Innovative Developments in Lumbar Interbody Cage Materials and Design: A Comprehensive Narrative Review
This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal su...
Saved in:
| Published in: | Asian spine journal Vol. 18; no. 3; pp. 444 - 457 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Korea (South)
Korean Society of Spine Surgery
01.06.2024
Korean Spine Society 대한척추외과학회 |
| Subjects: | |
| ISSN: | 1976-1902, 1976-7846 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient’s anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery. |
|---|---|
| AbstractList | This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient’s anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery. This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient's anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery.This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient's anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery. This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient’s anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery. KCI Citation Count: 0 |
| Author | Kang, Dong-Ho Chang, Sam Yeol Cho, Samuel K. |
| AuthorAffiliation | 4 Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA 1 Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul, Korea 2 Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, Korea 3 Department of Orthopaedic Surgery, Spine Center, Samsung Medical Center, Seoul, Korea |
| AuthorAffiliation_xml | – name: 2 Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, Korea – name: 1 Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul, Korea – name: 3 Department of Orthopaedic Surgery, Spine Center, Samsung Medical Center, Seoul, Korea – name: 4 Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA |
| Author_xml | – sequence: 1 givenname: Sam Yeol orcidid: 0000-0003-4152-687X surname: Chang fullname: Chang, Sam Yeol – sequence: 2 givenname: Dong-Ho orcidid: 0000-0002-9114-0150 surname: Kang fullname: Kang, Dong-Ho – sequence: 3 givenname: Samuel K. orcidid: 0000-0001-7511-2486 surname: Cho fullname: Cho, Samuel K. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38146053$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003096287$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNp1kstvEzEQxleoiJbSK0e0R4SU4LG9js0FReEVKYBUlbPltSep01072Jug_vc4jyKKhC9-fd9vxp55Xp2FGLCqXgIZMxAg3pq8HlNC2ZhwMnlSXYCaiNFEcnF2WoMi9Ly6ynlNymBUcsWeVedMAhekYRfVah5C3JnB77D-gDvs4qbHMOTah3qx7VuT6nkYMLXR3dczs8L6qylbb7pcm-CKJ_tVeFdP61nsNwlvMeQ965tJ6Ui9xp3HXy-qp8viwavTfFn9-PTxZvZltPj-eT6bLkaWKzqMJo3gjXSWSCZapMK1krnGSCcbAGudgaVjElnjKAAgZca00DYMSKuYMpZdVm-O3JCW-s56HY0_zKuo75KeXt_MNZSXKwK8iOdHsYtmrTfJ9ybdHxyHg5hW2qTB2w61sooJJyTh3HCFRAJzvOSBDBgnTVNY74-szbbt0dnyicl0j6CPb4K_LUntNAClVMpJIbw-EVL8ucU86N5ni11nAsZt1lQRAaW4TBXpq7-D_YnyUNci4EeBTTHnhEtt_VDqEfexfVe-QB86SJcO0vsO0vsOKrbxP7YH8n8MvwEi-sb0 |
| CitedBy_id | crossref_primary_10_3390_jcm13237036 crossref_primary_10_1016_j_wneu_2024_11_113 crossref_primary_10_3390_app15116323 crossref_primary_10_1007_s40964_025_01185_3 crossref_primary_10_3390_jcm13102889 crossref_primary_10_1080_17434440_2024_2337295 crossref_primary_10_5312_wjo_v16_i9_108931 crossref_primary_10_3390_jpm14080809 crossref_primary_10_1016_j_bioactmat_2025_07_035 crossref_primary_10_1016_j_semss_2025_101192 crossref_primary_10_1097_BSD_0000000000001887 crossref_primary_10_1016_j_jare_2025_08_056 crossref_primary_10_1515_mt_2024_0484 crossref_primary_10_3390_jcm13195827 crossref_primary_10_3390_jcm13206223 crossref_primary_10_3390_coatings15050584 crossref_primary_10_3390_met15040355 crossref_primary_10_3390_biotech14030065 crossref_primary_10_1007_s00701_024_06043_9 crossref_primary_10_3390_ijms252312766 crossref_primary_10_1016_j_mtbio_2025_101576 |
| Cites_doi | 10.1002/jbm.a.32052 10.1016/j.progpolymsci.2019.05.004 10.1007/s00264-010-1146-x 10.1016/j.spinee.2012.02.002 10.3390/jpm12060986 10.1093/ons/opaa342 10.1016/j.spinee.2017.06.034 10.3389/fsurg.2022.949938 10.1111/os.12264 10.31616/asj.2022.0316 10.1089/ten.tec.2012.0746 10.1021/acsbiomaterials.8b01193 10.1016/j.spinee.2018.02.018 10.1126/science.aaa7169 10.1016/j.jconrel.2011.09.064 10.3109/02688697.2015.1036838 10.14245/ns.2143236.618 10.1016/j.wneu.2023.06.132 10.1016/j.biomaterials.2004.11.057 10.1002/(sici)1097-4628(19960222)59:8<1299::aid-app13>3.0.co;2-1 10.3390/ijms15045426 10.2106/jbjs.f.00538 10.1093/ons/opz240 10.1111/cid.12059 10.1016/s0142-9612(04)00063-8 10.14245/ns.2346244.122 10.3389/fbioe.2021.783816 10.31616/asj.2019.0260 10.3390/ma2030790 10.1080/15583724.2017.1332640 10.1016/j.progpolymsci.2007.05.006 10.1016/j.wneu.2016.02.075 10.1177/2192568219886278 10.1016/j.apsusc.2015.02.120 10.1016/j.msec.2013.03.027 10.1016/j.spinee.2022.01.003 10.1016/j.actbio.2012.01.031 10.14444/8207 10.1080/17434440.2022.2020637 10.1016/j.matlet.2015.02.074 10.1016/j.jmbbm.2018.01.017 10.4055/cios.2011.3.1.39 10.1177/2192568218814531 10.1186/s12891-021-04803-7 10.1007/s00586-013-3085-x 10.1177/2192568218770769 10.1016/j.jocn.2016.05.028 10.1002/term.3111 10.1016/j.injury.2018.11.008 10.1016/j.wneu.2021.04.090 10.1007/s00784-018-2453-7 10.1016/j.biomaterials.2009.05.067 10.1007/s00586-022-07272-1 10.1038/s41598-021-96400-w 10.3171/spi.2000.93.1.0045 10.1186/s12891-015-0546-x 10.1016/j.wneu.2023.08.035 10.1038/srep09409 10.1016/j.matdes.2017.03.051 10.1016/s1010-5182(05)80438-x 10.1016/j.actbio.2018.08.030 10.1002/(sici)1097-4636(19981215)42:4<642::aid-jbm22>3.0.co;2-k 10.3171/2017.5.focus17197 10.3171/2014.4.spine14268 10.1002/app.1981.070261124 10.1016/j.biomaterials.2014.03.075 10.1097/00002517-200112000-00013 10.3892/etm.2023.12004 10.1016/j.colsurfb.2021.112055 10.1155/2021/2899043 10.1016/j.irbm.2013.07.001 10.3390/jcm9113657 10.1016/j.bone.2021.116163 10.31616/asj.2022.0040 10.1016/j.bioadv.2022.213119 10.3171/2020.6.spine191378 10.1007/s11999-016-4833-0 10.1016/j.biomaterials.2022.121699 10.1016/j.wneu.2023.07.141 10.1097/md.0000000000034705 10.1016/j.wneu.2018.06.063 10.1007/s10143-019-01114-3 10.31616/asj.2021.0486 10.1080/17425247.2021.1860015 10.1016/j.biomaterials.2007.08.018 10.1243/095441105x9345 10.1007/s00586-021-06912-2 10.1016/j.wneu.2021.11.056 10.1177/21925682231170613 10.3390/nano10061244 10.1016/j.jocn.2017.06.062 10.1016/j.actbio.2012.12.031 10.1016/j.solidstatesciences.2012.11.017 10.1111/os.12259 10.1055/s-2007-1006510 10.1097/00024720-200310000-00006 10.1007/s00264-018-3899-6 10.1002/1097-4636(2001)58:2<180::aid-jbm1005>3.0.co;2-5 10.1260/2040-2295.3.2.243 10.1002/jbm.a.36652 10.1016/j.jocn.2019.07.011 10.1007/s00586-014-3466-9 10.31616/asj.2022.0258 10.1016/j.spinee.2023.07.012 10.1016/j.spinee.2019.10.003 10.1002/adhm.201601269 10.1016/j.spinee.2018.01.003 10.1016/j.actbio.2012.04.005 10.1089/ten.tec.2008.0288 10.1186/s12891-023-06949-y 10.1097/01.brs.0000158971.74152.b6 10.1186/s40824-021-00233-7 10.31616/asj.2022.0053 10.1016/j.progpolymsci.2010.04.002 10.1302/0301-620x.102b8.bjj-2019-1448.r1 10.1016/0142-9612(95)98270-o 10.1016/j.wneu.2018.09.160 10.1111/aor.12153 10.1097/brs.0000000000000336 10.21037/jss.2018.03.16 10.1097/brs.0000000000000703 |
| ContentType | Journal Article |
| Copyright | Copyright © 2024 by Korean Society of Spine Surgery 2024 |
| Copyright_xml | – notice: Copyright © 2024 by Korean Society of Spine Surgery 2024 |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA ACYCR |
| DOI | 10.31616/asj.2023.0407 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text Korean Citation Index |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1976-7846 |
| EndPage | 457 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_10539014 oai_doaj_org_article_9c936d68044a49e0813d4e35e3134055 PMC11222887 38146053 10_31616_asj_2023_0407 |
| Genre | Journal Article |
| GroupedDBID | 5-W 53G 7X7 8FI 8JR 8XY AAKDD AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CITATION DIK E3Z EF. F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HYE KQ8 M48 M7P O5R O5S OK1 PGMZT PIMPY RPM UKHRP 8FJ 9ZL ADRAZ ALIPV CCPQU HMCUK NPM PHGZM PHGZT PQGLB 7X8 5PM ACYCR M~E |
| ID | FETCH-LOGICAL-c492t-756458dc0836be26db83d5a8d8511ccda1fd38e35d2111e23aab1b5310b939ac3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001134311100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1976-1902 |
| IngestDate | Wed Jul 03 03:46:23 EDT 2024 Fri Oct 03 12:50:24 EDT 2025 Tue Nov 04 02:05:32 EST 2025 Sun Nov 09 10:33:47 EST 2025 Mon Jul 21 05:49:58 EDT 2025 Sat Nov 29 04:09:23 EST 2025 Tue Nov 18 22:25:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Surface modification Expandable cage 3D printing Biodegradable cage Lumbar interbody fusion |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-756458dc0836be26db83d5a8d8511ccda1fd38e35d2111e23aab1b5310b939ac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 https://doi.org/10.31616/asj.2023.0407 |
| ORCID | 0000-0002-9114-0150 0000-0001-7511-2486 0000-0003-4152-687X |
| OpenAccessLink | https://doaj.org/article/9c936d68044a49e0813d4e35e3134055 |
| PMID | 38146053 |
| PQID | 2906178439 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10539014 doaj_primary_oai_doaj_org_article_9c936d68044a49e0813d4e35e3134055 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11222887 proquest_miscellaneous_2906178439 pubmed_primary_38146053 crossref_citationtrail_10_31616_asj_2023_0407 crossref_primary_10_31616_asj_2023_0407 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Korea (South) |
| PublicationPlace_xml | – name: Korea (South) |
| PublicationTitle | Asian spine journal |
| PublicationTitleAlternate | Asian Spine J |
| PublicationYear | 2024 |
| Publisher | Korean Society of Spine Surgery Korean Spine Society 대한척추외과학회 |
| Publisher_xml | – name: Korean Society of Spine Surgery – name: Korean Spine Society – name: 대한척추외과학회 |
| References | ref57 ref56 ref58 ref53 ref52 ref55 ref54 McAfee (ref103) 2005 ref51 ref50 Lu (ref33) 2019 ref46 ref45 ref48 ref47 ref42 ref41 ref44 Niu (ref13) 2010 ref49 ref8 ref9 ref3 ref5 ref100 ref101 Brantigan (ref11) 1991 ref40 Ang (ref97) 2007 Wang (ref43) 2020 ref35 ref34 ref37 ref36 ref31 ref30 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 Mobbs (ref4) 2015 ref12 Bagby (ref6) 1999 ref15 Olivares-Navarrete (ref19) 2015 ref128 ref14 ref129 ref126 ref96 ref127 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref18 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 Kuslich (ref7) 1998 ref86 ref85 ref88 ref135 ref87 Jiya (ref78) 2009 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref109 Lv (ref28) 2023 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref2 ref1 Guyer (ref59) 2016 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
| References_xml | – ident: ref86 doi: 10.1002/jbm.a.32052 – ident: ref93 doi: 10.1016/j.progpolymsci.2019.05.004 – ident: ref90 doi: 10.1007/s00264-010-1146-x – ident: ref58 doi: 10.1016/j.spinee.2012.02.002 – ident: ref45 doi: 10.3390/jpm12060986 – ident: ref118 doi: 10.1093/ons/opaa342 – start-page: 198 volume-title: Titanium-coated PEEK versus uncoated PEEK cages in lumbar interbody fusion: a systematic review and meta-analysis of randomized controlled trial year: 2023 ident: ref28 – ident: ref24 doi: 10.1016/j.spinee.2017.06.034 – start-page: 1857 volume-title: The Bagby and Kuslich (BAK) method of lumbar interbody fusion year: 1999 ident: ref6 – ident: ref127 doi: 10.3389/fsurg.2022.949938 – ident: ref101 doi: 10.1111/os.12264 – ident: ref104 doi: 10.31616/asj.2022.0316 – ident: ref66 doi: 10.1089/ten.tec.2012.0746 – ident: ref21 doi: 10.1021/acsbiomaterials.8b01193 – ident: ref22 doi: 10.1016/j.spinee.2018.02.018 – ident: ref65 doi: 10.1126/science.aaa7169 – ident: ref83 doi: 10.1016/j.jconrel.2011.09.064 – ident: ref108 doi: 10.3109/02688697.2015.1036838 – ident: ref111 doi: 10.14245/ns.2143236.618 – ident: ref57 doi: 10.1016/j.wneu.2023.06.132 – ident: ref88 doi: 10.1016/j.biomaterials.2004.11.057 – ident: ref79 doi: 10.1002/(sici)1097-4628(19960222)59:8<1299::aid-app13>3.0.co;2-1 – ident: ref17 doi: 10.3390/ijms15045426 – ident: ref31 doi: 10.2106/jbjs.f.00538 – ident: ref122 doi: 10.1093/ons/opz240 – ident: ref35 doi: 10.1111/cid.12059 – ident: ref89 doi: 10.1016/s0142-9612(04)00063-8 – ident: ref53 doi: 10.14245/ns.2346244.122 – ident: ref135 doi: 10.3389/fbioe.2021.783816 – start-page: S277 volume-title: A carbon fiber implant to aid interbody lumbar fusion: mechanical testing year: 1991 ident: ref11 – ident: ref131 doi: 10.31616/asj.2019.0260 – ident: ref10 doi: 10.3390/ma2030790 – ident: ref92 doi: 10.1080/15583724.2017.1332640 – ident: ref68 doi: 10.1016/j.progpolymsci.2007.05.006 – ident: ref119 doi: 10.1016/j.wneu.2016.02.075 – ident: ref132 doi: 10.1177/2192568219886278 – ident: ref87 doi: 10.1016/j.apsusc.2015.02.120 – ident: ref36 doi: 10.1016/j.msec.2013.03.027 – ident: ref51 doi: 10.1016/j.spinee.2022.01.003 – ident: ref70 doi: 10.1016/j.actbio.2012.01.031 – ident: ref44 doi: 10.14444/8207 – ident: ref54 doi: 10.1080/17434440.2022.2020637 – ident: ref85 doi: 10.1016/j.matlet.2015.02.074 – ident: ref15 doi: 10.1016/j.jmbbm.2018.01.017 – ident: ref106 doi: 10.4055/cios.2011.3.1.39 – ident: ref47 doi: 10.1177/2192568218814531 – ident: ref62 doi: 10.1186/s12891-021-04803-7 – ident: ref99 doi: 10.1007/s00586-013-3085-x – start-page: 655 volume-title: Compressive properties and degradability of poly(epsilon-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation year: 2007 ident: ref97 – ident: ref1 doi: 10.1177/2192568218770769 – ident: ref18 doi: 10.1016/j.jocn.2016.05.028 – start-page: 1267 volume-title: The Bagby and Kuslich method of lumbar interbody fusion: history, techniques, and 2-year follow-up results of a United States prospective, multicenter trial year: 1998 ident: ref7 – ident: ref100 doi: 10.1002/term.3111 – ident: ref76 doi: 10.1016/j.injury.2018.11.008 – ident: ref125 doi: 10.1016/j.wneu.2021.04.090 – ident: ref41 doi: 10.1007/s00784-018-2453-7 – start-page: 51 volume-title: Application of a novel porous tantalum implant in rabbit anterior lumbar spine fusion model: in vitro and in vivo experiments year: 2019 ident: ref33 – ident: ref67 doi: 10.1016/j.biomaterials.2009.05.067 – ident: ref29 doi: 10.1007/s00586-022-07272-1 – ident: ref48 doi: 10.1038/s41598-021-96400-w – ident: ref130 doi: 10.3171/spi.2000.93.1.0045 – ident: ref9 doi: 10.1186/s12891-015-0546-x – start-page: E1146 volume-title: Evaluating osseointegration into a deeply porous titanium scaffold: a biomechanical comparison with PEEK and allograft year: 2016 ident: ref59 – ident: ref126 doi: 10.1016/j.wneu.2023.08.035 – start-page: 399 volume-title: Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors year: 2015 ident: ref19 – ident: ref52 doi: 10.1038/srep09409 – ident: ref71 doi: 10.1016/j.matdes.2017.03.051 – ident: ref74 doi: 10.1016/s1010-5182(05)80438-x – ident: ref69 doi: 10.1016/j.actbio.2018.08.030 – ident: ref73 doi: 10.1002/(sici)1097-4636(19981215)42:4<642::aid-jbm22>3.0.co;2-k – ident: ref94 doi: 10.1016/j.biomaterials.2009.05.067 – ident: ref120 doi: 10.3171/2017.5.focus17197 – ident: ref5 doi: 10.3171/2014.4.spine14268 – start-page: 111 volume-title: Tantalum fusion device in anterior cervical discectomy and fusion for treatment of cervical degeneration disease: a systematic review and meta-analysis year: 2020 ident: ref43 – start-page: 310 volume-title: Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: titanium cages versus polyetheretherketone (PEEK) cages year: 2010 ident: ref13 – ident: ref80 doi: 10.1002/app.1981.070261124 – ident: ref95 doi: 10.1016/j.biomaterials.2014.03.075 – ident: ref2 doi: 10.1097/00002517-200112000-00013 – ident: ref27 doi: 10.3892/etm.2023.12004 – ident: ref32 doi: 10.1016/j.colsurfb.2021.112055 – start-page: 233 volume-title: Posterior lumbar interbody fusion using nonresorbable poly-ether-ether-ketone versus resorbable poly-L-lactide-co-D,L-lactide fusion devices: a prospective, randomized study to assess fusion and clinical outcome year: 2009 ident: ref78 – ident: ref37 doi: 10.1155/2021/2899043 – ident: ref133 doi: 10.1016/j.irbm.2013.07.001 – ident: ref34 doi: 10.3390/jcm9113657 – ident: ref91 doi: 10.1016/j.bone.2021.116163 – ident: ref105 doi: 10.31616/asj.2022.0040 – ident: ref61 doi: 10.1016/j.bioadv.2022.213119 – ident: ref121 doi: 10.3171/2020.6.spine191378 – ident: ref63 doi: 10.1007/s11999-016-4833-0 – ident: ref3 doi: 10.1016/j.biomaterials.2022.121699 – ident: ref116 doi: 10.1016/j.wneu.2023.07.141 – ident: ref113 doi: 10.1097/md.0000000000034705 – ident: ref110 doi: 10.1016/j.wneu.2018.06.063 – ident: ref112 doi: 10.1007/s10143-019-01114-3 – ident: ref124 doi: 10.31616/asj.2021.0486 – ident: ref42 doi: 10.1080/17425247.2021.1860015 – ident: ref96 doi: 10.1016/j.biomaterials.2007.08.018 – ident: ref55 doi: 10.1243/095441105x9345 – ident: ref56 doi: 10.1007/s00586-021-06912-2 – ident: ref123 doi: 10.1016/j.wneu.2021.11.056 – ident: ref49 doi: 10.1177/21925682231170613 – ident: ref8 doi: 10.3390/nano10061244 – ident: ref12 doi: 10.1016/j.jocn.2017.06.062 – ident: ref82 doi: 10.1016/j.actbio.2012.12.031 – ident: ref98 doi: 10.1016/j.solidstatesciences.2012.11.017 – ident: ref102 doi: 10.1111/os.12259 – ident: ref72 doi: 10.1055/s-2007-1006510 – ident: ref129 doi: 10.1097/00024720-200310000-00006 – start-page: S60 volume-title: The indications for interbody fusion cages in the treatment of spondylolisthesis: analysis of 120 cases year: 2005 ident: ref103 – ident: ref40 doi: 10.1007/s00264-018-3899-6 – ident: ref30 doi: 10.1002/1097-4636(2001)58:2<180::aid-jbm1005>3.0.co;2-5 – ident: ref64 doi: 10.1260/2040-2295.3.2.243 – start-page: 2 volume-title: Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF year: 2015 ident: ref4 – ident: ref50 doi: 10.1002/jbm.a.36652 – ident: ref25 doi: 10.1016/j.jocn.2019.07.011 – ident: ref23 doi: 10.1007/s00586-014-3466-9 – ident: ref20 doi: 10.31616/asj.2022.0258 – ident: ref128 doi: 10.1016/j.spinee.2023.07.012 – ident: ref26 doi: 10.1016/j.spinee.2019.10.003 – ident: ref84 doi: 10.1002/adhm.201601269 – ident: ref60 doi: 10.1016/j.spinee.2018.01.003 – ident: ref38 doi: 10.1016/j.actbio.2012.04.005 – ident: ref16 doi: 10.1089/ten.tec.2008.0288 – ident: ref114 doi: 10.1186/s12891-023-06949-y – ident: ref77 doi: 10.1097/01.brs.0000158971.74152.b6 – ident: ref134 doi: 10.1186/s40824-021-00233-7 – ident: ref115 doi: 10.31616/asj.2022.0053 – ident: ref81 doi: 10.1016/j.progpolymsci.2010.04.002 – ident: ref39 doi: 10.1302/0301-620x.102b8.bjj-2019-1448.r1 – ident: ref75 doi: 10.1016/0142-9612(95)98270-o – ident: ref46 doi: 10.1016/j.wneu.2018.09.160 – ident: ref14 doi: 10.1111/aor.12153 – ident: ref107 doi: 10.1097/brs.0000000000000336 – ident: ref117 doi: 10.21037/jss.2018.03.16 – ident: ref109 doi: 10.1097/brs.0000000000000703 |
| SSID | ssj0000328493 |
| Score | 2.4138625 |
| SecondaryResourceType | review_article |
| Snippet | This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the... |
| SourceID | nrf doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 444 |
| SubjectTerms | 3d printing biodegradable cage expandable cage lumbar interbody fusion Review surface modification 정형외과학 |
| Title | Innovative Developments in Lumbar Interbody Cage Materials and Design: A Comprehensive Narrative Review |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38146053 https://www.proquest.com/docview/2906178439 https://pubmed.ncbi.nlm.nih.gov/PMC11222887 https://doaj.org/article/9c936d68044a49e0813d4e35e3134055 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003096287 |
| Volume | 18 |
| WOSCitedRecordID | wos001134311100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Asian Spine Journal, 2024, 18(3), , pp.444-457 |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1976-7846 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000328493 issn: 1976-1902 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BxYELouIVSisjkDilXcfOxu6traioBCsOIO3NGj_SLoVsld2txL9nbKerXQTiwilSYifOzHjmsz36BuBtzVuOTStLXeu2lNzWpbKINPGU1BSeKehjKjbRTCZqOtWfN0p9xZywTA-cBXeknRZjP1YjKVHqQBFMeBlEHQQXBDYSeymhno3FVPLBgtxuYtzlFG9LinpVZmwUhHDGR7j4dhjrhh-SCTdbESkR91Oc6fr2T5jz99TJjVh0_hgeDSCSneTB78K90D2By4uhwOltYBupQAs269jH1Q-LPUvbf3buf7IzciPsEy6z_THsPPWJuRzH7IRFH9GHq5zazibYZ3Zwls8RnsLX8_dfzj6UQxmF0kldLcsmEsYo7yIPtQ3V2FslfI3KR7DlnEfeeqFIpJ4WgzxUAtGSzgj3WS00OvEMdrp5F14AG9kGR7Ll1okglW5JrVa1Gkfkvq0VWEB5J0rjBo7xWOriu6G1RhK9IdGbKHoTRV_Au3X7m8yu8deWp1Ez61aRFTvdIFsxg62Yf9lKAW9Ir-bazVL_eL2cm-ve0Nrhgj5cxw0gWcDrO70bmmvxAAW7MF8tTKTG52TEQhfwPNvBekAi7qXSGwpQWxayNeLtJ93sKvF5E-StKnL2L__HP-7BQxKazNlsr2Bn2a_CPjxwt8vZoj-A-81UHaS58gvsGhRP |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+Developments+in+Lumbar+Interbody+Cage+Materials+and+Design%3A+A+Comprehensive+Narrative+Review&rft.jtitle=Asian+spine+journal&rft.au=Chang+Sam+Yeol&rft.au=Kang+Dong-Ho&rft.au=Cho+Samuel+Kang-Wook&rft.date=2024-06-01&rft.pub=%EB%8C%80%ED%95%9C%EC%B2%99%EC%B6%94%EC%99%B8%EA%B3%BC%ED%95%99%ED%9A%8C&rft.issn=1976-1902&rft.eissn=1976-7846&rft.spage=444&rft.epage=457&rft_id=info:doi/10.31616%2Fasj.2023.0407&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10539014 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-1902&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-1902&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-1902&client=summon |