Innovative Developments in Lumbar Interbody Cage Materials and Design: A Comprehensive Narrative Review

This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal su...

Full description

Saved in:
Bibliographic Details
Published in:Asian spine journal Vol. 18; no. 3; pp. 444 - 457
Main Authors: Chang, Sam Yeol, Kang, Dong-Ho, Cho, Samuel K.
Format: Journal Article
Language:English
Published: Korea (South) Korean Society of Spine Surgery 01.06.2024
Korean Spine Society
대한척추외과학회
Subjects:
ISSN:1976-1902, 1976-7846
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient’s anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery.
AbstractList This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient’s anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery.
This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient's anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery.This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient's anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery.
This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient’s anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery. KCI Citation Count: 0
Author Kang, Dong-Ho
Chang, Sam Yeol
Cho, Samuel K.
AuthorAffiliation 4 Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
1 Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul, Korea
2 Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, Korea
3 Department of Orthopaedic Surgery, Spine Center, Samsung Medical Center, Seoul, Korea
AuthorAffiliation_xml – name: 2 Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, Korea
– name: 1 Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul, Korea
– name: 3 Department of Orthopaedic Surgery, Spine Center, Samsung Medical Center, Seoul, Korea
– name: 4 Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Author_xml – sequence: 1
  givenname: Sam Yeol
  orcidid: 0000-0003-4152-687X
  surname: Chang
  fullname: Chang, Sam Yeol
– sequence: 2
  givenname: Dong-Ho
  orcidid: 0000-0002-9114-0150
  surname: Kang
  fullname: Kang, Dong-Ho
– sequence: 3
  givenname: Samuel K.
  orcidid: 0000-0001-7511-2486
  surname: Cho
  fullname: Cho, Samuel K.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38146053$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003096287$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp1kstvEzEQxleoiJbSK0e0R4SU4LG9js0FReEVKYBUlbPltSep01072Jug_vc4jyKKhC9-fd9vxp55Xp2FGLCqXgIZMxAg3pq8HlNC2ZhwMnlSXYCaiNFEcnF2WoMi9Ly6ynlNymBUcsWeVedMAhekYRfVah5C3JnB77D-gDvs4qbHMOTah3qx7VuT6nkYMLXR3dczs8L6qylbb7pcm-CKJ_tVeFdP61nsNwlvMeQ965tJ6Ui9xp3HXy-qp8viwavTfFn9-PTxZvZltPj-eT6bLkaWKzqMJo3gjXSWSCZapMK1krnGSCcbAGudgaVjElnjKAAgZca00DYMSKuYMpZdVm-O3JCW-s56HY0_zKuo75KeXt_MNZSXKwK8iOdHsYtmrTfJ9ybdHxyHg5hW2qTB2w61sooJJyTh3HCFRAJzvOSBDBgnTVNY74-szbbt0dnyicl0j6CPb4K_LUntNAClVMpJIbw-EVL8ucU86N5ni11nAsZt1lQRAaW4TBXpq7-D_YnyUNci4EeBTTHnhEtt_VDqEfexfVe-QB86SJcO0vsO0vsOKrbxP7YH8n8MvwEi-sb0
CitedBy_id crossref_primary_10_3390_jcm13237036
crossref_primary_10_1016_j_wneu_2024_11_113
crossref_primary_10_3390_app15116323
crossref_primary_10_1007_s40964_025_01185_3
crossref_primary_10_3390_jcm13102889
crossref_primary_10_1080_17434440_2024_2337295
crossref_primary_10_5312_wjo_v16_i9_108931
crossref_primary_10_3390_jpm14080809
crossref_primary_10_1016_j_bioactmat_2025_07_035
crossref_primary_10_1016_j_semss_2025_101192
crossref_primary_10_1097_BSD_0000000000001887
crossref_primary_10_1016_j_jare_2025_08_056
crossref_primary_10_1515_mt_2024_0484
crossref_primary_10_3390_jcm13195827
crossref_primary_10_3390_jcm13206223
crossref_primary_10_3390_coatings15050584
crossref_primary_10_3390_met15040355
crossref_primary_10_3390_biotech14030065
crossref_primary_10_1007_s00701_024_06043_9
crossref_primary_10_3390_ijms252312766
crossref_primary_10_1016_j_mtbio_2025_101576
Cites_doi 10.1002/jbm.a.32052
10.1016/j.progpolymsci.2019.05.004
10.1007/s00264-010-1146-x
10.1016/j.spinee.2012.02.002
10.3390/jpm12060986
10.1093/ons/opaa342
10.1016/j.spinee.2017.06.034
10.3389/fsurg.2022.949938
10.1111/os.12264
10.31616/asj.2022.0316
10.1089/ten.tec.2012.0746
10.1021/acsbiomaterials.8b01193
10.1016/j.spinee.2018.02.018
10.1126/science.aaa7169
10.1016/j.jconrel.2011.09.064
10.3109/02688697.2015.1036838
10.14245/ns.2143236.618
10.1016/j.wneu.2023.06.132
10.1016/j.biomaterials.2004.11.057
10.1002/(sici)1097-4628(19960222)59:8<1299::aid-app13>3.0.co;2-1
10.3390/ijms15045426
10.2106/jbjs.f.00538
10.1093/ons/opz240
10.1111/cid.12059
10.1016/s0142-9612(04)00063-8
10.14245/ns.2346244.122
10.3389/fbioe.2021.783816
10.31616/asj.2019.0260
10.3390/ma2030790
10.1080/15583724.2017.1332640
10.1016/j.progpolymsci.2007.05.006
10.1016/j.wneu.2016.02.075
10.1177/2192568219886278
10.1016/j.apsusc.2015.02.120
10.1016/j.msec.2013.03.027
10.1016/j.spinee.2022.01.003
10.1016/j.actbio.2012.01.031
10.14444/8207
10.1080/17434440.2022.2020637
10.1016/j.matlet.2015.02.074
10.1016/j.jmbbm.2018.01.017
10.4055/cios.2011.3.1.39
10.1177/2192568218814531
10.1186/s12891-021-04803-7
10.1007/s00586-013-3085-x
10.1177/2192568218770769
10.1016/j.jocn.2016.05.028
10.1002/term.3111
10.1016/j.injury.2018.11.008
10.1016/j.wneu.2021.04.090
10.1007/s00784-018-2453-7
10.1016/j.biomaterials.2009.05.067
10.1007/s00586-022-07272-1
10.1038/s41598-021-96400-w
10.3171/spi.2000.93.1.0045
10.1186/s12891-015-0546-x
10.1016/j.wneu.2023.08.035
10.1038/srep09409
10.1016/j.matdes.2017.03.051
10.1016/s1010-5182(05)80438-x
10.1016/j.actbio.2018.08.030
10.1002/(sici)1097-4636(19981215)42:4<642::aid-jbm22>3.0.co;2-k
10.3171/2017.5.focus17197
10.3171/2014.4.spine14268
10.1002/app.1981.070261124
10.1016/j.biomaterials.2014.03.075
10.1097/00002517-200112000-00013
10.3892/etm.2023.12004
10.1016/j.colsurfb.2021.112055
10.1155/2021/2899043
10.1016/j.irbm.2013.07.001
10.3390/jcm9113657
10.1016/j.bone.2021.116163
10.31616/asj.2022.0040
10.1016/j.bioadv.2022.213119
10.3171/2020.6.spine191378
10.1007/s11999-016-4833-0
10.1016/j.biomaterials.2022.121699
10.1016/j.wneu.2023.07.141
10.1097/md.0000000000034705
10.1016/j.wneu.2018.06.063
10.1007/s10143-019-01114-3
10.31616/asj.2021.0486
10.1080/17425247.2021.1860015
10.1016/j.biomaterials.2007.08.018
10.1243/095441105x9345
10.1007/s00586-021-06912-2
10.1016/j.wneu.2021.11.056
10.1177/21925682231170613
10.3390/nano10061244
10.1016/j.jocn.2017.06.062
10.1016/j.actbio.2012.12.031
10.1016/j.solidstatesciences.2012.11.017
10.1111/os.12259
10.1055/s-2007-1006510
10.1097/00024720-200310000-00006
10.1007/s00264-018-3899-6
10.1002/1097-4636(2001)58:2<180::aid-jbm1005>3.0.co;2-5
10.1260/2040-2295.3.2.243
10.1002/jbm.a.36652
10.1016/j.jocn.2019.07.011
10.1007/s00586-014-3466-9
10.31616/asj.2022.0258
10.1016/j.spinee.2023.07.012
10.1016/j.spinee.2019.10.003
10.1002/adhm.201601269
10.1016/j.spinee.2018.01.003
10.1016/j.actbio.2012.04.005
10.1089/ten.tec.2008.0288
10.1186/s12891-023-06949-y
10.1097/01.brs.0000158971.74152.b6
10.1186/s40824-021-00233-7
10.31616/asj.2022.0053
10.1016/j.progpolymsci.2010.04.002
10.1302/0301-620x.102b8.bjj-2019-1448.r1
10.1016/0142-9612(95)98270-o
10.1016/j.wneu.2018.09.160
10.1111/aor.12153
10.1097/brs.0000000000000336
10.21037/jss.2018.03.16
10.1097/brs.0000000000000703
ContentType Journal Article
Copyright Copyright © 2024 by Korean Society of Spine Surgery 2024
Copyright_xml – notice: Copyright © 2024 by Korean Society of Spine Surgery 2024
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
ACYCR
DOI 10.31616/asj.2023.0407
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1976-7846
EndPage 457
ExternalDocumentID oai_kci_go_kr_ARTI_10539014
oai_doaj_org_article_9c936d68044a49e0813d4e35e3134055
PMC11222887
38146053
10_31616_asj_2023_0407
Genre Journal Article
GroupedDBID 5-W
53G
7X7
8FI
8JR
8XY
AAKDD
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CITATION
DIK
E3Z
EF.
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
M48
M7P
O5R
O5S
OK1
PGMZT
PIMPY
RPM
UKHRP
8FJ
9ZL
ADRAZ
ALIPV
CCPQU
HMCUK
NPM
PHGZM
PHGZT
PQGLB
7X8
5PM
ACYCR
M~E
ID FETCH-LOGICAL-c492t-756458dc0836be26db83d5a8d8511ccda1fd38e35d2111e23aab1b5310b939ac3
IEDL.DBID DOA
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001134311100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1976-1902
IngestDate Wed Jul 03 03:46:23 EDT 2024
Fri Oct 03 12:50:24 EDT 2025
Tue Nov 04 02:05:32 EST 2025
Sun Nov 09 10:33:47 EST 2025
Mon Jul 21 05:49:58 EDT 2025
Sat Nov 29 04:09:23 EST 2025
Tue Nov 18 22:25:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Surface modification
Expandable cage
3D printing
Biodegradable cage
Lumbar interbody fusion
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-756458dc0836be26db83d5a8d8511ccda1fd38e35d2111e23aab1b5310b939ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
https://doi.org/10.31616/asj.2023.0407
ORCID 0000-0002-9114-0150
0000-0001-7511-2486
0000-0003-4152-687X
OpenAccessLink https://doaj.org/article/9c936d68044a49e0813d4e35e3134055
PMID 38146053
PQID 2906178439
PQPubID 23479
PageCount 14
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10539014
doaj_primary_oai_doaj_org_article_9c936d68044a49e0813d4e35e3134055
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11222887
proquest_miscellaneous_2906178439
pubmed_primary_38146053
crossref_citationtrail_10_31616_asj_2023_0407
crossref_primary_10_31616_asj_2023_0407
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
PublicationTitle Asian spine journal
PublicationTitleAlternate Asian Spine J
PublicationYear 2024
Publisher Korean Society of Spine Surgery
Korean Spine Society
대한척추외과학회
Publisher_xml – name: Korean Society of Spine Surgery
– name: Korean Spine Society
– name: 대한척추외과학회
References ref57
ref56
ref58
ref53
ref52
ref55
ref54
McAfee (ref103) 2005
ref51
ref50
Lu (ref33) 2019
ref46
ref45
ref48
ref47
ref42
ref41
ref44
Niu (ref13) 2010
ref49
ref8
ref9
ref3
ref5
ref100
ref101
Brantigan (ref11) 1991
ref40
Ang (ref97) 2007
Wang (ref43) 2020
ref35
ref34
ref37
ref36
ref31
ref30
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
Mobbs (ref4) 2015
ref12
Bagby (ref6) 1999
ref15
Olivares-Navarrete (ref19) 2015
ref128
ref14
ref129
ref126
ref96
ref127
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref18
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
Kuslich (ref7) 1998
ref86
ref85
ref88
ref135
ref87
Jiya (ref78) 2009
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref109
Lv (ref28) 2023
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref2
ref1
Guyer (ref59) 2016
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref86
  doi: 10.1002/jbm.a.32052
– ident: ref93
  doi: 10.1016/j.progpolymsci.2019.05.004
– ident: ref90
  doi: 10.1007/s00264-010-1146-x
– ident: ref58
  doi: 10.1016/j.spinee.2012.02.002
– ident: ref45
  doi: 10.3390/jpm12060986
– ident: ref118
  doi: 10.1093/ons/opaa342
– start-page: 198
  volume-title: Titanium-coated PEEK versus uncoated PEEK cages in lumbar interbody fusion: a systematic review and meta-analysis of randomized controlled trial
  year: 2023
  ident: ref28
– ident: ref24
  doi: 10.1016/j.spinee.2017.06.034
– start-page: 1857
  volume-title: The Bagby and Kuslich (BAK) method of lumbar interbody fusion
  year: 1999
  ident: ref6
– ident: ref127
  doi: 10.3389/fsurg.2022.949938
– ident: ref101
  doi: 10.1111/os.12264
– ident: ref104
  doi: 10.31616/asj.2022.0316
– ident: ref66
  doi: 10.1089/ten.tec.2012.0746
– ident: ref21
  doi: 10.1021/acsbiomaterials.8b01193
– ident: ref22
  doi: 10.1016/j.spinee.2018.02.018
– ident: ref65
  doi: 10.1126/science.aaa7169
– ident: ref83
  doi: 10.1016/j.jconrel.2011.09.064
– ident: ref108
  doi: 10.3109/02688697.2015.1036838
– ident: ref111
  doi: 10.14245/ns.2143236.618
– ident: ref57
  doi: 10.1016/j.wneu.2023.06.132
– ident: ref88
  doi: 10.1016/j.biomaterials.2004.11.057
– ident: ref79
  doi: 10.1002/(sici)1097-4628(19960222)59:8<1299::aid-app13>3.0.co;2-1
– ident: ref17
  doi: 10.3390/ijms15045426
– ident: ref31
  doi: 10.2106/jbjs.f.00538
– ident: ref122
  doi: 10.1093/ons/opz240
– ident: ref35
  doi: 10.1111/cid.12059
– ident: ref89
  doi: 10.1016/s0142-9612(04)00063-8
– ident: ref53
  doi: 10.14245/ns.2346244.122
– ident: ref135
  doi: 10.3389/fbioe.2021.783816
– start-page: S277
  volume-title: A carbon fiber implant to aid interbody lumbar fusion: mechanical testing
  year: 1991
  ident: ref11
– ident: ref131
  doi: 10.31616/asj.2019.0260
– ident: ref10
  doi: 10.3390/ma2030790
– ident: ref92
  doi: 10.1080/15583724.2017.1332640
– ident: ref68
  doi: 10.1016/j.progpolymsci.2007.05.006
– ident: ref119
  doi: 10.1016/j.wneu.2016.02.075
– ident: ref132
  doi: 10.1177/2192568219886278
– ident: ref87
  doi: 10.1016/j.apsusc.2015.02.120
– ident: ref36
  doi: 10.1016/j.msec.2013.03.027
– ident: ref51
  doi: 10.1016/j.spinee.2022.01.003
– ident: ref70
  doi: 10.1016/j.actbio.2012.01.031
– ident: ref44
  doi: 10.14444/8207
– ident: ref54
  doi: 10.1080/17434440.2022.2020637
– ident: ref85
  doi: 10.1016/j.matlet.2015.02.074
– ident: ref15
  doi: 10.1016/j.jmbbm.2018.01.017
– ident: ref106
  doi: 10.4055/cios.2011.3.1.39
– ident: ref47
  doi: 10.1177/2192568218814531
– ident: ref62
  doi: 10.1186/s12891-021-04803-7
– ident: ref99
  doi: 10.1007/s00586-013-3085-x
– start-page: 655
  volume-title: Compressive properties and degradability of poly(epsilon-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation
  year: 2007
  ident: ref97
– ident: ref1
  doi: 10.1177/2192568218770769
– ident: ref18
  doi: 10.1016/j.jocn.2016.05.028
– start-page: 1267
  volume-title: The Bagby and Kuslich method of lumbar interbody fusion: history, techniques, and 2-year follow-up results of a United States prospective, multicenter trial
  year: 1998
  ident: ref7
– ident: ref100
  doi: 10.1002/term.3111
– ident: ref76
  doi: 10.1016/j.injury.2018.11.008
– ident: ref125
  doi: 10.1016/j.wneu.2021.04.090
– ident: ref41
  doi: 10.1007/s00784-018-2453-7
– start-page: 51
  volume-title: Application of a novel porous tantalum implant in rabbit anterior lumbar spine fusion model: in vitro and in vivo experiments
  year: 2019
  ident: ref33
– ident: ref67
  doi: 10.1016/j.biomaterials.2009.05.067
– ident: ref29
  doi: 10.1007/s00586-022-07272-1
– ident: ref48
  doi: 10.1038/s41598-021-96400-w
– ident: ref130
  doi: 10.3171/spi.2000.93.1.0045
– ident: ref9
  doi: 10.1186/s12891-015-0546-x
– start-page: E1146
  volume-title: Evaluating osseointegration into a deeply porous titanium scaffold: a biomechanical comparison with PEEK and allograft
  year: 2016
  ident: ref59
– ident: ref126
  doi: 10.1016/j.wneu.2023.08.035
– start-page: 399
  volume-title: Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors
  year: 2015
  ident: ref19
– ident: ref52
  doi: 10.1038/srep09409
– ident: ref71
  doi: 10.1016/j.matdes.2017.03.051
– ident: ref74
  doi: 10.1016/s1010-5182(05)80438-x
– ident: ref69
  doi: 10.1016/j.actbio.2018.08.030
– ident: ref73
  doi: 10.1002/(sici)1097-4636(19981215)42:4<642::aid-jbm22>3.0.co;2-k
– ident: ref94
  doi: 10.1016/j.biomaterials.2009.05.067
– ident: ref120
  doi: 10.3171/2017.5.focus17197
– ident: ref5
  doi: 10.3171/2014.4.spine14268
– start-page: 111
  volume-title: Tantalum fusion device in anterior cervical discectomy and fusion for treatment of cervical degeneration disease: a systematic review and meta-analysis
  year: 2020
  ident: ref43
– start-page: 310
  volume-title: Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: titanium cages versus polyetheretherketone (PEEK) cages
  year: 2010
  ident: ref13
– ident: ref80
  doi: 10.1002/app.1981.070261124
– ident: ref95
  doi: 10.1016/j.biomaterials.2014.03.075
– ident: ref2
  doi: 10.1097/00002517-200112000-00013
– ident: ref27
  doi: 10.3892/etm.2023.12004
– ident: ref32
  doi: 10.1016/j.colsurfb.2021.112055
– start-page: 233
  volume-title: Posterior lumbar interbody fusion using nonresorbable poly-ether-ether-ketone versus resorbable poly-L-lactide-co-D,L-lactide fusion devices: a prospective, randomized study to assess fusion and clinical outcome
  year: 2009
  ident: ref78
– ident: ref37
  doi: 10.1155/2021/2899043
– ident: ref133
  doi: 10.1016/j.irbm.2013.07.001
– ident: ref34
  doi: 10.3390/jcm9113657
– ident: ref91
  doi: 10.1016/j.bone.2021.116163
– ident: ref105
  doi: 10.31616/asj.2022.0040
– ident: ref61
  doi: 10.1016/j.bioadv.2022.213119
– ident: ref121
  doi: 10.3171/2020.6.spine191378
– ident: ref63
  doi: 10.1007/s11999-016-4833-0
– ident: ref3
  doi: 10.1016/j.biomaterials.2022.121699
– ident: ref116
  doi: 10.1016/j.wneu.2023.07.141
– ident: ref113
  doi: 10.1097/md.0000000000034705
– ident: ref110
  doi: 10.1016/j.wneu.2018.06.063
– ident: ref112
  doi: 10.1007/s10143-019-01114-3
– ident: ref124
  doi: 10.31616/asj.2021.0486
– ident: ref42
  doi: 10.1080/17425247.2021.1860015
– ident: ref96
  doi: 10.1016/j.biomaterials.2007.08.018
– ident: ref55
  doi: 10.1243/095441105x9345
– ident: ref56
  doi: 10.1007/s00586-021-06912-2
– ident: ref123
  doi: 10.1016/j.wneu.2021.11.056
– ident: ref49
  doi: 10.1177/21925682231170613
– ident: ref8
  doi: 10.3390/nano10061244
– ident: ref12
  doi: 10.1016/j.jocn.2017.06.062
– ident: ref82
  doi: 10.1016/j.actbio.2012.12.031
– ident: ref98
  doi: 10.1016/j.solidstatesciences.2012.11.017
– ident: ref102
  doi: 10.1111/os.12259
– ident: ref72
  doi: 10.1055/s-2007-1006510
– ident: ref129
  doi: 10.1097/00024720-200310000-00006
– start-page: S60
  volume-title: The indications for interbody fusion cages in the treatment of spondylolisthesis: analysis of 120 cases
  year: 2005
  ident: ref103
– ident: ref40
  doi: 10.1007/s00264-018-3899-6
– ident: ref30
  doi: 10.1002/1097-4636(2001)58:2<180::aid-jbm1005>3.0.co;2-5
– ident: ref64
  doi: 10.1260/2040-2295.3.2.243
– start-page: 2
  volume-title: Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF
  year: 2015
  ident: ref4
– ident: ref50
  doi: 10.1002/jbm.a.36652
– ident: ref25
  doi: 10.1016/j.jocn.2019.07.011
– ident: ref23
  doi: 10.1007/s00586-014-3466-9
– ident: ref20
  doi: 10.31616/asj.2022.0258
– ident: ref128
  doi: 10.1016/j.spinee.2023.07.012
– ident: ref26
  doi: 10.1016/j.spinee.2019.10.003
– ident: ref84
  doi: 10.1002/adhm.201601269
– ident: ref60
  doi: 10.1016/j.spinee.2018.01.003
– ident: ref38
  doi: 10.1016/j.actbio.2012.04.005
– ident: ref16
  doi: 10.1089/ten.tec.2008.0288
– ident: ref114
  doi: 10.1186/s12891-023-06949-y
– ident: ref77
  doi: 10.1097/01.brs.0000158971.74152.b6
– ident: ref134
  doi: 10.1186/s40824-021-00233-7
– ident: ref115
  doi: 10.31616/asj.2022.0053
– ident: ref81
  doi: 10.1016/j.progpolymsci.2010.04.002
– ident: ref39
  doi: 10.1302/0301-620x.102b8.bjj-2019-1448.r1
– ident: ref75
  doi: 10.1016/0142-9612(95)98270-o
– ident: ref46
  doi: 10.1016/j.wneu.2018.09.160
– ident: ref14
  doi: 10.1111/aor.12153
– ident: ref107
  doi: 10.1097/brs.0000000000000336
– ident: ref117
  doi: 10.21037/jss.2018.03.16
– ident: ref109
  doi: 10.1097/brs.0000000000000703
SSID ssj0000328493
Score 2.4138625
SecondaryResourceType review_article
Snippet This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the...
SourceID nrf
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 444
SubjectTerms 3d printing
biodegradable cage
expandable cage
lumbar interbody fusion
Review
surface modification
정형외과학
Title Innovative Developments in Lumbar Interbody Cage Materials and Design: A Comprehensive Narrative Review
URI https://www.ncbi.nlm.nih.gov/pubmed/38146053
https://www.proquest.com/docview/2906178439
https://pubmed.ncbi.nlm.nih.gov/PMC11222887
https://doaj.org/article/9c936d68044a49e0813d4e35e3134055
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003096287
Volume 18
WOSCitedRecordID wos001134311100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Asian Spine Journal, 2024, 18(3), , pp.444-457
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1976-7846
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000328493
  issn: 1976-1902
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BxYELouIVSisjkDilXcfOxu6traioBCsOIO3NGj_SLoVsld2txL9nbKerXQTiwilSYifOzHjmsz36BuBtzVuOTStLXeu2lNzWpbKINPGU1BSeKehjKjbRTCZqOtWfN0p9xZywTA-cBXeknRZjP1YjKVHqQBFMeBlEHQQXBDYSeymhno3FVPLBgtxuYtzlFG9LinpVZmwUhHDGR7j4dhjrhh-SCTdbESkR91Oc6fr2T5jz99TJjVh0_hgeDSCSneTB78K90D2By4uhwOltYBupQAs269jH1Q-LPUvbf3buf7IzciPsEy6z_THsPPWJuRzH7IRFH9GHq5zazibYZ3Zwls8RnsLX8_dfzj6UQxmF0kldLcsmEsYo7yIPtQ3V2FslfI3KR7DlnEfeeqFIpJ4WgzxUAtGSzgj3WS00OvEMdrp5F14AG9kGR7Ll1okglW5JrVa1Gkfkvq0VWEB5J0rjBo7xWOriu6G1RhK9IdGbKHoTRV_Au3X7m8yu8deWp1Ez61aRFTvdIFsxg62Yf9lKAW9Ir-bazVL_eL2cm-ve0Nrhgj5cxw0gWcDrO70bmmvxAAW7MF8tTKTG52TEQhfwPNvBekAi7qXSGwpQWxayNeLtJ93sKvF5E-StKnL2L__HP-7BQxKazNlsr2Bn2a_CPjxwt8vZoj-A-81UHaS58gvsGhRP
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+Developments+in+Lumbar+Interbody+Cage+Materials+and+Design%3A+A+Comprehensive+Narrative+Review&rft.jtitle=Asian+spine+journal&rft.au=Chang+Sam+Yeol&rft.au=Kang+Dong-Ho&rft.au=Cho+Samuel+Kang-Wook&rft.date=2024-06-01&rft.pub=%EB%8C%80%ED%95%9C%EC%B2%99%EC%B6%94%EC%99%B8%EA%B3%BC%ED%95%99%ED%9A%8C&rft.issn=1976-1902&rft.eissn=1976-7846&rft.spage=444&rft.epage=457&rft_id=info:doi/10.31616%2Fasj.2023.0407&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10539014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-1902&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-1902&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-1902&client=summon