Freezing of water droplets on solid surfaces: An experimental and numerical study
•We study the heat transfer of water droplets freezing on supercooled surfaces.•A droplet changing from water to ice shows four distinct consecutive processes.•Nucleation during recalescence results in ultrafast rise of droplet temperature.•A long freezing process follows recalescence and is driven...
Uloženo v:
| Vydáno v: | Experimental thermal and fluid science Ročník 57; s. 86 - 93 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Inc
01.09.2014
Elsevier |
| Témata: | |
| ISSN: | 0894-1777, 1879-2286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •We study the heat transfer of water droplets freezing on supercooled surfaces.•A droplet changing from water to ice shows four distinct consecutive processes.•Nucleation during recalescence results in ultrafast rise of droplet temperature.•A long freezing process follows recalescence and is driven by heat transfer.•Pre-recalescence temperature and surface wettability affect droplet freezing time.
We present an experimental and numerical study on the freezing of static water droplets on surfaces with different wettability when the surfaces are subject to rapid cooling. Temperature evolution of the droplets is recorded using both intrusive and non-intrusive methods to identify the processes involved in the cooling and phase change of the droplets. It is found the time taken for a droplet to freeze depends on the droplet temperature at the pre-recalescence instant as well as the surface wettability. To provide insight into the heat transfer during the freezing process, thermal simulation is carried out by numerically solving the enthalpy-based heat conduction equation. To determine the initial and boundary conditions for the simulation of freezing, the thermal history of the droplet prior to the occurrence of freezing is numerically analyzed by solving single phase heat conduction driven by rapid cooling. The numerical results of droplet freezing are compared to the experimental data, showing close agreement on the freezing time. |
|---|---|
| AbstractList | We present an experimental and numerical study on the freezing of static water droplets on surfaces with different wettability when the surfaces are subject to rapid cooling. Temperature evolution of the droplets is recorded using both intrusive and non-intrusive methods to identify the processes involved in the cooling and phase change of the droplets. It is found the time taken for a droplet to freeze depends on the droplet temperature at the pre-recalescence instant as well as the surface wettability. To provide insight into the heat transfer during the freezing process, thermal simulation is carried out by numerically solving the enthalpy-based heat conduction equation. To determine the initial and boundary conditions for the simulation of freezing, the thermal history of the droplet prior to the occurrence of freezing is numerically analyzed by solving single phase heat conduction driven by rapid cooling. The numerical results of droplet freezing are compared to the experimental data, showing close agreement on the freezing time. •We study the heat transfer of water droplets freezing on supercooled surfaces.•A droplet changing from water to ice shows four distinct consecutive processes.•Nucleation during recalescence results in ultrafast rise of droplet temperature.•A long freezing process follows recalescence and is driven by heat transfer.•Pre-recalescence temperature and surface wettability affect droplet freezing time. We present an experimental and numerical study on the freezing of static water droplets on surfaces with different wettability when the surfaces are subject to rapid cooling. Temperature evolution of the droplets is recorded using both intrusive and non-intrusive methods to identify the processes involved in the cooling and phase change of the droplets. It is found the time taken for a droplet to freeze depends on the droplet temperature at the pre-recalescence instant as well as the surface wettability. To provide insight into the heat transfer during the freezing process, thermal simulation is carried out by numerically solving the enthalpy-based heat conduction equation. To determine the initial and boundary conditions for the simulation of freezing, the thermal history of the droplet prior to the occurrence of freezing is numerically analyzed by solving single phase heat conduction driven by rapid cooling. The numerical results of droplet freezing are compared to the experimental data, showing close agreement on the freezing time. |
| Author | Li, Ri Chaudhary, Gaurav |
| Author_xml | – sequence: 1 givenname: Gaurav surname: Chaudhary fullname: Chaudhary, Gaurav email: gauravchaudhary@iitb.ac.in organization: Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400 076, India – sequence: 2 givenname: Ri surname: Li fullname: Li, Ri email: sunny.li@ubc.ca organization: School of Engineering, University of British Columbia, 1137 Alumni Avenue, Kelowna, BC V1V 1V7, Canada |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28640896$$DView record in Pascal Francis |
| BookMark | eNqNkU-LFDEQxYOs4Ozqd8hBwUuPlXRP_oiXdXFUWBBh7yEmFc3Qk4xJWl0_vRlmEfQ0UFBU-NUL9d4luUg5ISHPGawZMPFqt8Zfh_YNyz7MS3VxzYFNa-gF8hFZMSX1wLkSF2QFSk8Dk1I-IZe17gBAcQYr8nlbEH_H9JXmQH_ahoX6kg8ztkpzojXP0dO6lGAd1tf0OtH-JZa4x9TsTG3yNC37_uD6VNvi75-Sx8HOFZ899Ctyt313d_NhuP30_uPN9e3gJs3boATy0XvwXo0Bvmg1eRb0ZiOCBrRCwIbJMXjFNVrvgI0cYRq9UMx5qfl4RV6eZA8lf1-wNrOP1eE824R5qYYJKbUWkxBnoN03NjKtOvriAbW1XxSKTS5Wc-gH23JvupdTd_Io-ebEuZJrLRj-IgzMMRuzM_9mY47ZGOgFsq-__W_dxWZbzKkVG-dzRbYnEewu_4hYTCcwOfSxoGvG53ie0B_j67mc |
| CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2024_107307 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118636 crossref_primary_10_1039_C8CC02601G crossref_primary_10_1016_j_applthermaleng_2023_120796 crossref_primary_10_1007_s12517_020_06237_2 crossref_primary_10_1016_j_ast_2025_110908 crossref_primary_10_1016_j_icheatmasstransfer_2025_109295 crossref_primary_10_1016_j_ijthermalsci_2023_108726 crossref_primary_10_1016_j_icheatmasstransfer_2024_108400 crossref_primary_10_1007_s11095_022_03442_4 crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_031 crossref_primary_10_1063_5_0090429 crossref_primary_10_1016_j_matpr_2020_08_447 crossref_primary_10_1038_s41598_019_49615_x crossref_primary_10_1016_j_expthermflusci_2018_07_027 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123327 crossref_primary_10_1016_j_cryogenics_2025_104147 crossref_primary_10_1016_j_ijthermalsci_2024_109099 crossref_primary_10_1039_D4NR02893G crossref_primary_10_1016_j_enbuild_2020_110132 crossref_primary_10_1016_j_applthermaleng_2023_121535 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121134 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103909 crossref_primary_10_1016_j_applthermaleng_2018_09_040 crossref_primary_10_1007_s11998_025_01081_z crossref_primary_10_1016_j_ijmultiphaseflow_2021_103749 crossref_primary_10_3390_biom10020259 crossref_primary_10_1063_5_0280583 crossref_primary_10_1016_j_icheatmasstransfer_2025_109285 crossref_primary_10_1016_j_cej_2021_133276 crossref_primary_10_1016_j_jcp_2020_110008 crossref_primary_10_1016_j_colsurfa_2024_135723 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124927 crossref_primary_10_3390_pr11010258 crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_034 crossref_primary_10_1371_journal_pone_0204686 crossref_primary_10_1002_app_53416 crossref_primary_10_1016_j_ijheatmasstransfer_2016_10_015 crossref_primary_10_1016_j_ijthermalsci_2021_107241 crossref_primary_10_1017_jfm_2021_1097 crossref_primary_10_1080_08916152_2021_1886201 crossref_primary_10_1088_1361_6463_ac0bd8 crossref_primary_10_1016_j_jcis_2020_09_119 crossref_primary_10_1016_j_enbuild_2020_110103 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124075 crossref_primary_10_1016_j_ces_2025_121368 crossref_primary_10_1016_j_expthermflusci_2025_111410 crossref_primary_10_1063_5_0084094 crossref_primary_10_1016_j_applthermaleng_2024_122596 crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_142 crossref_primary_10_1016_j_ijmultiphaseflow_2018_05_023 crossref_primary_10_1016_j_ijrefrig_2020_01_025 crossref_primary_10_1002_adma_202402897 crossref_primary_10_1016_j_ijthermalsci_2025_109871 crossref_primary_10_3390_app13020994 crossref_primary_10_1016_j_coldregions_2017_11_018 crossref_primary_10_1098_rsta_2024_0363 crossref_primary_10_1016_j_jobe_2022_105757 crossref_primary_10_1016_j_icheatmasstransfer_2022_105994 crossref_primary_10_1002_aelm_202300060 crossref_primary_10_1016_j_applthermaleng_2023_121876 crossref_primary_10_1016_j_apsusc_2017_04_085 crossref_primary_10_1016_j_applthermaleng_2023_120025 crossref_primary_10_1038_s41467_024_46518_y crossref_primary_10_1016_j_applthermaleng_2022_118046 crossref_primary_10_1039_C5CP03243A crossref_primary_10_1016_j_rser_2017_01_120 crossref_primary_10_1016_j_cis_2020_102155 crossref_primary_10_1007_s12206_018_0421_4 crossref_primary_10_1016_j_apenergy_2017_08_012 crossref_primary_10_1016_j_expthermflusci_2017_05_009 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119468 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120608 crossref_primary_10_1016_j_expthermflusci_2025_111426 crossref_primary_10_1088_1361_6528_abaae0 crossref_primary_10_3390_coatings8040151 crossref_primary_10_1016_j_applthermaleng_2023_120515 crossref_primary_10_1016_j_expthermflusci_2017_10_008 crossref_primary_10_1016_j_jcis_2025_137983 crossref_primary_10_1088_1742_6596_2782_1_012045 crossref_primary_10_1016_j_applthermaleng_2020_115444 crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_076 crossref_primary_10_1007_s00348_019_2823_1 crossref_primary_10_1016_j_ijrefrig_2023_03_012 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127050 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118839 crossref_primary_10_1016_j_ijrefrig_2022_07_021 crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_021 crossref_primary_10_1016_j_applthermaleng_2019_114185 crossref_primary_10_1016_j_pmatsci_2019_03_004 crossref_primary_10_1016_j_ijthermalsci_2015_10_027 crossref_primary_10_1007_s13369_021_05502_0 crossref_primary_10_1103_PhysRevLett_134_064001 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122955 crossref_primary_10_1007_s11666_023_01551_z crossref_primary_10_1016_j_isci_2024_111668 crossref_primary_10_1016_j_ijthermalsci_2019_02_043 crossref_primary_10_1080_07373937_2024_2361360 crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_125 crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_124 crossref_primary_10_1007_s10853_022_07194_9 crossref_primary_10_1016_j_enbuild_2024_115109 crossref_primary_10_1016_j_matt_2020_06_029 crossref_primary_10_1186_s42774_021_00078_7 crossref_primary_10_1016_j_cej_2024_155264 crossref_primary_10_1002_dro2_70031 crossref_primary_10_1016_j_applthermaleng_2024_122362 crossref_primary_10_1016_j_est_2020_101638 crossref_primary_10_1016_j_ijthermalsci_2022_107541 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119768 crossref_primary_10_3390_met8010047 crossref_primary_10_1007_s11053_020_09768_3 crossref_primary_10_1016_j_applthermaleng_2018_03_068 crossref_primary_10_1016_j_applthermaleng_2023_121693 crossref_primary_10_1016_j_applthermaleng_2025_128366 crossref_primary_10_1016_j_applthermaleng_2023_121692 crossref_primary_10_1016_j_applthermaleng_2023_121691 crossref_primary_10_1016_j_measurement_2025_118083 crossref_primary_10_1016_j_tsep_2020_100722 crossref_primary_10_1007_s00231_018_2529_6 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122334 crossref_primary_10_1016_j_jcp_2021_110160 crossref_primary_10_1016_j_jcp_2025_113792 crossref_primary_10_1016_j_surfcoat_2022_128668 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125241 crossref_primary_10_32604_phyton_2022_023437 crossref_primary_10_1038_srep17563 crossref_primary_10_1016_j_applthermaleng_2023_121705 crossref_primary_10_1080_15567265_2016_1256007 crossref_primary_10_1007_s00231_020_02984_w crossref_primary_10_1016_j_molliq_2021_117928 crossref_primary_10_1016_j_enbuild_2022_112366 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126811 crossref_primary_10_1016_j_applthermaleng_2017_07_017 crossref_primary_10_1016_j_applthermaleng_2018_03_057 crossref_primary_10_1002_advs_202500590 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121803 crossref_primary_10_1016_j_ijrefrig_2023_02_021 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122044 crossref_primary_10_1007_s10665_021_10161_z crossref_primary_10_1016_j_applthermaleng_2023_122007 crossref_primary_10_1016_j_enconman_2017_01_067 crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_104 crossref_primary_10_1063_5_0158172 crossref_primary_10_1016_j_ijthermalsci_2022_108090 crossref_primary_10_1007_s00231_018_2396_1 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126100 crossref_primary_10_1016_j_expthermflusci_2018_08_009 crossref_primary_10_1016_j_coldregions_2018_01_017 crossref_primary_10_3390_ma17010235 crossref_primary_10_1016_j_ijthermalsci_2021_107386 crossref_primary_10_1007_s11998_018_00163_5 crossref_primary_10_1134_S0018151X22060086 crossref_primary_10_3390_fluids5030107 crossref_primary_10_1007_s10971_020_05464_z crossref_primary_10_1016_j_applthermaleng_2025_126240 crossref_primary_10_1038_srep07230 |
| Cites_doi | 10.1016/S0140-7007(02)00021-X 10.1006/jcis.1995.1010 10.1021/la201548k 10.1016/j.ijrefrig.2011.07.001 10.1364/AO.23.001206 10.1016/j.jcis.2003.10.029 10.1080/01431169208904088 10.1002/aic.10521 10.1364/AO.43.004598 10.1021/la2034565 10.1016/S0017-9310(01)00336-2 10.1016/j.cplett.2007.07.066 10.1088/0370-1328/82/6/326 10.1021/la104762g 10.1109/61.32682 10.1146/annurev.pc.34.100183.003113 10.1016/j.ijheatmasstransfer.2004.09.028 10.1002/we.258 10.2514/6.2012-3134 10.1023/A:1018522521531 10.1021/la902882b 10.1111/j.1365-2818.1978.tb01151.x 10.1007/s10973-010-0995-2 10.1021/jz2004528 10.1016/S0017-9310(02)00399-X 10.1098/rsta.2000.0689 10.1016/0017-9310(76)90183-6 10.1016/0017-9310(81)90062-4 10.1007/BF00549738 10.1016/0017-9310(94)90111-2 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2014 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7QH 7UA C1K F1W H96 L.G 7TB 7U5 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.expthermflusci.2014.04.007 |
| DatabaseName | CrossRef Pascal-Francis Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aqualine ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences Physics |
| EISSN | 1879-2286 |
| EndPage | 93 |
| ExternalDocumentID | 28640896 10_1016_j_expthermflusci_2014_04_007 S0894177714000958 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 UHS VH1 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 7QH 7UA C1K F1W H96 L.G 7TB 7U5 8FD FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c492t-86e23dd0dd83f0b984d1f9556f90ea6605173fd829eadc0132e043d681cd7923 |
| ISICitedReferencesCount | 196 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340340300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0894-1777 |
| IngestDate | Sun Sep 28 12:14:20 EDT 2025 Tue Oct 07 09:35:57 EDT 2025 Wed Apr 02 07:46:50 EDT 2025 Tue Nov 18 22:21:31 EST 2025 Sat Nov 29 03:11:43 EST 2025 Fri Feb 23 02:31:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Supercooled surface Wettability Water droplet Freezing Heat transfer Water Numerical simulation Supercooling Defrosting Experimental study Droplet Solidification |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c492t-86e23dd0dd83f0b984d1f9556f90ea6605173fd829eadc0132e043d681cd7923 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1620113198 |
| PQPubID | 23462 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1677996466 proquest_miscellaneous_1620113198 pascalfrancis_primary_28640896 crossref_primary_10_1016_j_expthermflusci_2014_04_007 crossref_citationtrail_10_1016_j_expthermflusci_2014_04_007 elsevier_sciencedirect_doi_10_1016_j_expthermflusci_2014_04_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-09-01 |
| PublicationDateYYYYMMDD | 2014-09-01 |
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Experimental thermal and fluid science |
| PublicationYear | 2014 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Hallett (b0130) 1963; 82 Li, Liu (b0110) 2010; 102 Costello, Corless (b0165) 2011; 112 Rubinshteĭn (b0140) 1971; vol. 27 Voller, Cross (b0135) 1981; 24 Rees, James (b0120) 1992; 13 Hochart, Fortin, Perron, Ilinca (b0010) 2007; 11 Cuenca, Sobrino (b0125) 2004; 43 Gurganus, Kostinski, Shaw (b0155) 2011; 2 Strub, Jabbour, Strub, Bédécarrats (b0040) 2003; 26 W.M. Schulze, U.S. Patent No. 5088277, 1992. Zheng, Li, Bourdo, Khedir, Asar, Ryerson, Biris (b0075) 2011; 27 Madejski (b0085) 1976; 19 Y.H. Yeong, R. Mudafort, A. Steele, I. Bayer, E. Loth, Water droplet impact dynamics at icing conditions with and without superhydrophobicity, in: 4th AIAA Atmospheric and Space Environments Conference, New Orleans, Louisiana, USA, 2012 [June 25–28]. Pasandideh-Fard, Chandra, Mostaghimi (b0090) 2002; 45 Warren (b0115) 1984; 23 Xiao, Chaudhuri (b0035) 2012; 28 Hindmarsh, Wilson, Johns (b0055) 2005; 48 Tabakova, Feuillebois (b0105) 2004; 272 Egbert, Schrag, Bernhart, Zumwalt, Kendrew (b0020) 1989; 4 Hindmarsh, Wilson, Johns, Russell, Chen (b0060) 2005; 51 Yang, Guo, Li (b0080) 2011; 34 Feuillebois, Lasek, Creismas, Pigeonneau, Szaniawski (b0050) 1995; 169 Angell (b0160) 1983; 34 Suzuki, Nakajima, Yoshida, Sakai, Hashimoto, Kameshima, Okada (b0100) 2007; 445 Delplanque, Rangel (b0095) 1997; 32 James (b0145) 1968; 3 Gent, Dart, Cansdale, Gent, Dart, Cansdale (b0005) 2000; 358 Cao, Jones, Sikka, Wu, Gao (b0030) 2009; 25 Dumas, Krichi, Strub, Zeraouli (b0150) 1994; 37 Jung, Dorrestijn, Raps, Das, Megaridis, Poulikakos (b0070) 2011; 27 V.F. Petrenko, M. Higa, M. Starostin, L. Deresh, Pulse electrothermal de-icing, in: Proceedings of the Thirteenth International Offshore and Polar Engineering Conference, Honolulu, Hawaii, 2003, pp. 435–438. Hindmarsh, Russell, Chen (b0045) 2003; 46 10.1016/j.expthermflusci.2014.04.007_b0065 Rees (10.1016/j.expthermflusci.2014.04.007_b0120) 1992; 13 Rubinshteĭn (10.1016/j.expthermflusci.2014.04.007_b0140) 1971; vol. 27 Egbert (10.1016/j.expthermflusci.2014.04.007_b0020) 1989; 4 Cao (10.1016/j.expthermflusci.2014.04.007_b0030) 2009; 25 10.1016/j.expthermflusci.2014.04.007_b0025 Angell (10.1016/j.expthermflusci.2014.04.007_b0160) 1983; 34 Dumas (10.1016/j.expthermflusci.2014.04.007_b0150) 1994; 37 Gurganus (10.1016/j.expthermflusci.2014.04.007_b0155) 2011; 2 Hindmarsh (10.1016/j.expthermflusci.2014.04.007_b0060) 2005; 51 Tabakova (10.1016/j.expthermflusci.2014.04.007_b0105) 2004; 272 Pasandideh-Fard (10.1016/j.expthermflusci.2014.04.007_b0090) 2002; 45 Costello (10.1016/j.expthermflusci.2014.04.007_b0165) 2011; 112 Cuenca (10.1016/j.expthermflusci.2014.04.007_b0125) 2004; 43 Hindmarsh (10.1016/j.expthermflusci.2014.04.007_b0055) 2005; 48 Yang (10.1016/j.expthermflusci.2014.04.007_b0080) 2011; 34 Madejski (10.1016/j.expthermflusci.2014.04.007_b0085) 1976; 19 Hindmarsh (10.1016/j.expthermflusci.2014.04.007_b0045) 2003; 46 Jung (10.1016/j.expthermflusci.2014.04.007_b0070) 2011; 27 Warren (10.1016/j.expthermflusci.2014.04.007_b0115) 1984; 23 Voller (10.1016/j.expthermflusci.2014.04.007_b0135) 1981; 24 10.1016/j.expthermflusci.2014.04.007_b0015 Strub (10.1016/j.expthermflusci.2014.04.007_b0040) 2003; 26 Delplanque (10.1016/j.expthermflusci.2014.04.007_b0095) 1997; 32 Suzuki (10.1016/j.expthermflusci.2014.04.007_b0100) 2007; 445 Hallett (10.1016/j.expthermflusci.2014.04.007_b0130) 1963; 82 Xiao (10.1016/j.expthermflusci.2014.04.007_b0035) 2012; 28 Zheng (10.1016/j.expthermflusci.2014.04.007_b0075) 2011; 27 Gent (10.1016/j.expthermflusci.2014.04.007_b0005) 2000; 358 Li (10.1016/j.expthermflusci.2014.04.007_b0110) 2010; 102 James (10.1016/j.expthermflusci.2014.04.007_b0145) 1968; 3 Hochart (10.1016/j.expthermflusci.2014.04.007_b0010) 2007; 11 Feuillebois (10.1016/j.expthermflusci.2014.04.007_b0050) 1995; 169 |
| References_xml | – volume: 358 start-page: 2873 year: 2000 end-page: 2911 ident: b0005 article-title: Aircraft icing publication-title: Philos. Trans. R. Soc. London, Ser. A – volume: 82 start-page: 1046 year: 1963 end-page: 1050 ident: b0130 article-title: The temperature dependence of the viscosity of supercooled water publication-title: Proc. Phys. Soc. – volume: 45 start-page: 2229 year: 2002 end-page: 2242 ident: b0090 article-title: A three-dimensional model of droplet impact and solidification publication-title: Int. J. Heat Mass Transfer – volume: 28 start-page: 4434 year: 2012 end-page: 4446 ident: b0035 article-title: Design of anti-icing coatings using supercooled droplets as nano-to-microscale probes publication-title: Langmuir – volume: 24 start-page: 545 year: 1981 end-page: 556 ident: b0135 article-title: Accurate solutions of moving boundary problems using the enthalpy method publication-title: Int. J. Heat Mass Transfer – volume: 27 start-page: 3059 year: 2011 end-page: 3066 ident: b0070 article-title: Are superhydrophobic surfaces best for icephobicity? publication-title: Langmuir – volume: 48 start-page: 1017 year: 2005 end-page: 1021 ident: b0055 article-title: Using magnetic resonance to validate predictions of the solid fraction formed during recalescence of freezing drops publication-title: Int. J. Heat Mass Transfer – volume: 32 start-page: 1519 year: 1997 end-page: 1530 ident: b0095 article-title: An improved model for droplet solidification on a flat surface publication-title: J. Mater. Sci. – volume: 13 start-page: 2873 year: 1992 end-page: 2886 ident: b0120 article-title: Angular variation of the infrared emissivity of ice and water surfaces publication-title: Int. J. Remote Sens. – volume: 2 start-page: 1449 year: 2011 end-page: 1454 ident: b0155 article-title: Fast imaging of freezing drops: no preference for nucleation at the contact line publication-title: J. Phys. Chem. Lett. – volume: 25 start-page: 12444 year: 2009 end-page: 12448 ident: b0030 article-title: Anti-icing superhydrophobic coatings publication-title: Langmuir – volume: 51 start-page: 2640 year: 2005 end-page: 2648 ident: b0060 article-title: NMR verification of single droplet freezing models publication-title: AIChE J. – volume: 34 start-page: 2007 year: 2011 end-page: 2017 ident: b0080 article-title: Freezing mechanism of supercooled water droplet impinging on metal surfaces publication-title: Int. J. Refrig. – volume: 19 start-page: 1009 year: 1976 end-page: 1013 ident: b0085 article-title: Solidification of droplets on a cold surface publication-title: Int. J. Heat Mass Transfer – reference: V.F. Petrenko, M. Higa, M. Starostin, L. Deresh, Pulse electrothermal de-icing, in: Proceedings of the Thirteenth International Offshore and Polar Engineering Conference, Honolulu, Hawaii, 2003, pp. 435–438. – volume: 102 start-page: 155 year: 2010 end-page: 162 ident: b0110 article-title: Thermal infrared mapping of the freezing phase change activity of micro liquid droplet publication-title: J. Therm. Anal. Calorim. – volume: 272 start-page: 225 year: 2004 end-page: 234 ident: b0105 article-title: On the solidification of a supercooled liquid droplet lying on a surface publication-title: J. Colloid Interface Sci. – volume: 27 start-page: 9936 year: 2011 end-page: 9943 ident: b0075 article-title: Exceptional superhydrophobicity and low velocity impact icephobicity of acetone-functionalized carbon nanotube films publication-title: Langmuir – volume: 445 start-page: 37 year: 2007 end-page: 41 ident: b0100 article-title: Freezing of water droplets on silicon surfaces coated with various silanes publication-title: Chem. Phys. Lett. – volume: vol. 27 year: 1971 ident: b0140 publication-title: The Stefan Problem – volume: 11 start-page: 319 year: 2007 end-page: 333 ident: b0010 article-title: Wind turbine performance under icing conditions publication-title: Wind Energy – reference: Y.H. Yeong, R. Mudafort, A. Steele, I. Bayer, E. Loth, Water droplet impact dynamics at icing conditions with and without superhydrophobicity, in: 4th AIAA Atmospheric and Space Environments Conference, New Orleans, Louisiana, USA, 2012 [June 25–28]. – volume: 112 start-page: 17 year: 2011 end-page: 37 ident: b0165 article-title: The direct measurement of temperature changes within freeze-fracture specimens during rapid quenching in liquid coolants publication-title: J. Microsc. – volume: 37 start-page: 737 year: 1994 end-page: 746 ident: b0150 article-title: Models for the heat transfers during the transformations inside an emulsion – I. Crystallizations of the undercooled droplets publication-title: Int. J. Heat Mass Transfer – volume: 34 start-page: 593 year: 1983 end-page: 630 ident: b0160 article-title: Supercooled water publication-title: Annu. Rev. Phys. Chem. – volume: 4 start-page: 1855 year: 1989 end-page: 1861 ident: b0020 article-title: An investigation of power line de-icing by electro-impulse methods publication-title: IEEE Trans. Power Delivery – volume: 26 start-page: 59 year: 2003 end-page: 68 ident: b0040 article-title: Experimental study and modeling of the crystallization of a water droplet publication-title: Int. J. Refrig. – volume: 23 start-page: 1206 year: 1984 end-page: 1225 ident: b0115 article-title: Optical constants of ice from the ultraviolet to the microwave publication-title: Appl. Opt. – volume: 169 start-page: 90 year: 1995 end-page: 102 ident: b0050 article-title: Freezing of a subcooled liquid droplet publication-title: J. Colloid Interface Sci. – volume: 43 start-page: 4598 year: 2004 end-page: 4602 ident: b0125 article-title: Experimental measurements for studying angular and spectral variation of thermal infrared emissivity publication-title: Appl. Opt. – volume: 3 start-page: 540 year: 1968 end-page: 543 ident: b0145 article-title: The thermal diffusivity of ice and water between −40 and 60 publication-title: J. Mater. Sci. – reference: W.M. Schulze, U.S. Patent No. 5088277, 1992. – volume: 46 start-page: 1199 year: 2003 end-page: 1213 ident: b0045 article-title: Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet publication-title: Int. J. Heat Mass Transfer – volume: 26 start-page: 59 issue: 1 year: 2003 ident: 10.1016/j.expthermflusci.2014.04.007_b0040 article-title: Experimental study and modeling of the crystallization of a water droplet publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(02)00021-X – volume: 169 start-page: 90 year: 1995 ident: 10.1016/j.expthermflusci.2014.04.007_b0050 article-title: Freezing of a subcooled liquid droplet publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1995.1010 – ident: 10.1016/j.expthermflusci.2014.04.007_b0015 – volume: 27 start-page: 9936 year: 2011 ident: 10.1016/j.expthermflusci.2014.04.007_b0075 article-title: Exceptional superhydrophobicity and low velocity impact icephobicity of acetone-functionalized carbon nanotube films publication-title: Langmuir doi: 10.1021/la201548k – volume: 34 start-page: 2007 issue: 8 year: 2011 ident: 10.1016/j.expthermflusci.2014.04.007_b0080 article-title: Freezing mechanism of supercooled water droplet impinging on metal surfaces publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2011.07.001 – volume: 23 start-page: 1206 year: 1984 ident: 10.1016/j.expthermflusci.2014.04.007_b0115 article-title: Optical constants of ice from the ultraviolet to the microwave publication-title: Appl. Opt. doi: 10.1364/AO.23.001206 – volume: 272 start-page: 225 year: 2004 ident: 10.1016/j.expthermflusci.2014.04.007_b0105 article-title: On the solidification of a supercooled liquid droplet lying on a surface publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2003.10.029 – volume: 13 start-page: 2873 year: 1992 ident: 10.1016/j.expthermflusci.2014.04.007_b0120 article-title: Angular variation of the infrared emissivity of ice and water surfaces publication-title: Int. J. Remote Sens. doi: 10.1080/01431169208904088 – volume: 51 start-page: 2640 issue: 10 year: 2005 ident: 10.1016/j.expthermflusci.2014.04.007_b0060 article-title: NMR verification of single droplet freezing models publication-title: AIChE J. doi: 10.1002/aic.10521 – volume: 43 start-page: 4598 year: 2004 ident: 10.1016/j.expthermflusci.2014.04.007_b0125 article-title: Experimental measurements for studying angular and spectral variation of thermal infrared emissivity publication-title: Appl. Opt. doi: 10.1364/AO.43.004598 – ident: 10.1016/j.expthermflusci.2014.04.007_b0025 – volume: 28 start-page: 4434 issue: 9 year: 2012 ident: 10.1016/j.expthermflusci.2014.04.007_b0035 article-title: Design of anti-icing coatings using supercooled droplets as nano-to-microscale probes publication-title: Langmuir doi: 10.1021/la2034565 – volume: 45 start-page: 2229 issue: 11 year: 2002 ident: 10.1016/j.expthermflusci.2014.04.007_b0090 article-title: A three-dimensional model of droplet impact and solidification publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(01)00336-2 – volume: vol. 27 year: 1971 ident: 10.1016/j.expthermflusci.2014.04.007_b0140 – volume: 445 start-page: 37 issue: 1 year: 2007 ident: 10.1016/j.expthermflusci.2014.04.007_b0100 article-title: Freezing of water droplets on silicon surfaces coated with various silanes publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.07.066 – volume: 82 start-page: 1046 year: 1963 ident: 10.1016/j.expthermflusci.2014.04.007_b0130 article-title: The temperature dependence of the viscosity of supercooled water publication-title: Proc. Phys. Soc. doi: 10.1088/0370-1328/82/6/326 – volume: 27 start-page: 3059 year: 2011 ident: 10.1016/j.expthermflusci.2014.04.007_b0070 article-title: Are superhydrophobic surfaces best for icephobicity? publication-title: Langmuir doi: 10.1021/la104762g – volume: 4 start-page: 1855 issue: 3 year: 1989 ident: 10.1016/j.expthermflusci.2014.04.007_b0020 article-title: An investigation of power line de-icing by electro-impulse methods publication-title: IEEE Trans. Power Delivery doi: 10.1109/61.32682 – volume: 34 start-page: 593 issue: 1 year: 1983 ident: 10.1016/j.expthermflusci.2014.04.007_b0160 article-title: Supercooled water publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.34.100183.003113 – volume: 48 start-page: 1017 issue: 5 year: 2005 ident: 10.1016/j.expthermflusci.2014.04.007_b0055 article-title: Using magnetic resonance to validate predictions of the solid fraction formed during recalescence of freezing drops publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.09.028 – volume: 11 start-page: 319 issue: 4 year: 2007 ident: 10.1016/j.expthermflusci.2014.04.007_b0010 article-title: Wind turbine performance under icing conditions publication-title: Wind Energy doi: 10.1002/we.258 – ident: 10.1016/j.expthermflusci.2014.04.007_b0065 doi: 10.2514/6.2012-3134 – volume: 32 start-page: 1519 issue: 6 year: 1997 ident: 10.1016/j.expthermflusci.2014.04.007_b0095 article-title: An improved model for droplet solidification on a flat surface publication-title: J. Mater. Sci. doi: 10.1023/A:1018522521531 – volume: 25 start-page: 12444 issue: 21 year: 2009 ident: 10.1016/j.expthermflusci.2014.04.007_b0030 article-title: Anti-icing superhydrophobic coatings publication-title: Langmuir doi: 10.1021/la902882b – volume: 112 start-page: 17 issue: 1 year: 2011 ident: 10.1016/j.expthermflusci.2014.04.007_b0165 article-title: The direct measurement of temperature changes within freeze-fracture specimens during rapid quenching in liquid coolants publication-title: J. Microsc. doi: 10.1111/j.1365-2818.1978.tb01151.x – volume: 102 start-page: 155 issue: 1 year: 2010 ident: 10.1016/j.expthermflusci.2014.04.007_b0110 article-title: Thermal infrared mapping of the freezing phase change activity of micro liquid droplet publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-010-0995-2 – volume: 2 start-page: 1449 issue: 12 year: 2011 ident: 10.1016/j.expthermflusci.2014.04.007_b0155 article-title: Fast imaging of freezing drops: no preference for nucleation at the contact line publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2004528 – volume: 46 start-page: 1199 issue: 7 year: 2003 ident: 10.1016/j.expthermflusci.2014.04.007_b0045 article-title: Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(02)00399-X – volume: 358 start-page: 2873 year: 2000 ident: 10.1016/j.expthermflusci.2014.04.007_b0005 article-title: Aircraft icing publication-title: Philos. Trans. R. Soc. London, Ser. A doi: 10.1098/rsta.2000.0689 – volume: 19 start-page: 1009 issue: 9 year: 1976 ident: 10.1016/j.expthermflusci.2014.04.007_b0085 article-title: Solidification of droplets on a cold surface publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(76)90183-6 – volume: 24 start-page: 545 year: 1981 ident: 10.1016/j.expthermflusci.2014.04.007_b0135 article-title: Accurate solutions of moving boundary problems using the enthalpy method publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(81)90062-4 – volume: 3 start-page: 540 year: 1968 ident: 10.1016/j.expthermflusci.2014.04.007_b0145 article-title: The thermal diffusivity of ice and water between −40 and 60°C publication-title: J. Mater. Sci. doi: 10.1007/BF00549738 – volume: 37 start-page: 737 issue: 5 year: 1994 ident: 10.1016/j.expthermflusci.2014.04.007_b0150 article-title: Models for the heat transfers during the transformations inside an emulsion – I. Crystallizations of the undercooled droplets publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(94)90111-2 |
| SSID | ssj0008210 |
| Score | 2.499445 |
| Snippet | •We study the heat transfer of water droplets freezing on supercooled surfaces.•A droplet changing from water to ice shows four distinct consecutive... We present an experimental and numerical study on the freezing of static water droplets on surfaces with different wettability when the surfaces are subject to... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 86 |
| SubjectTerms | Applied sciences Cooling Droplets Energy Energy. Thermal use of fuels Exact sciences and technology Freezing Fundamental areas of phenomenology (including applications) Heat conduction Heat transfer Heat transfer in inhomogeneous media, in porous media, and through interfaces Mathematical analysis Mathematical models Physics Supercooled surface Theoretical studies. Data and constants. Metering Water droplet Wettability |
| Title | Freezing of water droplets on solid surfaces: An experimental and numerical study |
| URI | https://dx.doi.org/10.1016/j.expthermflusci.2014.04.007 https://www.proquest.com/docview/1620113198 https://www.proquest.com/docview/1677996466 |
| Volume | 57 |
| WOSCitedRecordID | wos000340340300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-2286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008210 issn: 0894-1777 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rq9MwFA9zV0QR8XHF-bhEEL9Ipe3aPPSDDNl8jakwYd9KljS4MbvZrfPiX-9Jk2YblyvzgzDKWpI05Px6cpJz8jsIPYtiFQqidBDGUgeJTHXAU1i10oQrShUVUtWU-UM6GrHJhH9ptT41Z2G2C1oU7Pycr_6rqOEZCNscnf0HcftG4QH8B6HDFcQO16MEPyjz_LeLZf4l6gzgpYkSt44BePdMvVhXpTaxWG5b8IDm3-ykF5V15Cz26GfnPmhvV9ZYjz9cHb2oTMtWV-xFDVTqu7C--neiKsXWhwDN7MH-_X2HKPGBVV498SSIqEvC4nSpJZt2yrDhuK5vbB7ECwrb7h3MYSZa1V2GvkJHTchd8tISm-8mqsY5P_qcDb4Nh9m4Pxk_X_0MTAox42p3-VSuoJOYppy10UnvQ3_y0U_MLK7JKXzHrwFUfbjf5R24zGK5uRJrEIS2CVAuzOW1gTK-jW65lQXuWUTcQa28uItu7PFN3kNfG2zgpcY1NnCDDbwscI0N3GDjFe4VeB8ZGKSMPTJwjYxTNB70x2_fBy6nRiATHm8CRvK4q1SoFOvqcMpZoiLN05RoHuaCEEPZ1tWKxRxUjDSOuDxMuoqwSCpDNXkftYtlkT9AWJAcTG0qUhkZTkdYusupNCFWTEynULuDXjfDlknHN2_SniyyJrBwnh0OemYGPQvhF9IOSn3tleVdObLem0ZCmUO8tQ0zQNyRLZwdCNa_PmYkAeyQDnraSDoDXWwcbKLIl9U6i4gxp2FSY38rQynnJCHk4RFlHqHru2_vMWpvyip_gq7K7Wa2Ls8cwP8AaC--4w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Freezing+of+water+droplets+on+solid+surfaces%3A+An+experimental+and+numerical+study&rft.jtitle=Experimental+thermal+and+fluid+science&rft.au=Chaudhary%2C+Gaurav&rft.au=Li%2C+Ri&rft.date=2014-09-01&rft.issn=0894-1777&rft.volume=57&rft.spage=86&rft.epage=93&rft_id=info:doi/10.1016%2Fj.expthermflusci.2014.04.007&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1777&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1777&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1777&client=summon |