossref_primary_10_1214_19_STS748 crossref_primary_10_1029_2024JH000349 crossref_primary_10_1038_s44387_025_00018_6 crossref_primary_10_1093_jssam_smae032 crossref_primary_10_1007_s10618_023_00967_z crossref_primary_10_1016_j_csda_2022_107597 crossref_primary_10_3390_en17174348 crossref_primary_10_1016_j_spl_2024_110350 crossref_primary_10_1080_08839514_2024_2430867 crossref_primary_10_1016_j_future_2024_04_044 crossref_primary_10_1093_jrsssb_qkaf016 crossref_primary_10_3390_jne3040014 crossref_primary_10_1016_j_jmva_2021_104879 crossref_primary_10_1109_MSP_2022_3155906 crossref_primary_10_1016_j_rse_2021_112408 crossref_primary_10_1073_pnas_2214889120 crossref_primary_10_1109_TASE_2023_3297984 crossref_primary_10_1007_s11222_021_10057_z crossref_primary_10_1073_pnas_2322376121 crossref_primary_10_1109_ACCESS_2022_3216617 crossref_primary_10_1080_01621459_2021_2003200 crossref_primary_10_1007_s10994_025_06812_2 crossref_primary_10_1007_s11749_023_00884_9 crossref_primary_10_1111_biom_13077 crossref_primary_10_1109_TITS_2024_3365721 crossref_primary_10_1016_j_compchemeng_2025_109136 crossref_primary_10_1088_2632_2153_aca7b1 crossref_primary_10_1016_j_geoderma_2022_115953 crossref_primary_10_1080_01621459_2019_1672556 crossref_primary_10_1109_TCAD_2024_3438072 crossref_primary_10_1073_pnas_2111453118 crossref_primary_10_1007_s42979_025_03706_x crossref_primary_10_1007_s11229_022_03485_5 crossref_primary_10_1016_j_cageo_2024_105833 crossref_primary_10_1038_s41596_019_0289_5 crossref_primary_10_14778_3742728_3742755 crossref_primary_10_1080_07350015_2020_1813589 crossref_primary_10_1007_s00362_024_01631_4 crossref_primary_10_1016_j_ijmedinf_2025_105957 crossref_primary_10_1080_01621459_2021_1928514 crossref_primary_10_1016_j_epsr_2024_110541 crossref_primary_10_1002_cem_3457 crossref_primary_10_1080_00031305_2022_2107568 crossref_primary_10_3390_en15197193 crossref_primary_10_1007_s11517_024_03029_8 crossref_primary_10_1080_02331888_2024_2426043 crossref_primary_10_1088_2632_2153_acb9d5 crossref_primary_10_1190_geo2020_0811_1 crossref_primary_10_1080_01621459_2024_2366030 crossref_primary_10_1080_09599916_2020_1861066 crossref_primary_10_1016_j_neunet_2020_03_022 crossref_primary_10_1177_0962280219829885 crossref_primary_10_1017_S0022109023000133 crossref_primary_10_1016_j_eja_2022_126589 crossref_primary_10_1146_annurev_statistics_033021_120649 crossref_primary_10_1103_PhysRevE_111_L033301 crossref_primary_10_1109_TKDE_2023_3312261 crossref_primary_10_1016_j_neuroimage_2022_119534 crossref_primary_10_3389_fdata_2021_704182 crossref_primary_10_1007_s00439_021_02387_9 crossref_primary_10_1080_01621459_2021_1942012 crossref_primary_10_1093_infdis_jiaf219 crossref_primary_10_1007_s13198_025_02786_5 crossref_primary_10_1016_j_patcog_2021_108507 crossref_primary_10_1080_01621459_2024_2344700 crossref_primary_10_1080_01621459_2025_2506198 crossref_primary_10_1214_20_AOAS1424 crossref_primary_10_1007_s10994_024_06713_w crossref_primary_10_1073_pnas_2107794118 crossref_primary_10_1080_19466315_2020_1797867 crossref_primary_10_1109_TIT_2025_3588335 crossref_primary_10_1016_j_arbres_2023_07_018 crossref_primary_10_14778_3749646_3749721 crossref_primary_10_3390_e24050687 crossref_primary_10_1093_biomet_asac040 crossref_primary_10_3390_electronics14030571 crossref_primary_10_1002_cite_70000 crossref_primary_10_1007_s10994_024_06627_7 crossref_primary_10_1016_j_engappai_2024_109436 crossref_primary_10_1111_insr_12448 crossref_primary_10_1016_j_spl_2022_109395 crossref_primary_10_1007_s11222_024_10398_5 crossref_primary_10_1214_18_AOS1784 crossref_primary_10_3233_IDT_230065 crossref_primary_10_1093_jrsssb_qkae009 crossref_primary_10_1016_j_jeconom_2025_106061 crossref_primary_10_1093_jrsssb_qkae120 crossref_primary_10_1002_gepi_70008 crossref_primary_10_1007_s41237_025_00266_5 crossref_primary_10_1021_acs_jcim_5c01037 crossref_primary_10_3390_fire5050152 crossref_primary_10_1016_j_asoc_2020_106807 crossref_primary_10_1080_01605682_2020_1865846 crossref_primary_10_1016_j_jmva_2025_105494 crossref_primary_10_12677_sa_2025_149270 crossref_primary_10_1109_TNSE_2023_3335626 crossref_primary_10_1109_LRA_2023_3292071 crossref_primary_10_1093_jrsssb_qkae117 crossref_primary_10_1093_jrsssb_qkad069 crossref_primary_10_1038_s41598_023_33981_8 crossref_primary_10_1080_00031305_2019_1585288 crossref_primary_10_1080_01621459_2022_2102503 crossref_primary_10_1080_01621459_2022_2147531 crossref_primary_10_1214_19_STS762 crossref_primary_10_1016_j_cmpb_2021_106399 crossref_primary_10_1080_01621459_2023_2282644 crossref_primary_10_1109_ACCESS_2024_3434629 crossref_primary_10_5194_tc_19_2431_2025 crossref_primary_10_1016_j_eswa_2021_115165 crossref_primary_10_3934_math_2025236 crossref_primary_10_1145_3736766 crossref_primary_10_1038_s41598_021_98879_9 crossref_primary_10_1093_sysbio_syad074 crossref_primary_10_1007_s43681_023_00400_7 crossref_primary_10_1002_cjs_11542 crossref_primary_10_1016_j_rse_2023_113682 crossref_primary_10_1093_biomet_asae010 crossref_primary_10_1109_TMC_2022_3147191 crossref_primary_10_1155_2022_7495651 crossref_primary_10_1016_j_cmpb_2022_106905 crossref_primary_10_1109_JSTSP_2024_3431996 crossref_primary_10_1007_s11749_022_00826_x crossref_primary_10_1007_s10472_023_09847_0 crossref_primary_10_1109_ACCESS_2021_3116481 crossref_primary_10_1016_j_inffus_2021_11_017 crossref_primary_10_1002_sta4_261 crossref_primary_10_1016_j_datak_2024_102402 crossref_primary_10_1016_j_ress_2022_108720 crossref_primary_10_1016_j_ins_2024_121369 crossref_primary_10_2139_ssrn_3758451 crossref_primary_10_1080_01621459_2020_1844718 crossref_primary_10_1080_01621459_2024_2356886 crossref_primary_10_1109_TQE_2023_3333224 crossref_primary_10_1007_s11023_024_09691_z crossref_primary_10_1080_01621459_2020_1762618 crossref_primary_10_1109_TKDE_2024_3420180 crossref_primary_10_1007_s44163_025_00377_8 crossref_primary_10_1371_journal_pcbi_1013098 crossref_primary_10_1007_s00158_024_03906_8 crossref_primary_10_1016_j_jbi_2024_104750 crossref_primary_10_1146_annurev_criminol_051520_012342 crossref_primary_10_1109_JIOT_2023_3287678 crossref_primary_10_1038_s41598_025_85323_5 crossref_primary_10_1080_17538947_2024_2376274 crossref_primary_10_15252_msb_202110724 crossref_primary_10_1109_ACCESS_2024_3387858 crossref_primary_10_1145_3748818 crossref_primary_10_1109_TAI_2025_3550913 crossref_primary_10_1214_22_AOS2198 crossref_primary_10_1111_rssb_12445 crossref_primary_10_3390_axioms13030137 crossref_primary_10_1109_TPAMI_2024_3393364 crossref_primary_10_1080_01621459_2022_2060112 crossref_primary_10_1016_j_ailsci_2025_100137 crossref_primary_10_1002_bimj_202400042 crossref_primary_10_1016_j_jbi_2020_103655 crossref_primary_10_1007_s42979_024_02810_8 crossref_primary_10_1111_deci_12642 crossref_primary_10_1162_tacl_a_00715 crossref_primary_10_1111_insr_12412 crossref_primary_10_1111_insr_12415 crossref_primary_10_1080_01621459_2020_1762614 crossref_primary_10_1007_s13042_024_02421_y crossref_primary_10_1016_j_srs_2024_100180 crossref_primary_10_1214_21_AOAS1459 crossref_primary_10_1002_cjs_11654 crossref_primary_10_1016_j_inffus_2023_101805 crossref_primary_10_1146_annurev_statistics_040120_030919 crossref_primary_10_1111_sjos_12766 crossref_primary_10_1214_20_AOS1965 crossref_primary_10_1109_TPAMI_2023_3343031 crossref_primary_10_1146_annurev_statistics_112723_034225 crossref_primary_10_1109_LRA_2019_2891500 crossref_primary_10_1002_sta4_633 crossref_primary_10_1093_bioinformatics_btaf387 crossref_primary_10_1007_s00362_020_01193_1 crossref_primary_10_1080_10618600_2021_1923520 crossref_primary_10_3390_stats7010002 crossref_primary_10_1007_s10618_023_00924_w crossref_primary_10_1214_23_AOS2276 crossref_primary_10_3390_stats4040063 crossref_primary_10_1002_sam_11710 crossref_primary_10_1002_sim_9448 crossref_primary_10_1056_NEJMra2212850 crossref_primary_10_1002_cli2_61 crossref_primary_10_1016_j_engappai_2025_110363 crossref_primary_10_1214_24_STS937 crossref_primary_10_1016_j_energy_2022_123497 crossref_primary_10_1145_3588711 crossref_primary_10_1080_01621459_2022_2089573 crossref_primary_10_3390_make3030027 crossref_primary_10_1111_rssb_12542 crossref_primary_10_1007_s10994_024_06721_w crossref_primary_10_1093_jrsssb_qkad138 crossref_primary_10_1093_jrsssb_qkae108 crossref_primary_10_1093_jrsssb_qkae103 crossref_primary_10_1016_j_jmva_2023_105226 crossref_primary_10_1016_j_watres_2024_122079 crossref_primary_10_1137_23M1546129 crossref_primary_10_1007_s11518_023_5560_1 crossref_primary_10_1109_TGRS_2021_3139930 crossref_primary_10_1214_25_AOS2510 crossref_primary_10_1111_1540_6229_12416 crossref_primary_10_1080_00031305_2023_2283199 crossref_primary_10_1109_TII_2025_3529920 crossref_primary_10_1080_01621459_2023_2177165 crossref_primary_10_1016_j_neucom_2025_130542 crossref_primary_10_1088_3050_2454_adcef2 crossref_primary_10_1080_01621459_2021_1938581 crossref_primary_10_1016_j_rse_2025_114758 crossref_primary_10_1016_j_patcog_2021_108496 crossref_primary_10_1080_01621459_2023_2199814 crossref_primary_10_1093_jrsssb_qkae091 crossref_primary_10_1093_imaiai_iaaf013 crossref_primary_10_1109_TGRS_2022_3208454 crossref_primary_10_1007_s10994_022_06233_5 crossref_primary_10_1080_24694452_2025_2516091 crossref_primary_10_3390_app15147925 crossref_primary_10_3390_rs17162753 crossref_primary_10_1016_j_eswa_2023_122322 crossref_primary_10_1007_s00146_022_01521_z crossref_primary_10_1002_sam_70033 crossref_primary_10_1145_3757892_3757905 crossref_primary_10_1016_j_patcog_2025_112347 crossref_primary_10_1016_j_neucom_2019_07_113 crossref_primary_10_3389_frai_2023_1220476 crossref_primary_10_1007_s40747_023_01044_0 crossref_primary_10_1080_00401706_2025_2483531 crossref_primary_10_1007_s10618_022_00901_9 crossref_primary_10_1002_sta4_522 crossref_primary_10_1214_25_AOS2495 crossref_primary_10_1214_25_AOS2493 crossref_primary_10_1109_ACCESS_2018_2870052 crossref_primary_10_1007_s10940_020_09488_0 crossref_primary_10_1214_21_STS842 crossref_primary_10_1080_10618600_2025_2520584 crossref_primary_10_1109_TKDE_2023_3270581 crossref_primary_10_1093_biomtc_ujaf063 crossref_primary_10_1109_ACCESS_2024_3402446 crossref_primary_10_1002_alz_70539 crossref_primary_10_1080_00330124_2020_1730195 crossref_primary_10_1111_biom_13392 crossref_primary_10_1080_00207721_2025_2490618 crossref_primary_10_1109_TNNLS_2024_3356512 crossref_primary_10_1016_j_neucom_2020_07_074 crossref_primary_10_1016_j_jprocont_2023_103036 crossref_primary_10_1145_3736575 crossref_primary_10_1080_01621459_2023_2298037 crossref_primary_10_1111_exsy_13118 crossref_primary_10_1080_01621459_2021_1920957 crossref_primary_10_1080_03610926_2021_1887238 crossref_primary_10_1016_j_ijar_2021_09_001 crossref_primary_10_1016_j_artmed_2023_102616 crossref_primary_10_1007_s10182_023_00477_9 crossref_primary_10_1093_biomet_asz046 crossref_primary_10_1145_3709671 crossref_primary_10_1214_22_AOS2250 crossref_primary_10_1007_s10639_022_11221_2 crossref_primary_10_1073_pnas_2204569119 crossref_primary_10_1080_03610918_2022_2093370 crossref_primary_10_1145_3635160 crossref_primary_10_1016_j_jcp_2025_114012 crossref_primary_10_1007_s41060_025_00862_4 crossref_primary_10_1002_sta4_70052 crossref_primary_10_1093_jrsssb_qkac004 crossref_primary_10_1016_j_artmed_2023_102741 crossref_primary_10_1007_s10618_022_00840_5 crossref_primary_10_1016_j_engappai_2024_109724 crossref_primary_10_1038_s41524_024_01254_1 crossref_primary_10_1214_24_STS973 crossref_primary_10_3982_ECTA20720 crossref_primary_10_1002_aaai_12173 crossref_primary_10_1016_j_rinam_2025_100589 crossref_primary_10_1007_s10994_021_06030_6 crossref_primary_10_1080_03610926_2022_2032171 |
| Cites_doi | 10.1007/s10472-013-9366-6 10.1214/17-AOS1564 10.1214/15-AOS1371 10.1111/j.1467-9868.2005.00503.x 10.1007/3-540-36755-1_29 10.1214/08-AOS620 10.3150/12-BEJSP11 10.1080/01621459.1980.10477567 10.1023/A:1010933404324 10.1214/13-AOS1175E 10.1080/01621459.2015.1108848 10.1111/j.1467-9868.2009.00718.x 10.3982/ECTA9626 10.1214/12-AOS1077 10.1111/j.1467-9868.2010.00740.x 10.1111/rssb.12026 10.1214/07-EJS008 10.1214/14-AOS1221 10.1007/s10994-013-5355-6 10.1093/biomet/asu038 10.1007/s11222-009-9167-2 10.1080/01621459.2012.751873 10.1111/sjos.12261 10.1111/rssb.12021 10.1214/08-AOS622 10.1111/j.2517-6161.1996.tb02080.x |
| ContentType | Journal Article |
| Copyright | 2018 American Statistical Association 2018 Copyright © 2018 American Statistical Association 2018 American Statistical Association |
| Copyright_xml | – notice: 2018 American Statistical Association 2018 – notice: Copyright © 2018 American Statistical Association – notice: 2018 American Statistical Association |
| DBID | AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
| DOI | 10.1080/01621459.2017.1307116 |
| DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA International Bibliography of the Social Sciences (IBSS) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 1111 |
| ExternalDocumentID | 10_1080_01621459_2017_1307116 45029733 1307116 |
| Genre | Article |
| GrantInformation_xml | – fundername: Division of Mathematical Sciences grantid: 1553884 funderid: 10.13039/100000121 |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABRLO ABTAI ABUFD ABXSQ ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADXHL AEISY AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFRVT AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FJW GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IPNFZ IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ZUP ~S~ ADYSH AFSUE ALIPV AMPGV AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
| ID | FETCH-LOGICAL-c492t-a09c96f0c7af0b84af1c145fa4ea4efb977ff0267b5893b16e6fb54be594717b3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 480 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446710500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-1459 1537-274X |
| IngestDate | Fri Oct 03 00:04:45 EDT 2025 Sun Nov 09 13:42:07 EST 2025 Sat Nov 29 03:56:42 EST 2025 Tue Nov 18 21:32:28 EST 2025 Thu May 29 09:01:31 EDT 2025 Mon Oct 20 23:50:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 523 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-a09c96f0c7af0b84af1c145fa4ea4efb977ff0267b5893b16e6fb54be594717b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2158-8304 0000-0003-3104-9387 |
| PQID | 2770816776 |
| PQPubID | 41715 |
| PageCount | 18 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_01621459_2017_1307116 proquest_miscellaneous_2221014051 crossref_citationtrail_10_1080_01621459_2017_1307116 crossref_primary_10_1080_01621459_2017_1307116 proquest_journals_2770816776 jstor_primary_45029733 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-03 |
| PublicationDateYYYYMMDD | 2018-07-03 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationYear | 2018 |
| Publisher | Taylor & Francis Taylor & Francis Group,LLC Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group,LLC – name: Taylor & Francis Ltd |
| References | cit0011 cit0033 cit0012 cit0034 cit0031 cit0032 Javanmard A. (cit0013) 2014; 15 Tibshirani R. (cit0026) 1996 Vovk V. (cit0030) 2005 cit0019 cit0017 cit0018 cit0015 cit0016 cit0014 cit0022 cit0001 Thakurta A. G. (cit0023) 2013 cit0020 cit0021 Tian X. (cit0024) 2017; 44 Burnaev E. (cit0008) 2014; 25 Efroymson M. A. (cit0010) 1960; 1 cit0009 cit0006 cit0028 cit0007 cit0029 cit0004 cit0005 cit0027 cit0002 cit0003 cit0025 |
| References_xml | – ident: cit0016 doi: 10.1007/s10472-013-9366-6 – ident: cit0025 doi: 10.1214/17-AOS1564 – ident: cit0011 – ident: cit0014 doi: 10.1214/15-AOS1371 – volume-title: Algorithmic Learning in a Random World year: 2005 ident: cit0030 – ident: cit0034 doi: 10.1111/j.1467-9868.2005.00503.x – ident: cit0020 doi: 10.1007/3-540-36755-1_29 – ident: cit0003 doi: 10.1214/08-AOS620 – ident: cit0005 doi: 10.3150/12-BEJSP11 – ident: cit0009 doi: 10.1080/01621459.1980.10477567 – ident: cit0004 doi: 10.1023/A:1010933404324 – ident: cit0032 doi: 10.1214/13-AOS1175E – ident: cit0027 doi: 10.1080/01621459.2015.1108848 – ident: cit0021 doi: 10.1111/j.1467-9868.2009.00718.x – ident: cit0006 – volume: 1 start-page: 191 year: 1960 ident: cit0010 publication-title: Mathematical Methods for Digital Computers – ident: cit0001 doi: 10.3982/ECTA9626 – ident: cit0002 doi: 10.1214/12-AOS1077 – volume: 15 start-page: 2869 year: 2014 ident: cit0013 publication-title: Journal of Machine Learning Research – ident: cit0019 doi: 10.1111/j.1467-9868.2010.00740.x – ident: cit0033 doi: 10.1111/rssb.12026 – volume: 25 start-page: 605 year: 2014 ident: cit0008 publication-title: Proceedings of the Annual Conference on Learning Theory – ident: cit0007 doi: 10.1214/07-EJS008 – ident: cit0028 doi: 10.1214/14-AOS1221 – ident: cit0029 doi: 10.1007/s10994-013-5355-6 – ident: cit0015 doi: 10.1093/biomet/asu038 – ident: cit0012 doi: 10.1007/s11222-009-9167-2 – ident: cit0017 doi: 10.1080/01621459.2012.751873 – volume: 44 start-page: 480 year: 2017 ident: cit0024 publication-title: Scandinavian Journal of Statistics doi: 10.1111/sjos.12261 – ident: cit0022 – ident: cit0018 doi: 10.1111/rssb.12021 – start-page: 819 year: 2013 ident: cit0023 publication-title: Conference on Learning Theory – ident: cit0031 doi: 10.1214/08-AOS622 – start-page: 267 year: 1996 ident: cit0026 publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1996.tb02080.x |
| SSID | ssj0000788 |
| Score | 2.7064023 |
| Snippet | We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the... We develop a general framework for distribution-free predictive inference in regression, using conformai inference. The proposed methodology allows for the... |
| SourceID | proquest crossref jstor informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1094 |
| SubjectTerms | Computational efficiency computer software Computing time Distribution-free Empirical analysis equations heteroskedasticity Inference Intervals Model misspecification prediction Prediction band Predictions Property Regression Regression analysis Reproducibility Statistical analysis Statistical methods Statistics Theory and Methods Variable importance Variants |
| Title | Distribution-Free Predictive Inference for Regression |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1307116 https://www.jstor.org/stable/45029733 https://www.proquest.com/docview/2770816776 https://www.proquest.com/docview/2221014051 |
| Volume | 113 |
| WOSCitedRecordID | wos000446710500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOzi93A6pYLXaj_SpjmKOvQyhkzcLSRp4kU66Tb_ft9L0-kQ2UGhl9K-NnnJ-2jz8vsRcilNZCGSl2EJ2XpIczSpIuNhXNKokJpZRrUjm2CjUTGd8rGvJpz7skr8hrYNUITz1WjcUs3birhryFIQXxu3mcQM6YxZHCPoNoR-NM3J8OXLFzPHPIkSIYq0e3h-e8padFrDLm3rFX_4bBeIhrv_0IU9suOz0OCmmTb7ZMtUB6SLiWeD23xIsjtE1PVkWOGwNiYY17iog-4xeGy3CQbQ9ODJvDbVtNUReR7eT24fQk-xEGrKk0UoI655biPNpI1UQaWNNbTLSmrgsAqyQ2uRpEplkNioODe5VRlVJuMQ1ZhKe6RTzSpzTAIWKQQTM0ZCzzTknUVUcmNTKxOpcpn0CW1VK7THH0cajDcRtzClXikClSK8UvrkaiX23gBwbBLg38dNLNyfD9vQlIh0g2zPDfLqTTRz5F5pnwzaURfeyOciYQxpSxgDuYvVZTBPXHORlZkt4Z4kQTZkcH0nf2jXKenCaeHKhNMB6SzqpTkj2_oDZkV97qb8J2OK-Sg |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58gV58L66uWsFrtY-0aY-iLoq6iKzoLSRp4kW6Uld_vzNpu7qIeFDorZ02mSQz02Tm-wAOpQksevLCLzBa91lKSypLcj8sWJBJzS1n2pFN8MEge3zMv9bCUFol_UPbGijC2Wpa3LQZ3abEHWOYQgDbVGcScuIz5mGYzsJ8gr6W8POH_YdPa8wd9ySJ-CTTVvH89Jop_zSFXtpmLH6z2s4V9Vf-oxOrsNwEot5JPXPWYMaU67BEsWcN3bwByRmB6jZ8WH6_Msa7rehchyykd9lWCnrYdu_OPNUJteUm3PfPh6cXfsOy4GuWR2NfBrnOUxtoLm2gMiZtqLFdVjKDl1UYIFpLPFUqwdhGhalJrUqYMkmOjo2ruANz5ag0W-DxQBGemDESe6Yx9MyCIjc2tjKSKpVRF1irW6EbCHJiwngWYYtU2ihFkFJEo5QuHE3EXmoMjt8E8q8DJ8Zu88PWTCUi_kW240Z58iWWOH6vuAu9dthFs85fRcQ5MZdwjnIHk9u4QunYRZZm9IbPRBERIqP12_5Du_Zh8WJ4cy2uLwdXO7CEtzKXNRz3YG5cvZldWNDvOEOqPTf_PwA7Uf1S |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58IV58L67PCl6rfaRNexS1KMqyiKK3kKSJF6myrv5-Z9J0VUQ8KPSWTptMZibTZvJ9AAfSRBZX8jqsMVsPWU4uVWRlGNcsKqTmljPtyCb4YFDc35dDX0344ssq6RvatkARLlaTcz_XtquIO8IshfC16ZhJzInOmMdxPg2zmDrnZOQ31d1HMOaOepJEQpLpDvH89Jgvy9MX8NKuYPFb0HYrUbX0D2NYhkWfhgbHrd2swJRpVmGBMs8WuHkNslOC1PVsWGE1MiYYjmhXh-JjcNGdEwyw68G1eWjLaZt1uK3Obk7OQ8-xEGpWJuNQRqUucxtpLm2kCiZtrLFfVjKDl1WYHlpLLFUqw8xGxbnJrcqYMlmJyxpXaQ9mmqfGbEDAI0VoYsZIHJnGxLOI6tLY1MpEqlwmfWCdaoX2AOTEg_Eo4g6n1CtFkFKEV0ofDidizy0Cx28C5ed5E2P368O2PCUi_UW25yZ58iaWOXavtA_b3awL7-UvIuGceEs4R7n9STP6J226yMY8veI9SUJ0yBj7Nv_Qrz2YH55W4upicLkFC9hSuJLhdBtmxqNXswNz-g0NZLTrrP8dM8D8BA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution-Free+Predictive+Inference+for+Regression&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Lei%2C+Jing&rft.au=Max+G%E2%80%99Sell&rft.au=Rinaldo%2C+Alessandro&rft.au=Tibshirani%2C+Ryan+J&rft.date=2018-07-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=113&rft.issue=523&rft.spage=1094&rft.epage=1111&rft_id=info:doi/10.1080%2F01621459.2017.1307116&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |