Freezing of water droplets on solid surfaces: An experimental and numerical study

•We study the heat transfer of water droplets freezing on supercooled surfaces.•A droplet changing from water to ice shows four distinct consecutive processes.•Nucleation during recalescence results in ultrafast rise of droplet temperature.•A long freezing process follows recalescence and is driven...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Experimental thermal and fluid science Ročník 57; s. 86 - 93
Hlavní autoři: Chaudhary, Gaurav, Li, Ri
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 01.09.2014
Elsevier
Témata:
ISSN:0894-1777, 1879-2286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •We study the heat transfer of water droplets freezing on supercooled surfaces.•A droplet changing from water to ice shows four distinct consecutive processes.•Nucleation during recalescence results in ultrafast rise of droplet temperature.•A long freezing process follows recalescence and is driven by heat transfer.•Pre-recalescence temperature and surface wettability affect droplet freezing time. We present an experimental and numerical study on the freezing of static water droplets on surfaces with different wettability when the surfaces are subject to rapid cooling. Temperature evolution of the droplets is recorded using both intrusive and non-intrusive methods to identify the processes involved in the cooling and phase change of the droplets. It is found the time taken for a droplet to freeze depends on the droplet temperature at the pre-recalescence instant as well as the surface wettability. To provide insight into the heat transfer during the freezing process, thermal simulation is carried out by numerically solving the enthalpy-based heat conduction equation. To determine the initial and boundary conditions for the simulation of freezing, the thermal history of the droplet prior to the occurrence of freezing is numerically analyzed by solving single phase heat conduction driven by rapid cooling. The numerical results of droplet freezing are compared to the experimental data, showing close agreement on the freezing time.
AbstractList We present an experimental and numerical study on the freezing of static water droplets on surfaces with different wettability when the surfaces are subject to rapid cooling. Temperature evolution of the droplets is recorded using both intrusive and non-intrusive methods to identify the processes involved in the cooling and phase change of the droplets. It is found the time taken for a droplet to freeze depends on the droplet temperature at the pre-recalescence instant as well as the surface wettability. To provide insight into the heat transfer during the freezing process, thermal simulation is carried out by numerically solving the enthalpy-based heat conduction equation. To determine the initial and boundary conditions for the simulation of freezing, the thermal history of the droplet prior to the occurrence of freezing is numerically analyzed by solving single phase heat conduction driven by rapid cooling. The numerical results of droplet freezing are compared to the experimental data, showing close agreement on the freezing time.
•We study the heat transfer of water droplets freezing on supercooled surfaces.•A droplet changing from water to ice shows four distinct consecutive processes.•Nucleation during recalescence results in ultrafast rise of droplet temperature.•A long freezing process follows recalescence and is driven by heat transfer.•Pre-recalescence temperature and surface wettability affect droplet freezing time. We present an experimental and numerical study on the freezing of static water droplets on surfaces with different wettability when the surfaces are subject to rapid cooling. Temperature evolution of the droplets is recorded using both intrusive and non-intrusive methods to identify the processes involved in the cooling and phase change of the droplets. It is found the time taken for a droplet to freeze depends on the droplet temperature at the pre-recalescence instant as well as the surface wettability. To provide insight into the heat transfer during the freezing process, thermal simulation is carried out by numerically solving the enthalpy-based heat conduction equation. To determine the initial and boundary conditions for the simulation of freezing, the thermal history of the droplet prior to the occurrence of freezing is numerically analyzed by solving single phase heat conduction driven by rapid cooling. The numerical results of droplet freezing are compared to the experimental data, showing close agreement on the freezing time.
Author Li, Ri
Chaudhary, Gaurav
Author_xml – sequence: 1
  givenname: Gaurav
  surname: Chaudhary
  fullname: Chaudhary, Gaurav
  email: gauravchaudhary@iitb.ac.in
  organization: Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400 076, India
– sequence: 2
  givenname: Ri
  surname: Li
  fullname: Li, Ri
  email: sunny.li@ubc.ca
  organization: School of Engineering, University of British Columbia, 1137 Alumni Avenue, Kelowna, BC V1V 1V7, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28640896$$DView record in Pascal Francis
BookMark eNqNkU-LFDEQxYOs4Ozqd8hBwUuPlXRP_oiXdXFUWBBh7yEmFc3Qk4xJWl0_vRlmEfQ0UFBU-NUL9d4luUg5ISHPGawZMPFqt8Zfh_YNyz7MS3VxzYFNa-gF8hFZMSX1wLkSF2QFSk8Dk1I-IZe17gBAcQYr8nlbEH_H9JXmQH_ahoX6kg8ztkpzojXP0dO6lGAd1tf0OtH-JZa4x9TsTG3yNC37_uD6VNvi75-Sx8HOFZ899Ctyt313d_NhuP30_uPN9e3gJs3boATy0XvwXo0Bvmg1eRb0ZiOCBrRCwIbJMXjFNVrvgI0cYRq9UMx5qfl4RV6eZA8lf1-wNrOP1eE824R5qYYJKbUWkxBnoN03NjKtOvriAbW1XxSKTS5Wc-gH23JvupdTd_Io-ebEuZJrLRj-IgzMMRuzM_9mY47ZGOgFsq-__W_dxWZbzKkVG-dzRbYnEewu_4hYTCcwOfSxoGvG53ie0B_j67mc
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2024_107307
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118636
crossref_primary_10_1039_C8CC02601G
crossref_primary_10_1016_j_applthermaleng_2023_120796
crossref_primary_10_1007_s12517_020_06237_2
crossref_primary_10_1016_j_ast_2025_110908
crossref_primary_10_1016_j_icheatmasstransfer_2025_109295
crossref_primary_10_1016_j_ijthermalsci_2023_108726
crossref_primary_10_1016_j_icheatmasstransfer_2024_108400
crossref_primary_10_1007_s11095_022_03442_4
crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_031
crossref_primary_10_1063_5_0090429
crossref_primary_10_1016_j_matpr_2020_08_447
crossref_primary_10_1038_s41598_019_49615_x
crossref_primary_10_1016_j_expthermflusci_2018_07_027
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123327
crossref_primary_10_1016_j_cryogenics_2025_104147
crossref_primary_10_1016_j_ijthermalsci_2024_109099
crossref_primary_10_1039_D4NR02893G
crossref_primary_10_1016_j_enbuild_2020_110132
crossref_primary_10_1016_j_applthermaleng_2023_121535
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121134
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103909
crossref_primary_10_1016_j_applthermaleng_2018_09_040
crossref_primary_10_1007_s11998_025_01081_z
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103749
crossref_primary_10_3390_biom10020259
crossref_primary_10_1063_5_0280583
crossref_primary_10_1016_j_icheatmasstransfer_2025_109285
crossref_primary_10_1016_j_cej_2021_133276
crossref_primary_10_1016_j_jcp_2020_110008
crossref_primary_10_1016_j_colsurfa_2024_135723
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124927
crossref_primary_10_3390_pr11010258
crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_034
crossref_primary_10_1371_journal_pone_0204686
crossref_primary_10_1002_app_53416
crossref_primary_10_1016_j_ijheatmasstransfer_2016_10_015
crossref_primary_10_1016_j_ijthermalsci_2021_107241
crossref_primary_10_1017_jfm_2021_1097
crossref_primary_10_1080_08916152_2021_1886201
crossref_primary_10_1088_1361_6463_ac0bd8
crossref_primary_10_1016_j_jcis_2020_09_119
crossref_primary_10_1016_j_enbuild_2020_110103
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124075
crossref_primary_10_1016_j_ces_2025_121368
crossref_primary_10_1016_j_expthermflusci_2025_111410
crossref_primary_10_1063_5_0084094
crossref_primary_10_1016_j_applthermaleng_2024_122596
crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_142
crossref_primary_10_1016_j_ijmultiphaseflow_2018_05_023
crossref_primary_10_1016_j_ijrefrig_2020_01_025
crossref_primary_10_1002_adma_202402897
crossref_primary_10_1016_j_ijthermalsci_2025_109871
crossref_primary_10_3390_app13020994
crossref_primary_10_1016_j_coldregions_2017_11_018
crossref_primary_10_1098_rsta_2024_0363
crossref_primary_10_1016_j_jobe_2022_105757
crossref_primary_10_1016_j_icheatmasstransfer_2022_105994
crossref_primary_10_1002_aelm_202300060
crossref_primary_10_1016_j_applthermaleng_2023_121876
crossref_primary_10_1016_j_apsusc_2017_04_085
crossref_primary_10_1016_j_applthermaleng_2023_120025
crossref_primary_10_1038_s41467_024_46518_y
crossref_primary_10_1016_j_applthermaleng_2022_118046
crossref_primary_10_1039_C5CP03243A
crossref_primary_10_1016_j_rser_2017_01_120
crossref_primary_10_1016_j_cis_2020_102155
crossref_primary_10_1007_s12206_018_0421_4
crossref_primary_10_1016_j_apenergy_2017_08_012
crossref_primary_10_1016_j_expthermflusci_2017_05_009
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119468
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120608
crossref_primary_10_1016_j_expthermflusci_2025_111426
crossref_primary_10_1088_1361_6528_abaae0
crossref_primary_10_3390_coatings8040151
crossref_primary_10_1016_j_applthermaleng_2023_120515
crossref_primary_10_1016_j_expthermflusci_2017_10_008
crossref_primary_10_1016_j_jcis_2025_137983
crossref_primary_10_1088_1742_6596_2782_1_012045
crossref_primary_10_1016_j_applthermaleng_2020_115444
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_076
crossref_primary_10_1007_s00348_019_2823_1
crossref_primary_10_1016_j_ijrefrig_2023_03_012
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127050
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118839
crossref_primary_10_1016_j_ijrefrig_2022_07_021
crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_021
crossref_primary_10_1016_j_applthermaleng_2019_114185
crossref_primary_10_1016_j_pmatsci_2019_03_004
crossref_primary_10_1016_j_ijthermalsci_2015_10_027
crossref_primary_10_1007_s13369_021_05502_0
crossref_primary_10_1103_PhysRevLett_134_064001
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122955
crossref_primary_10_1007_s11666_023_01551_z
crossref_primary_10_1016_j_isci_2024_111668
crossref_primary_10_1016_j_ijthermalsci_2019_02_043
crossref_primary_10_1080_07373937_2024_2361360
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_125
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_124
crossref_primary_10_1007_s10853_022_07194_9
crossref_primary_10_1016_j_enbuild_2024_115109
crossref_primary_10_1016_j_matt_2020_06_029
crossref_primary_10_1186_s42774_021_00078_7
crossref_primary_10_1016_j_cej_2024_155264
crossref_primary_10_1002_dro2_70031
crossref_primary_10_1016_j_applthermaleng_2024_122362
crossref_primary_10_1016_j_est_2020_101638
crossref_primary_10_1016_j_ijthermalsci_2022_107541
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119768
crossref_primary_10_3390_met8010047
crossref_primary_10_1007_s11053_020_09768_3
crossref_primary_10_1016_j_applthermaleng_2018_03_068
crossref_primary_10_1016_j_applthermaleng_2023_121693
crossref_primary_10_1016_j_applthermaleng_2025_128366
crossref_primary_10_1016_j_applthermaleng_2023_121692
crossref_primary_10_1016_j_applthermaleng_2023_121691
crossref_primary_10_1016_j_measurement_2025_118083
crossref_primary_10_1016_j_tsep_2020_100722
crossref_primary_10_1007_s00231_018_2529_6
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122334
crossref_primary_10_1016_j_jcp_2021_110160
crossref_primary_10_1016_j_jcp_2025_113792
crossref_primary_10_1016_j_surfcoat_2022_128668
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125241
crossref_primary_10_32604_phyton_2022_023437
crossref_primary_10_1038_srep17563
crossref_primary_10_1016_j_applthermaleng_2023_121705
crossref_primary_10_1080_15567265_2016_1256007
crossref_primary_10_1007_s00231_020_02984_w
crossref_primary_10_1016_j_molliq_2021_117928
crossref_primary_10_1016_j_enbuild_2022_112366
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126811
crossref_primary_10_1016_j_applthermaleng_2017_07_017
crossref_primary_10_1016_j_applthermaleng_2018_03_057
crossref_primary_10_1002_advs_202500590
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121803
crossref_primary_10_1016_j_ijrefrig_2023_02_021
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122044
crossref_primary_10_1007_s10665_021_10161_z
crossref_primary_10_1016_j_applthermaleng_2023_122007
crossref_primary_10_1016_j_enconman_2017_01_067
crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_104
crossref_primary_10_1063_5_0158172
crossref_primary_10_1016_j_ijthermalsci_2022_108090
crossref_primary_10_1007_s00231_018_2396_1
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126100
crossref_primary_10_1016_j_expthermflusci_2018_08_009
crossref_primary_10_1016_j_coldregions_2018_01_017
crossref_primary_10_3390_ma17010235
crossref_primary_10_1016_j_ijthermalsci_2021_107386
crossref_primary_10_1007_s11998_018_00163_5
crossref_primary_10_1134_S0018151X22060086
crossref_primary_10_3390_fluids5030107
crossref_primary_10_1007_s10971_020_05464_z
crossref_primary_10_1016_j_applthermaleng_2025_126240
crossref_primary_10_1038_srep07230
Cites_doi 10.1016/S0140-7007(02)00021-X
10.1006/jcis.1995.1010
10.1021/la201548k
10.1016/j.ijrefrig.2011.07.001
10.1364/AO.23.001206
10.1016/j.jcis.2003.10.029
10.1080/01431169208904088
10.1002/aic.10521
10.1364/AO.43.004598
10.1021/la2034565
10.1016/S0017-9310(01)00336-2
10.1016/j.cplett.2007.07.066
10.1088/0370-1328/82/6/326
10.1021/la104762g
10.1109/61.32682
10.1146/annurev.pc.34.100183.003113
10.1016/j.ijheatmasstransfer.2004.09.028
10.1002/we.258
10.2514/6.2012-3134
10.1023/A:1018522521531
10.1021/la902882b
10.1111/j.1365-2818.1978.tb01151.x
10.1007/s10973-010-0995-2
10.1021/jz2004528
10.1016/S0017-9310(02)00399-X
10.1098/rsta.2000.0689
10.1016/0017-9310(76)90183-6
10.1016/0017-9310(81)90062-4
10.1007/BF00549738
10.1016/0017-9310(94)90111-2
ContentType Journal Article
Copyright 2014 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QH
7UA
C1K
F1W
H96
L.G
7TB
7U5
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.expthermflusci.2014.04.007
DatabaseName CrossRef
Pascal-Francis
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aqualine
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1879-2286
EndPage 93
ExternalDocumentID 28640896
10_1016_j_expthermflusci_2014_04_007
S0894177714000958
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
UHS
VH1
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7QH
7UA
C1K
F1W
H96
L.G
7TB
7U5
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c492t-86e23dd0dd83f0b984d1f9556f90ea6605173fd829eadc0132e043d681cd7923
ISICitedReferencesCount 196
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340340300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0894-1777
IngestDate Sun Sep 28 12:14:20 EDT 2025
Tue Oct 07 09:35:57 EDT 2025
Wed Apr 02 07:46:50 EDT 2025
Tue Nov 18 22:21:31 EST 2025
Sat Nov 29 03:11:43 EST 2025
Fri Feb 23 02:31:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Supercooled surface
Wettability
Water droplet
Freezing
Heat transfer
Water
Numerical simulation
Supercooling
Defrosting
Experimental study
Droplet
Solidification
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c492t-86e23dd0dd83f0b984d1f9556f90ea6605173fd829eadc0132e043d681cd7923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1620113198
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_1677996466
proquest_miscellaneous_1620113198
pascalfrancis_primary_28640896
crossref_primary_10_1016_j_expthermflusci_2014_04_007
crossref_citationtrail_10_1016_j_expthermflusci_2014_04_007
elsevier_sciencedirect_doi_10_1016_j_expthermflusci_2014_04_007
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Experimental thermal and fluid science
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Hallett (b0130) 1963; 82
Li, Liu (b0110) 2010; 102
Costello, Corless (b0165) 2011; 112
Rubinshteĭn (b0140) 1971; vol. 27
Voller, Cross (b0135) 1981; 24
Rees, James (b0120) 1992; 13
Hochart, Fortin, Perron, Ilinca (b0010) 2007; 11
Cuenca, Sobrino (b0125) 2004; 43
Gurganus, Kostinski, Shaw (b0155) 2011; 2
Strub, Jabbour, Strub, Bédécarrats (b0040) 2003; 26
W.M. Schulze, U.S. Patent No. 5088277, 1992.
Zheng, Li, Bourdo, Khedir, Asar, Ryerson, Biris (b0075) 2011; 27
Madejski (b0085) 1976; 19
Y.H. Yeong, R. Mudafort, A. Steele, I. Bayer, E. Loth, Water droplet impact dynamics at icing conditions with and without superhydrophobicity, in: 4th AIAA Atmospheric and Space Environments Conference, New Orleans, Louisiana, USA, 2012 [June 25–28].
Pasandideh-Fard, Chandra, Mostaghimi (b0090) 2002; 45
Warren (b0115) 1984; 23
Xiao, Chaudhuri (b0035) 2012; 28
Hindmarsh, Wilson, Johns (b0055) 2005; 48
Tabakova, Feuillebois (b0105) 2004; 272
Egbert, Schrag, Bernhart, Zumwalt, Kendrew (b0020) 1989; 4
Hindmarsh, Wilson, Johns, Russell, Chen (b0060) 2005; 51
Yang, Guo, Li (b0080) 2011; 34
Feuillebois, Lasek, Creismas, Pigeonneau, Szaniawski (b0050) 1995; 169
Angell (b0160) 1983; 34
Suzuki, Nakajima, Yoshida, Sakai, Hashimoto, Kameshima, Okada (b0100) 2007; 445
Delplanque, Rangel (b0095) 1997; 32
James (b0145) 1968; 3
Gent, Dart, Cansdale, Gent, Dart, Cansdale (b0005) 2000; 358
Cao, Jones, Sikka, Wu, Gao (b0030) 2009; 25
Dumas, Krichi, Strub, Zeraouli (b0150) 1994; 37
Jung, Dorrestijn, Raps, Das, Megaridis, Poulikakos (b0070) 2011; 27
V.F. Petrenko, M. Higa, M. Starostin, L. Deresh, Pulse electrothermal de-icing, in: Proceedings of the Thirteenth International Offshore and Polar Engineering Conference, Honolulu, Hawaii, 2003, pp. 435–438.
Hindmarsh, Russell, Chen (b0045) 2003; 46
10.1016/j.expthermflusci.2014.04.007_b0065
Rees (10.1016/j.expthermflusci.2014.04.007_b0120) 1992; 13
Rubinshteĭn (10.1016/j.expthermflusci.2014.04.007_b0140) 1971; vol. 27
Egbert (10.1016/j.expthermflusci.2014.04.007_b0020) 1989; 4
Cao (10.1016/j.expthermflusci.2014.04.007_b0030) 2009; 25
10.1016/j.expthermflusci.2014.04.007_b0025
Angell (10.1016/j.expthermflusci.2014.04.007_b0160) 1983; 34
Dumas (10.1016/j.expthermflusci.2014.04.007_b0150) 1994; 37
Gurganus (10.1016/j.expthermflusci.2014.04.007_b0155) 2011; 2
Hindmarsh (10.1016/j.expthermflusci.2014.04.007_b0060) 2005; 51
Tabakova (10.1016/j.expthermflusci.2014.04.007_b0105) 2004; 272
Pasandideh-Fard (10.1016/j.expthermflusci.2014.04.007_b0090) 2002; 45
Costello (10.1016/j.expthermflusci.2014.04.007_b0165) 2011; 112
Cuenca (10.1016/j.expthermflusci.2014.04.007_b0125) 2004; 43
Hindmarsh (10.1016/j.expthermflusci.2014.04.007_b0055) 2005; 48
Yang (10.1016/j.expthermflusci.2014.04.007_b0080) 2011; 34
Madejski (10.1016/j.expthermflusci.2014.04.007_b0085) 1976; 19
Hindmarsh (10.1016/j.expthermflusci.2014.04.007_b0045) 2003; 46
Jung (10.1016/j.expthermflusci.2014.04.007_b0070) 2011; 27
Warren (10.1016/j.expthermflusci.2014.04.007_b0115) 1984; 23
Voller (10.1016/j.expthermflusci.2014.04.007_b0135) 1981; 24
10.1016/j.expthermflusci.2014.04.007_b0015
Strub (10.1016/j.expthermflusci.2014.04.007_b0040) 2003; 26
Delplanque (10.1016/j.expthermflusci.2014.04.007_b0095) 1997; 32
Suzuki (10.1016/j.expthermflusci.2014.04.007_b0100) 2007; 445
Hallett (10.1016/j.expthermflusci.2014.04.007_b0130) 1963; 82
Xiao (10.1016/j.expthermflusci.2014.04.007_b0035) 2012; 28
Zheng (10.1016/j.expthermflusci.2014.04.007_b0075) 2011; 27
Gent (10.1016/j.expthermflusci.2014.04.007_b0005) 2000; 358
Li (10.1016/j.expthermflusci.2014.04.007_b0110) 2010; 102
James (10.1016/j.expthermflusci.2014.04.007_b0145) 1968; 3
Hochart (10.1016/j.expthermflusci.2014.04.007_b0010) 2007; 11
Feuillebois (10.1016/j.expthermflusci.2014.04.007_b0050) 1995; 169
References_xml – volume: 358
  start-page: 2873
  year: 2000
  end-page: 2911
  ident: b0005
  article-title: Aircraft icing
  publication-title: Philos. Trans. R. Soc. London, Ser. A
– volume: 82
  start-page: 1046
  year: 1963
  end-page: 1050
  ident: b0130
  article-title: The temperature dependence of the viscosity of supercooled water
  publication-title: Proc. Phys. Soc.
– volume: 45
  start-page: 2229
  year: 2002
  end-page: 2242
  ident: b0090
  article-title: A three-dimensional model of droplet impact and solidification
  publication-title: Int. J. Heat Mass Transfer
– volume: 28
  start-page: 4434
  year: 2012
  end-page: 4446
  ident: b0035
  article-title: Design of anti-icing coatings using supercooled droplets as nano-to-microscale probes
  publication-title: Langmuir
– volume: 24
  start-page: 545
  year: 1981
  end-page: 556
  ident: b0135
  article-title: Accurate solutions of moving boundary problems using the enthalpy method
  publication-title: Int. J. Heat Mass Transfer
– volume: 27
  start-page: 3059
  year: 2011
  end-page: 3066
  ident: b0070
  article-title: Are superhydrophobic surfaces best for icephobicity?
  publication-title: Langmuir
– volume: 48
  start-page: 1017
  year: 2005
  end-page: 1021
  ident: b0055
  article-title: Using magnetic resonance to validate predictions of the solid fraction formed during recalescence of freezing drops
  publication-title: Int. J. Heat Mass Transfer
– volume: 32
  start-page: 1519
  year: 1997
  end-page: 1530
  ident: b0095
  article-title: An improved model for droplet solidification on a flat surface
  publication-title: J. Mater. Sci.
– volume: 13
  start-page: 2873
  year: 1992
  end-page: 2886
  ident: b0120
  article-title: Angular variation of the infrared emissivity of ice and water surfaces
  publication-title: Int. J. Remote Sens.
– volume: 2
  start-page: 1449
  year: 2011
  end-page: 1454
  ident: b0155
  article-title: Fast imaging of freezing drops: no preference for nucleation at the contact line
  publication-title: J. Phys. Chem. Lett.
– volume: 25
  start-page: 12444
  year: 2009
  end-page: 12448
  ident: b0030
  article-title: Anti-icing superhydrophobic coatings
  publication-title: Langmuir
– volume: 51
  start-page: 2640
  year: 2005
  end-page: 2648
  ident: b0060
  article-title: NMR verification of single droplet freezing models
  publication-title: AIChE J.
– volume: 34
  start-page: 2007
  year: 2011
  end-page: 2017
  ident: b0080
  article-title: Freezing mechanism of supercooled water droplet impinging on metal surfaces
  publication-title: Int. J. Refrig.
– volume: 19
  start-page: 1009
  year: 1976
  end-page: 1013
  ident: b0085
  article-title: Solidification of droplets on a cold surface
  publication-title: Int. J. Heat Mass Transfer
– reference: V.F. Petrenko, M. Higa, M. Starostin, L. Deresh, Pulse electrothermal de-icing, in: Proceedings of the Thirteenth International Offshore and Polar Engineering Conference, Honolulu, Hawaii, 2003, pp. 435–438.
– volume: 102
  start-page: 155
  year: 2010
  end-page: 162
  ident: b0110
  article-title: Thermal infrared mapping of the freezing phase change activity of micro liquid droplet
  publication-title: J. Therm. Anal. Calorim.
– volume: 272
  start-page: 225
  year: 2004
  end-page: 234
  ident: b0105
  article-title: On the solidification of a supercooled liquid droplet lying on a surface
  publication-title: J. Colloid Interface Sci.
– volume: 27
  start-page: 9936
  year: 2011
  end-page: 9943
  ident: b0075
  article-title: Exceptional superhydrophobicity and low velocity impact icephobicity of acetone-functionalized carbon nanotube films
  publication-title: Langmuir
– volume: 445
  start-page: 37
  year: 2007
  end-page: 41
  ident: b0100
  article-title: Freezing of water droplets on silicon surfaces coated with various silanes
  publication-title: Chem. Phys. Lett.
– volume: vol. 27
  year: 1971
  ident: b0140
  publication-title: The Stefan Problem
– volume: 11
  start-page: 319
  year: 2007
  end-page: 333
  ident: b0010
  article-title: Wind turbine performance under icing conditions
  publication-title: Wind Energy
– reference: Y.H. Yeong, R. Mudafort, A. Steele, I. Bayer, E. Loth, Water droplet impact dynamics at icing conditions with and without superhydrophobicity, in: 4th AIAA Atmospheric and Space Environments Conference, New Orleans, Louisiana, USA, 2012 [June 25–28].
– volume: 112
  start-page: 17
  year: 2011
  end-page: 37
  ident: b0165
  article-title: The direct measurement of temperature changes within freeze-fracture specimens during rapid quenching in liquid coolants
  publication-title: J. Microsc.
– volume: 37
  start-page: 737
  year: 1994
  end-page: 746
  ident: b0150
  article-title: Models for the heat transfers during the transformations inside an emulsion – I. Crystallizations of the undercooled droplets
  publication-title: Int. J. Heat Mass Transfer
– volume: 34
  start-page: 593
  year: 1983
  end-page: 630
  ident: b0160
  article-title: Supercooled water
  publication-title: Annu. Rev. Phys. Chem.
– volume: 4
  start-page: 1855
  year: 1989
  end-page: 1861
  ident: b0020
  article-title: An investigation of power line de-icing by electro-impulse methods
  publication-title: IEEE Trans. Power Delivery
– volume: 26
  start-page: 59
  year: 2003
  end-page: 68
  ident: b0040
  article-title: Experimental study and modeling of the crystallization of a water droplet
  publication-title: Int. J. Refrig.
– volume: 23
  start-page: 1206
  year: 1984
  end-page: 1225
  ident: b0115
  article-title: Optical constants of ice from the ultraviolet to the microwave
  publication-title: Appl. Opt.
– volume: 169
  start-page: 90
  year: 1995
  end-page: 102
  ident: b0050
  article-title: Freezing of a subcooled liquid droplet
  publication-title: J. Colloid Interface Sci.
– volume: 43
  start-page: 4598
  year: 2004
  end-page: 4602
  ident: b0125
  article-title: Experimental measurements for studying angular and spectral variation of thermal infrared emissivity
  publication-title: Appl. Opt.
– volume: 3
  start-page: 540
  year: 1968
  end-page: 543
  ident: b0145
  article-title: The thermal diffusivity of ice and water between −40 and 60
  publication-title: J. Mater. Sci.
– reference: W.M. Schulze, U.S. Patent No. 5088277, 1992.
– volume: 46
  start-page: 1199
  year: 2003
  end-page: 1213
  ident: b0045
  article-title: Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet
  publication-title: Int. J. Heat Mass Transfer
– volume: 26
  start-page: 59
  issue: 1
  year: 2003
  ident: 10.1016/j.expthermflusci.2014.04.007_b0040
  article-title: Experimental study and modeling of the crystallization of a water droplet
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(02)00021-X
– volume: 169
  start-page: 90
  year: 1995
  ident: 10.1016/j.expthermflusci.2014.04.007_b0050
  article-title: Freezing of a subcooled liquid droplet
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1995.1010
– ident: 10.1016/j.expthermflusci.2014.04.007_b0015
– volume: 27
  start-page: 9936
  year: 2011
  ident: 10.1016/j.expthermflusci.2014.04.007_b0075
  article-title: Exceptional superhydrophobicity and low velocity impact icephobicity of acetone-functionalized carbon nanotube films
  publication-title: Langmuir
  doi: 10.1021/la201548k
– volume: 34
  start-page: 2007
  issue: 8
  year: 2011
  ident: 10.1016/j.expthermflusci.2014.04.007_b0080
  article-title: Freezing mechanism of supercooled water droplet impinging on metal surfaces
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2011.07.001
– volume: 23
  start-page: 1206
  year: 1984
  ident: 10.1016/j.expthermflusci.2014.04.007_b0115
  article-title: Optical constants of ice from the ultraviolet to the microwave
  publication-title: Appl. Opt.
  doi: 10.1364/AO.23.001206
– volume: 272
  start-page: 225
  year: 2004
  ident: 10.1016/j.expthermflusci.2014.04.007_b0105
  article-title: On the solidification of a supercooled liquid droplet lying on a surface
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2003.10.029
– volume: 13
  start-page: 2873
  year: 1992
  ident: 10.1016/j.expthermflusci.2014.04.007_b0120
  article-title: Angular variation of the infrared emissivity of ice and water surfaces
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169208904088
– volume: 51
  start-page: 2640
  issue: 10
  year: 2005
  ident: 10.1016/j.expthermflusci.2014.04.007_b0060
  article-title: NMR verification of single droplet freezing models
  publication-title: AIChE J.
  doi: 10.1002/aic.10521
– volume: 43
  start-page: 4598
  year: 2004
  ident: 10.1016/j.expthermflusci.2014.04.007_b0125
  article-title: Experimental measurements for studying angular and spectral variation of thermal infrared emissivity
  publication-title: Appl. Opt.
  doi: 10.1364/AO.43.004598
– ident: 10.1016/j.expthermflusci.2014.04.007_b0025
– volume: 28
  start-page: 4434
  issue: 9
  year: 2012
  ident: 10.1016/j.expthermflusci.2014.04.007_b0035
  article-title: Design of anti-icing coatings using supercooled droplets as nano-to-microscale probes
  publication-title: Langmuir
  doi: 10.1021/la2034565
– volume: 45
  start-page: 2229
  issue: 11
  year: 2002
  ident: 10.1016/j.expthermflusci.2014.04.007_b0090
  article-title: A three-dimensional model of droplet impact and solidification
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(01)00336-2
– volume: vol. 27
  year: 1971
  ident: 10.1016/j.expthermflusci.2014.04.007_b0140
– volume: 445
  start-page: 37
  issue: 1
  year: 2007
  ident: 10.1016/j.expthermflusci.2014.04.007_b0100
  article-title: Freezing of water droplets on silicon surfaces coated with various silanes
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.07.066
– volume: 82
  start-page: 1046
  year: 1963
  ident: 10.1016/j.expthermflusci.2014.04.007_b0130
  article-title: The temperature dependence of the viscosity of supercooled water
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0370-1328/82/6/326
– volume: 27
  start-page: 3059
  year: 2011
  ident: 10.1016/j.expthermflusci.2014.04.007_b0070
  article-title: Are superhydrophobic surfaces best for icephobicity?
  publication-title: Langmuir
  doi: 10.1021/la104762g
– volume: 4
  start-page: 1855
  issue: 3
  year: 1989
  ident: 10.1016/j.expthermflusci.2014.04.007_b0020
  article-title: An investigation of power line de-icing by electro-impulse methods
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/61.32682
– volume: 34
  start-page: 593
  issue: 1
  year: 1983
  ident: 10.1016/j.expthermflusci.2014.04.007_b0160
  article-title: Supercooled water
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.34.100183.003113
– volume: 48
  start-page: 1017
  issue: 5
  year: 2005
  ident: 10.1016/j.expthermflusci.2014.04.007_b0055
  article-title: Using magnetic resonance to validate predictions of the solid fraction formed during recalescence of freezing drops
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.09.028
– volume: 11
  start-page: 319
  issue: 4
  year: 2007
  ident: 10.1016/j.expthermflusci.2014.04.007_b0010
  article-title: Wind turbine performance under icing conditions
  publication-title: Wind Energy
  doi: 10.1002/we.258
– ident: 10.1016/j.expthermflusci.2014.04.007_b0065
  doi: 10.2514/6.2012-3134
– volume: 32
  start-page: 1519
  issue: 6
  year: 1997
  ident: 10.1016/j.expthermflusci.2014.04.007_b0095
  article-title: An improved model for droplet solidification on a flat surface
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1018522521531
– volume: 25
  start-page: 12444
  issue: 21
  year: 2009
  ident: 10.1016/j.expthermflusci.2014.04.007_b0030
  article-title: Anti-icing superhydrophobic coatings
  publication-title: Langmuir
  doi: 10.1021/la902882b
– volume: 112
  start-page: 17
  issue: 1
  year: 2011
  ident: 10.1016/j.expthermflusci.2014.04.007_b0165
  article-title: The direct measurement of temperature changes within freeze-fracture specimens during rapid quenching in liquid coolants
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.1978.tb01151.x
– volume: 102
  start-page: 155
  issue: 1
  year: 2010
  ident: 10.1016/j.expthermflusci.2014.04.007_b0110
  article-title: Thermal infrared mapping of the freezing phase change activity of micro liquid droplet
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-010-0995-2
– volume: 2
  start-page: 1449
  issue: 12
  year: 2011
  ident: 10.1016/j.expthermflusci.2014.04.007_b0155
  article-title: Fast imaging of freezing drops: no preference for nucleation at the contact line
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2004528
– volume: 46
  start-page: 1199
  issue: 7
  year: 2003
  ident: 10.1016/j.expthermflusci.2014.04.007_b0045
  article-title: Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(02)00399-X
– volume: 358
  start-page: 2873
  year: 2000
  ident: 10.1016/j.expthermflusci.2014.04.007_b0005
  article-title: Aircraft icing
  publication-title: Philos. Trans. R. Soc. London, Ser. A
  doi: 10.1098/rsta.2000.0689
– volume: 19
  start-page: 1009
  issue: 9
  year: 1976
  ident: 10.1016/j.expthermflusci.2014.04.007_b0085
  article-title: Solidification of droplets on a cold surface
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(76)90183-6
– volume: 24
  start-page: 545
  year: 1981
  ident: 10.1016/j.expthermflusci.2014.04.007_b0135
  article-title: Accurate solutions of moving boundary problems using the enthalpy method
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(81)90062-4
– volume: 3
  start-page: 540
  year: 1968
  ident: 10.1016/j.expthermflusci.2014.04.007_b0145
  article-title: The thermal diffusivity of ice and water between −40 and 60°C
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00549738
– volume: 37
  start-page: 737
  issue: 5
  year: 1994
  ident: 10.1016/j.expthermflusci.2014.04.007_b0150
  article-title: Models for the heat transfers during the transformations inside an emulsion – I. Crystallizations of the undercooled droplets
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(94)90111-2
SSID ssj0008210
Score 2.499445
Snippet •We study the heat transfer of water droplets freezing on supercooled surfaces.•A droplet changing from water to ice shows four distinct consecutive...
We present an experimental and numerical study on the freezing of static water droplets on surfaces with different wettability when the surfaces are subject to...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 86
SubjectTerms Applied sciences
Cooling
Droplets
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Freezing
Fundamental areas of phenomenology (including applications)
Heat conduction
Heat transfer
Heat transfer in inhomogeneous media, in porous media, and through interfaces
Mathematical analysis
Mathematical models
Physics
Supercooled surface
Theoretical studies. Data and constants. Metering
Water droplet
Wettability
Title Freezing of water droplets on solid surfaces: An experimental and numerical study
URI https://dx.doi.org/10.1016/j.expthermflusci.2014.04.007
https://www.proquest.com/docview/1620113198
https://www.proquest.com/docview/1677996466
Volume 57
WOSCitedRecordID wos000340340300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-2286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008210
  issn: 0894-1777
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rq9MwFA9zV0QR8XHF-bhEEL9Ipe3aPPSDDNl8jakwYd9KljS4MbvZrfPiX-9Jk2YblyvzgzDKWpI05Px6cpJz8jsIPYtiFQqidBDGUgeJTHXAU1i10oQrShUVUtWU-UM6GrHJhH9ptT41Z2G2C1oU7Pycr_6rqOEZCNscnf0HcftG4QH8B6HDFcQO16MEPyjz_LeLZf4l6gzgpYkSt44BePdMvVhXpTaxWG5b8IDm3-ykF5V15Cz26GfnPmhvV9ZYjz9cHb2oTMtWV-xFDVTqu7C--neiKsXWhwDN7MH-_X2HKPGBVV498SSIqEvC4nSpJZt2yrDhuK5vbB7ECwrb7h3MYSZa1V2GvkJHTchd8tISm-8mqsY5P_qcDb4Nh9m4Pxk_X_0MTAox42p3-VSuoJOYppy10UnvQ3_y0U_MLK7JKXzHrwFUfbjf5R24zGK5uRJrEIS2CVAuzOW1gTK-jW65lQXuWUTcQa28uItu7PFN3kNfG2zgpcY1NnCDDbwscI0N3GDjFe4VeB8ZGKSMPTJwjYxTNB70x2_fBy6nRiATHm8CRvK4q1SoFOvqcMpZoiLN05RoHuaCEEPZ1tWKxRxUjDSOuDxMuoqwSCpDNXkftYtlkT9AWJAcTG0qUhkZTkdYusupNCFWTEynULuDXjfDlknHN2_SniyyJrBwnh0OemYGPQvhF9IOSn3tleVdObLem0ZCmUO8tQ0zQNyRLZwdCNa_PmYkAeyQDnraSDoDXWwcbKLIl9U6i4gxp2FSY38rQynnJCHk4RFlHqHru2_vMWpvyip_gq7K7Wa2Ls8cwP8AaC--4w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Freezing+of+water+droplets+on+solid+surfaces%3A+An+experimental+and+numerical+study&rft.jtitle=Experimental+thermal+and+fluid+science&rft.au=Chaudhary%2C+Gaurav&rft.au=Li%2C+Ri&rft.date=2014-09-01&rft.issn=0894-1777&rft.volume=57&rft.spage=86&rft.epage=93&rft_id=info:doi/10.1016%2Fj.expthermflusci.2014.04.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1777&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1777&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1777&client=summon