A short-term building cooling load prediction method using deep learning algorithms
•Deep learning-based methods are developed for building cooling load prediction.•Accurate predictions on 24-h ahead building cooling load profiles are achieved.•The potentials of supervised and unsupervised deep learning is investigated.•Features extracted by unsupervised deep learning can improve m...
Uloženo v:
| Vydáno v: | Applied energy Ročník 195; s. 222 - 233 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.06.2017
|
| Témata: | |
| ISSN: | 0306-2619, 1872-9118 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Deep learning-based methods are developed for building cooling load prediction.•Accurate predictions on 24-h ahead building cooling load profiles are achieved.•The potentials of supervised and unsupervised deep learning is investigated.•Features extracted by unsupervised deep learning can improve model performance.•Supervised deep learning does not show obvious advantages in model development.
Short-term building cooling load prediction is the essential foundation for many building energy management tasks, such as fault detection and diagnosis, demand-side management and control optimization. Conventional methods, which heavily rely on physical principles, have limited power in practice as their performance is subject to many physical assumptions. By contrast, data-driven methods have gained huge interests due to their flexibility in model development and the rich data available in modern buildings. The rapid development in data science has provided advanced data analytics to tackle prediction problems in a more convenient, efficient and effective way.
This paper investigates the potential of one of the most promising techniques in advanced data analytics, i.e., deep learning, in predicting 24-h ahead building cooling load profiles. Deep learning refers to a collection of machine learning algorithms which are powerful in revealing nonlinear and complex patterns in big data. Deep learning can be used either in a supervised manner to develop prediction models with given inputs and output (i.e., cooling load), or in an unsupervised manner to extract meaningful features from raw data as model inputs. This study exploits the potential of deep learning in both manners, and compares its performance in cooling load prediction with typical feature extraction methods and popular prediction techniques in the building field. The results show that deep learning can enhance the performance of building cooling load prediction, especially when used in an unsupervised manner for constructing high-level features as model inputs. Using the features extracted by unsupervised deep learning as inputs for cooling load prediction can evidently enhance the prediction performance. The findings are enlightening and could bring more flexible and effective solutions for building energy predictions. |
|---|---|
| AbstractList | Short-term building cooling load prediction is the essentialfoundation for manybuilding energy managementtasks, such as fault detection and diagnosis, demand-side management and control optimization.Conventional methods, which heavily rely on physical principles,have limited power in practiceas their performance is subjectto many physical assumptions. By contrast, data-driven methods have gained hugeinterests due to their flexibility in model development and the rich dataavailable in modern buildings. The rapid development in data sciencehas provided advanced data analytics to tackle prediction problems in a more convenient, efficient and effective way.This paper investigates the potential of one of the most promisingtechniquesin advanced data analytics, i.e., deep learning, in predicting 24-hour ahead building cooling load profiles.Deep learning refers to a collection of machine learning algorithms whichare powerful in revealing nonlinear and complex patterns inbig data. Deep learning can be used either in a supervised manner todevelop prediction models with given inputs and output (i.e., cooling load), or in an unsupervised manner to extract meaningfulfeatures from raw data as model inputs. This study exploits the potential of deep learning in both manners, and compares its performance incooling load predictionwith typical feature extraction methods and popular prediction techniques in the building field. The results show that deep learning can enhance the performance of building cooling load prediction, especially when used in an unsupervised manner for constructing high-level features as model inputs.Using the features extracted by unsupervised deep learning as inputs for cooling load prediction can evidently enhance the prediction performance. The findings are enlightening and could bring more flexible and effective solutions for building energy predictions. Short-term building cooling load prediction is the essential foundation for many building energy management tasks, such as fault detection and diagnosis, demand-side management and control optimization. Conventional methods, which heavily rely on physical principles, have limited power in practice as their performance is subject to many physical assumptions. By contrast, data-driven methods have gained huge interests due to their flexibility in model development and the rich data available in modern buildings. The rapid development in data science has provided advanced data analytics to tackle prediction problems in a more convenient, efficient and effective way.This paper investigates the potential of one of the most promising techniques in advanced data analytics, i.e., deep learning, in predicting 24-h ahead building cooling load profiles. Deep learning refers to a collection of machine learning algorithms which are powerful in revealing nonlinear and complex patterns in big data. Deep learning can be used either in a supervised manner to develop prediction models with given inputs and output (i.e., cooling load), or in an unsupervised manner to extract meaningful features from raw data as model inputs. This study exploits the potential of deep learning in both manners, and compares its performance in cooling load prediction with typical feature extraction methods and popular prediction techniques in the building field. The results show that deep learning can enhance the performance of building cooling load prediction, especially when used in an unsupervised manner for constructing high-level features as model inputs. Using the features extracted by unsupervised deep learning as inputs for cooling load prediction can evidently enhance the prediction performance. The findings are enlightening and could bring more flexible and effective solutions for building energy predictions. •Deep learning-based methods are developed for building cooling load prediction.•Accurate predictions on 24-h ahead building cooling load profiles are achieved.•The potentials of supervised and unsupervised deep learning is investigated.•Features extracted by unsupervised deep learning can improve model performance.•Supervised deep learning does not show obvious advantages in model development. Short-term building cooling load prediction is the essential foundation for many building energy management tasks, such as fault detection and diagnosis, demand-side management and control optimization. Conventional methods, which heavily rely on physical principles, have limited power in practice as their performance is subject to many physical assumptions. By contrast, data-driven methods have gained huge interests due to their flexibility in model development and the rich data available in modern buildings. The rapid development in data science has provided advanced data analytics to tackle prediction problems in a more convenient, efficient and effective way. This paper investigates the potential of one of the most promising techniques in advanced data analytics, i.e., deep learning, in predicting 24-h ahead building cooling load profiles. Deep learning refers to a collection of machine learning algorithms which are powerful in revealing nonlinear and complex patterns in big data. Deep learning can be used either in a supervised manner to develop prediction models with given inputs and output (i.e., cooling load), or in an unsupervised manner to extract meaningful features from raw data as model inputs. This study exploits the potential of deep learning in both manners, and compares its performance in cooling load prediction with typical feature extraction methods and popular prediction techniques in the building field. The results show that deep learning can enhance the performance of building cooling load prediction, especially when used in an unsupervised manner for constructing high-level features as model inputs. Using the features extracted by unsupervised deep learning as inputs for cooling load prediction can evidently enhance the prediction performance. The findings are enlightening and could bring more flexible and effective solutions for building energy predictions. |
| Author | Fan, Cheng Xiao, Fu Zhao, Yang |
| Author_xml | – sequence: 1 givenname: Cheng surname: Fan fullname: Fan, Cheng organization: Department of Construction Management and Real Estate, Shenzhen University, Shenzhen, China – sequence: 2 givenname: Fu orcidid: 0000-0002-3779-3943 surname: Xiao fullname: Xiao, Fu email: linda.xiao@polyu.edu.hk organization: Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China – sequence: 3 givenname: Yang surname: Zhao fullname: Zhao, Yang organization: Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou, China |
| BookMark | eNqFkE1LAzEQhoMo2Fb_guzRy675aLMb8GApfkHBg3oOSXa2Tclu1iQV-u_dpXrx0tMwzPu8MM8UnXe-A4RuCC4IJvxuV6geOgibQ0ExKQvMCsznZ2hCqpLmgpDqHE0wwzynnIhLNI1xhzGmhOIJel9mcetDyhOENtN762rbbTLjvRun86rO-gC1Ncn6LmshbX2d7eN4rAH6zIEK3bgpt_HBpm0br9BFo1yE6985Q59Pjx-rl3z99vy6Wq5zMxc05YsatNFVWZl5U3HRCFPpUiy0BtaUSlRzKkqsGYOm5BqEoYYwojWpxMIIzTGbodtjbx_81x5ikq2NBpxTHfh9lJQQPtTTkp6ODkLYgnM6tt4foyb4GAM00tikxu9TUNZJguWoXe7kn3Y5apeYyUH7gPN_eB9sq8LhNPhwBGFQ9m0hyGgsdGZwH8AkWXt7quIHol-kTw |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3042758 crossref_primary_10_1016_j_apenergy_2021_116652 crossref_primary_10_1016_j_jobe_2025_113809 crossref_primary_10_1016_j_enbuild_2021_111574 crossref_primary_10_1016_j_cles_2023_100060 crossref_primary_10_1016_j_rser_2025_115817 crossref_primary_10_1016_j_buildenv_2022_109081 crossref_primary_10_3390_en17184714 crossref_primary_10_1016_j_enbuild_2025_115815 crossref_primary_10_3390_technologies12100194 crossref_primary_10_1007_s10115_021_01641_w crossref_primary_10_1016_j_rser_2022_112704 crossref_primary_10_1080_23744731_2022_2067466 crossref_primary_10_1016_j_buildenv_2023_110350 crossref_primary_10_1016_j_apenergy_2017_08_204 crossref_primary_10_1016_j_solener_2022_06_045 crossref_primary_10_1016_j_eswa_2024_123169 crossref_primary_10_1007_s40745_020_00300_1 crossref_primary_10_1016_j_solener_2024_113070 crossref_primary_10_1080_01496395_2024_2418292 crossref_primary_10_1016_j_applthermaleng_2021_117153 crossref_primary_10_1007_s10586_024_04993_4 crossref_primary_10_1016_j_aei_2022_101674 crossref_primary_10_1016_j_energy_2024_130608 crossref_primary_10_1016_j_apenergy_2018_05_075 crossref_primary_10_1016_j_enbuild_2024_114457 crossref_primary_10_1016_j_apenergy_2019_113998 crossref_primary_10_3390_buildings14113699 crossref_primary_10_1016_j_enbuild_2020_110096 crossref_primary_10_1016_j_apenergy_2020_115144 crossref_primary_10_1016_j_enbuild_2021_111478 crossref_primary_10_1007_s12273_021_0807_6 crossref_primary_10_3390_buildings15040648 crossref_primary_10_1016_j_jclepro_2024_142162 crossref_primary_10_1016_j_compag_2024_109273 crossref_primary_10_3390_buildings14020397 crossref_primary_10_1016_j_apenergy_2018_03_125 crossref_primary_10_1109_TCPMT_2019_2930741 crossref_primary_10_1016_j_apenergy_2020_115383 crossref_primary_10_3390_buildings12050502 crossref_primary_10_3390_en16062574 crossref_primary_10_1016_j_autcon_2024_105579 crossref_primary_10_1016_j_apenergy_2018_12_042 crossref_primary_10_1016_j_jclepro_2019_05_085 crossref_primary_10_3390_en12101856 crossref_primary_10_1088_1757_899X_563_5_052035 crossref_primary_10_1109_TASE_2020_3033664 crossref_primary_10_3390_en16083446 crossref_primary_10_1016_j_scs_2021_103202 crossref_primary_10_1038_s41598_024_70341_6 crossref_primary_10_1016_j_jobe_2023_106992 crossref_primary_10_3233_JIFS_221188 crossref_primary_10_1016_j_scs_2020_102194 crossref_primary_10_1007_s42452_024_05698_4 crossref_primary_10_1016_j_energy_2021_122073 crossref_primary_10_1016_j_enbuild_2019_109675 crossref_primary_10_1016_j_enbuild_2019_109564 crossref_primary_10_1016_j_enbuild_2024_114123 crossref_primary_10_1016_j_ijrefrig_2019_07_018 crossref_primary_10_3233_JIFS_179209 crossref_primary_10_1016_j_enbuild_2019_109563 crossref_primary_10_1016_j_knosys_2025_114300 crossref_primary_10_1016_j_ijrefrig_2022_07_020 crossref_primary_10_1108_ECAM_01_2024_0144 crossref_primary_10_1016_j_enbuild_2024_115217 crossref_primary_10_1016_j_energy_2021_123036 crossref_primary_10_1007_s12273_020_0608_3 crossref_primary_10_1016_j_jobe_2022_104445 crossref_primary_10_3390_en14030608 crossref_primary_10_1016_j_apenergy_2021_116452 crossref_primary_10_1016_j_jobe_2023_107958 crossref_primary_10_1016_j_enbuild_2020_110161 crossref_primary_10_1016_j_jobe_2023_106868 crossref_primary_10_1016_j_applthermaleng_2019_04_040 crossref_primary_10_1016_j_apm_2024_05_037 crossref_primary_10_1109_ACCESS_2023_3322167 crossref_primary_10_1016_j_apenergy_2024_124196 crossref_primary_10_1016_j_energy_2023_130149 crossref_primary_10_1016_j_egyr_2020_09_019 crossref_primary_10_3390_su14074033 crossref_primary_10_1016_j_apenergy_2018_12_065 crossref_primary_10_1016_j_enbuild_2021_111407 crossref_primary_10_1016_j_enbuild_2019_109424 crossref_primary_10_1016_j_buildenv_2022_109054 crossref_primary_10_1016_j_enbuild_2024_114254 crossref_primary_10_1109_ACCESS_2020_3007727 crossref_primary_10_1016_j_applthermaleng_2025_125811 crossref_primary_10_1088_1755_1315_944_1_012010 crossref_primary_10_1016_j_apenergy_2018_10_107 crossref_primary_10_1016_j_apenergy_2018_06_064 crossref_primary_10_1016_j_foodcont_2024_110604 crossref_primary_10_1016_j_enbuild_2021_111556 crossref_primary_10_1016_j_enbuild_2022_111832 crossref_primary_10_1016_j_enbuild_2020_110022 crossref_primary_10_1016_j_jobe_2024_110034 crossref_primary_10_3390_en13071848 crossref_primary_10_3390_su9112119 crossref_primary_10_1016_j_est_2024_114959 crossref_primary_10_1186_s40494_022_00805_3 crossref_primary_10_1016_j_energy_2018_05_111 crossref_primary_10_1016_j_energy_2023_127459 crossref_primary_10_1109_TSG_2020_3014055 crossref_primary_10_1007_s00366_019_00882_2 crossref_primary_10_1016_j_enbuild_2021_111791 crossref_primary_10_1007_s11760_024_03422_8 crossref_primary_10_1016_j_fluid_2021_113094 crossref_primary_10_1007_s12273_020_0707_1 crossref_primary_10_1016_j_jobe_2022_105316 crossref_primary_10_1016_j_jobe_2022_105558 crossref_primary_10_1016_j_scs_2021_103227 crossref_primary_10_1016_j_apenergy_2021_118410 crossref_primary_10_3390_en17020376 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121075 crossref_primary_10_1016_j_enbuild_2020_110156 crossref_primary_10_1093_ijlct_cty057 crossref_primary_10_1016_j_engappai_2022_105287 crossref_primary_10_1109_TEM_2024_3422821 crossref_primary_10_1016_j_energy_2023_127331 crossref_primary_10_1016_j_enbuild_2019_109402 crossref_primary_10_1007_s12053_024_10234_9 crossref_primary_10_1016_j_apenergy_2019_05_102 crossref_primary_10_3390_buildings9050131 crossref_primary_10_1007_s12273_019_0548_y crossref_primary_10_1016_j_enconman_2017_10_008 crossref_primary_10_3390_app9132630 crossref_primary_10_3390_buildings13061542 crossref_primary_10_1016_j_apenergy_2022_119806 crossref_primary_10_3390_buildings13061423 crossref_primary_10_1016_j_ijrefrig_2025_04_018 crossref_primary_10_1016_j_autcon_2024_105380 crossref_primary_10_1016_j_apenergy_2018_07_085 crossref_primary_10_1016_j_jclepro_2020_121082 crossref_primary_10_1016_j_jobe_2021_103041 crossref_primary_10_1016_j_enbuild_2023_112823 crossref_primary_10_3390_en14010081 crossref_primary_10_1016_j_enbuild_2023_112826 crossref_primary_10_1016_j_eswa_2023_120109 crossref_primary_10_1109_ACCESS_2021_3053317 crossref_primary_10_1016_j_egyr_2023_05_263 crossref_primary_10_3390_en14164785 crossref_primary_10_3390_en18010201 crossref_primary_10_1016_j_enbuild_2021_111054 crossref_primary_10_3233_JIFS_189045 crossref_primary_10_1016_j_chaos_2025_116448 crossref_primary_10_1007_s12273_020_0723_1 crossref_primary_10_1007_s00521_020_05165_2 crossref_primary_10_3390_en13112907 crossref_primary_10_1109_ACCESS_2024_3482572 crossref_primary_10_1109_TIM_2020_2967247 crossref_primary_10_1016_j_jobe_2020_101827 crossref_primary_10_1109_ACCESS_2022_3161654 crossref_primary_10_3390_en16010276 crossref_primary_10_3390_en14040968 crossref_primary_10_1016_j_enbuild_2022_112552 crossref_primary_10_1016_j_energy_2019_116361 crossref_primary_10_1016_j_enbuild_2024_115021 crossref_primary_10_1007_s12273_023_0984_6 crossref_primary_10_1016_j_earscirev_2019_103076 crossref_primary_10_1016_j_enbuild_2023_112807 crossref_primary_10_1371_journal_pone_0266373 crossref_primary_10_1016_j_aei_2019_100982 crossref_primary_10_1016_j_buildenv_2020_107154 crossref_primary_10_1061__ASCE_WR_1943_5452_0000992 crossref_primary_10_1016_j_jobe_2021_103182 crossref_primary_10_1016_j_egyai_2025_100561 crossref_primary_10_1016_j_enbuild_2025_115436 crossref_primary_10_1007_s12273_024_1149_y crossref_primary_10_1109_ACCESS_2019_2958383 crossref_primary_10_1007_s00231_025_03545_9 crossref_primary_10_1016_j_enbuild_2021_111073 crossref_primary_10_1016_j_apenergy_2021_117238 crossref_primary_10_1016_j_enbenv_2023_07_005 crossref_primary_10_1016_j_scs_2020_102283 crossref_primary_10_17770_etr2025vol2_8601 crossref_primary_10_1016_j_enbuild_2022_112337 crossref_primary_10_1016_j_enbuild_2020_109921 crossref_primary_10_1080_19401493_2024_2403027 crossref_primary_10_3233_JIFS_211607 crossref_primary_10_1016_j_ijrefrig_2024_05_017 crossref_primary_10_1016_j_enbuild_2024_115001 crossref_primary_10_3390_urbansci9060202 crossref_primary_10_3390_su15097458 crossref_primary_10_3390_en13246654 crossref_primary_10_2139_ssrn_5191258 crossref_primary_10_1016_j_egypro_2019_01_378 crossref_primary_10_3389_fenrg_2023_1296037 crossref_primary_10_1016_j_apenergy_2023_122183 crossref_primary_10_1016_j_apenergy_2024_123276 crossref_primary_10_1016_j_buildenv_2019_106394 crossref_primary_10_1016_j_energy_2020_117714 crossref_primary_10_1016_j_jobe_2024_111549 crossref_primary_10_1016_j_jobe_2023_108095 crossref_primary_10_1016_j_enbenv_2023_06_005 crossref_primary_10_1016_j_jobe_2022_105815 crossref_primary_10_1016_j_enbuild_2025_115333 crossref_primary_10_3390_en13040839 crossref_primary_10_3390_en15030810 crossref_primary_10_1016_j_isatra_2021_01_058 crossref_primary_10_1016_j_apenergy_2022_119962 crossref_primary_10_4271_12_09_01_0001 crossref_primary_10_1016_j_enbuild_2022_112635 crossref_primary_10_3390_s19132868 crossref_primary_10_1016_j_enbuild_2019_109705 crossref_primary_10_1016_j_energy_2020_117846 crossref_primary_10_3390_make6020045 crossref_primary_10_3390_electronics7100222 crossref_primary_10_1016_j_rineng_2023_101077 crossref_primary_10_1016_j_apenergy_2021_118343 crossref_primary_10_1016_j_enbuild_2022_112521 crossref_primary_10_1016_j_jobe_2023_108071 crossref_primary_10_3390_su16177249 crossref_primary_10_3390_su15043725 crossref_primary_10_1016_j_apenergy_2017_12_051 crossref_primary_10_1016_j_buildenv_2018_09_024 crossref_primary_10_1016_j_apenergy_2024_123016 crossref_primary_10_1016_j_apenergy_2024_123379 crossref_primary_10_1016_j_jobe_2021_103017 crossref_primary_10_3233_JIFS_233544 crossref_primary_10_1016_j_epsr_2019_106073 crossref_primary_10_3233_JIFS_190095 crossref_primary_10_1016_j_energy_2021_120065 crossref_primary_10_1016_j_apenergy_2018_12_004 crossref_primary_10_1007_s12652_019_01317_y crossref_primary_10_1016_j_enbuild_2025_116446 crossref_primary_10_1007_s11831_023_10054_7 crossref_primary_10_3390_en13174358 crossref_primary_10_1016_j_apenergy_2019_113664 crossref_primary_10_1016_j_scs_2021_103511 crossref_primary_10_1155_2021_1682163 crossref_primary_10_1016_j_enbuild_2019_05_043 crossref_primary_10_1016_j_energy_2020_117949 crossref_primary_10_1016_j_egyr_2022_10_441 crossref_primary_10_1016_j_energy_2024_130621 crossref_primary_10_3389_fenrg_2022_786027 crossref_primary_10_3390_en13092357 crossref_primary_10_1109_ACCESS_2022_3141767 crossref_primary_10_2166_wpt_2024_292 crossref_primary_10_1016_j_rser_2025_116061 crossref_primary_10_1016_j_tsep_2019_03_002 crossref_primary_10_1016_j_asej_2025_103481 crossref_primary_10_1109_ACCESS_2020_3027061 crossref_primary_10_1016_j_apenergy_2021_117276 crossref_primary_10_1016_j_enbuild_2020_109897 crossref_primary_10_1016_j_proeng_2017_09_967 crossref_primary_10_1016_j_enbuild_2023_113513 crossref_primary_10_1016_j_enbuild_2018_03_042 crossref_primary_10_1016_j_enbuild_2024_113913 crossref_primary_10_1016_j_buildenv_2022_109641 crossref_primary_10_1080_00038628_2023_2193167 crossref_primary_10_1016_j_heliyon_2024_e27343 crossref_primary_10_3390_app15147682 crossref_primary_10_1016_j_rser_2021_110929 crossref_primary_10_1007_s12053_025_10379_1 crossref_primary_10_3992_1943_4618_14_3_115 crossref_primary_10_1016_j_jobe_2024_108724 crossref_primary_10_1051_wujns_2023283223 crossref_primary_10_1007_s42524_021_0181_1 crossref_primary_10_1016_j_enbuild_2018_10_004 crossref_primary_10_1109_ACCESS_2021_3136091 crossref_primary_10_1016_j_enbuild_2019_04_018 crossref_primary_10_1007_s10462_025_11343_2 crossref_primary_10_3390_buildings12101701 crossref_primary_10_1016_j_enbuild_2023_112896 crossref_primary_10_1016_j_rser_2025_115387 crossref_primary_10_3390_en12050866 crossref_primary_10_1016_j_enbuild_2023_113507 crossref_primary_10_3390_ijgi12070264 crossref_primary_10_1680_jmapl_21_00027 crossref_primary_10_1016_j_applthermaleng_2025_126421 crossref_primary_10_1016_j_jobe_2025_112295 crossref_primary_10_1016_j_buildenv_2024_112142 crossref_primary_10_3390_en16031480 crossref_primary_10_1016_j_applthermaleng_2020_115261 crossref_primary_10_1016_j_future_2019_01_045 crossref_primary_10_1016_j_energy_2024_132456 crossref_primary_10_3390_en12071351 crossref_primary_10_1016_j_knosys_2024_111967 crossref_primary_10_1016_j_procs_2021_10_014 crossref_primary_10_1016_j_scs_2023_104674 crossref_primary_10_3390_en14227590 crossref_primary_10_1016_j_jobe_2023_107464 crossref_primary_10_1016_j_enbuild_2018_03_065 crossref_primary_10_3390_su12177110 crossref_primary_10_1016_j_enbenv_2019_11_003 crossref_primary_10_1016_j_buildenv_2024_111186 crossref_primary_10_1016_j_enbuild_2019_04_034 crossref_primary_10_1007_s12273_022_0935_7 crossref_primary_10_1016_j_scs_2024_105723 crossref_primary_10_1080_17517575_2019_1600724 crossref_primary_10_1016_j_energy_2024_130388 crossref_primary_10_3390_en12173254 crossref_primary_10_1016_j_autcon_2023_104984 crossref_primary_10_1007_s12273_021_0811_x crossref_primary_10_1016_j_autcon_2022_104440 crossref_primary_10_1016_j_enbuild_2023_113846 crossref_primary_10_3390_en11071708 crossref_primary_10_1016_j_rser_2021_110714 crossref_primary_10_1016_j_energy_2020_118045 crossref_primary_10_3992_jgb_17_3_63 crossref_primary_10_1016_j_apenergy_2018_02_069 crossref_primary_10_1016_j_apenergy_2020_115402 crossref_primary_10_1016_j_apenergy_2018_09_052 crossref_primary_10_1049_iet_gtd_2020_0048 crossref_primary_10_1016_j_enbuild_2018_02_039 crossref_primary_10_1016_j_energy_2022_126274 crossref_primary_10_1080_15325008_2020_1793838 crossref_primary_10_1108_BEPAM_04_2018_0074 crossref_primary_10_3390_en11123408 crossref_primary_10_1016_j_applthermaleng_2017_09_007 crossref_primary_10_3390_buildings14072212 crossref_primary_10_1016_j_jobe_2020_102020 crossref_primary_10_1016_j_apenergy_2022_119443 crossref_primary_10_3390_buildings13071677 crossref_primary_10_1016_j_apenergy_2020_114561 crossref_primary_10_1016_j_apenergy_2020_114683 crossref_primary_10_1016_j_enbuild_2018_12_034 crossref_primary_10_1016_j_jhydrol_2021_126253 crossref_primary_10_1016_j_apenergy_2020_115410 crossref_primary_10_1016_j_enbuild_2022_112479 crossref_primary_10_1016_j_matt_2023_04_016 crossref_primary_10_1016_j_enbuild_2022_112478 crossref_primary_10_1016_j_enbuild_2023_113428 crossref_primary_10_1016_j_apenergy_2019_113395 crossref_primary_10_1016_j_energy_2018_03_179 crossref_primary_10_1016_j_enbuild_2022_112593 crossref_primary_10_1016_j_apenergy_2019_02_066 crossref_primary_10_3390_en12183588 crossref_primary_10_3390_su13063198 crossref_primary_10_1007_s40684_023_00537_0 crossref_primary_10_1016_j_enbuild_2017_10_054 crossref_primary_10_1016_j_engappai_2022_105617 crossref_primary_10_1016_j_rser_2022_112327 crossref_primary_10_1016_j_matpr_2021_07_264 crossref_primary_10_3390_en10111905 crossref_primary_10_1016_j_applthermaleng_2025_127328 crossref_primary_10_1016_j_apenergy_2023_121830 crossref_primary_10_1016_j_buildenv_2019_106216 crossref_primary_10_1016_j_apenergy_2019_02_052 crossref_primary_10_1016_j_prime_2024_100628 crossref_primary_10_1049_gtd2_12684 crossref_primary_10_1088_1742_6596_1217_1_012122 crossref_primary_10_1016_j_solener_2018_07_050 crossref_primary_10_1111_risa_13425 crossref_primary_10_1016_j_jobe_2023_106047 crossref_primary_10_1016_j_energy_2024_131317 crossref_primary_10_1016_j_renene_2019_10_113 crossref_primary_10_3390_su12083103 crossref_primary_10_3390_buildings13020487 crossref_primary_10_1016_j_apenergy_2019_01_013 crossref_primary_10_1016_j_apenergy_2017_07_018 crossref_primary_10_1016_j_enbuild_2023_113409 crossref_primary_10_1016_j_energy_2019_115973 crossref_primary_10_1016_j_apenergy_2019_113492 crossref_primary_10_1016_j_renene_2020_01_133 crossref_primary_10_1016_j_buildenv_2019_106204 crossref_primary_10_1016_j_apenergy_2021_118088 crossref_primary_10_1016_j_jobe_2020_102139 crossref_primary_10_1016_j_jobe_2021_103406 crossref_primary_10_1007_s12273_020_0711_5 crossref_primary_10_1371_journal_pone_0312573 crossref_primary_10_1016_j_enbuild_2021_110886 crossref_primary_10_1016_j_enbuild_2025_116190 crossref_primary_10_3390_educsci11020082 crossref_primary_10_1016_j_rser_2024_114284 crossref_primary_10_3390_buildings13020312 crossref_primary_10_1016_j_buildenv_2018_10_062 crossref_primary_10_1007_s10270_020_00856_9 crossref_primary_10_1016_j_enbuild_2019_109364 crossref_primary_10_1016_j_apenergy_2024_124960 crossref_primary_10_1016_j_apenergy_2018_11_077 crossref_primary_10_1016_j_autcon_2020_103517 crossref_primary_10_1016_j_scs_2019_101601 crossref_primary_10_1016_j_energy_2018_01_180 crossref_primary_10_1016_j_enbuild_2021_110998 crossref_primary_10_1109_TIM_2020_3031186 crossref_primary_10_1016_j_enbuild_2023_113348 crossref_primary_10_1016_j_heliyon_2024_e26888 crossref_primary_10_1016_j_enbuild_2023_113349 crossref_primary_10_1016_j_enbuild_2023_113229 crossref_primary_10_1016_j_enbuild_2024_114735 crossref_primary_10_1016_j_jobe_2025_113777 crossref_primary_10_3390_su14148584 crossref_primary_10_1016_j_scs_2021_103092 crossref_primary_10_1016_j_apenergy_2022_120481 crossref_primary_10_1016_j_powtec_2018_09_017 crossref_primary_10_1016_j_aei_2020_101034 crossref_primary_10_1016_j_enbuild_2017_06_019 crossref_primary_10_1016_j_enbuild_2020_110493 crossref_primary_10_1016_j_enbuild_2020_110220 crossref_primary_10_1016_j_applthermaleng_2018_03_009 crossref_primary_10_1016_j_enbuild_2023_113339 crossref_primary_10_1016_j_enbuild_2019_109579 crossref_primary_10_1016_j_rser_2022_112401 crossref_primary_10_1016_j_scp_2023_101323 crossref_primary_10_3390_pr11123389 crossref_primary_10_1016_j_jobe_2021_103851 crossref_primary_10_3389_fenrg_2021_652801 crossref_primary_10_1016_j_aei_2020_101122 crossref_primary_10_1016_j_aei_2018_06_004 crossref_primary_10_1016_j_enbuild_2017_08_077 crossref_primary_10_1016_j_apenergy_2020_115660 crossref_primary_10_1016_j_enbuild_2020_110232 crossref_primary_10_1016_j_apenergy_2018_10_053 crossref_primary_10_1016_j_enbenv_2024_10_002 crossref_primary_10_1016_j_energy_2020_118676 crossref_primary_10_1177_17442591241299036 crossref_primary_10_1016_j_jclepro_2020_122843 crossref_primary_10_1109_ACCESS_2020_3040980 crossref_primary_10_1016_j_apenergy_2022_120144 crossref_primary_10_3390_su11040987 crossref_primary_10_1016_j_enbuild_2021_111505 crossref_primary_10_1016_j_energy_2023_127645 crossref_primary_10_1016_j_enbuild_2023_113444 crossref_primary_10_1016_j_apenergy_2018_11_081 crossref_primary_10_1016_j_enbuild_2020_110350 crossref_primary_10_3390_math10091508 crossref_primary_10_1016_j_jobe_2021_102514 crossref_primary_10_1016_j_apenergy_2021_117821 crossref_primary_10_3390_en16196927 crossref_primary_10_1016_j_epsr_2023_109415 crossref_primary_10_1016_j_energy_2024_133242 crossref_primary_10_1016_j_apenergy_2021_117829 crossref_primary_10_1016_j_apenergy_2022_120279 crossref_primary_10_1088_1755_1315_238_1_012042 crossref_primary_10_1007_s40518_018_0112_x crossref_primary_10_1016_j_rineng_2023_100888 crossref_primary_10_1007_s42979_024_03221_5 crossref_primary_10_1016_j_scs_2019_101642 crossref_primary_10_1016_j_segan_2021_100543 crossref_primary_10_1016_j_enbuild_2017_11_002 crossref_primary_10_1016_j_est_2023_106872 crossref_primary_10_1016_j_egyr_2022_01_162 crossref_primary_10_1016_j_apenergy_2020_115135 crossref_primary_10_3390_en14102779 crossref_primary_10_1108_CI_01_2023_0005 crossref_primary_10_3389_fpsyg_2022_965926 crossref_primary_10_1016_j_energy_2025_134508 crossref_primary_10_1016_j_est_2024_112126 crossref_primary_10_1016_j_neuri_2022_100062 crossref_primary_10_1016_j_jksuci_2022_04_016 crossref_primary_10_3390_app10248968 crossref_primary_10_1016_j_apenergy_2023_121783 crossref_primary_10_1016_j_rser_2020_110287 crossref_primary_10_1088_1755_1315_238_1_012047 crossref_primary_10_1007_s12273_024_1152_3 crossref_primary_10_1016_j_scs_2019_101533 crossref_primary_10_1016_j_energy_2021_120950 crossref_primary_10_1016_j_apenergy_2023_121547 crossref_primary_10_1016_j_jobe_2022_105028 crossref_primary_10_1016_j_jobe_2023_106335 crossref_primary_10_3390_s24041157 crossref_primary_10_1016_j_enbuild_2025_116094 crossref_primary_10_1016_j_esd_2023_04_004 crossref_primary_10_1016_j_jobe_2022_104194 crossref_primary_10_1016_j_apenergy_2020_114499 crossref_primary_10_1016_j_enbuild_2021_110980 crossref_primary_10_1016_j_engappai_2023_107115 crossref_primary_10_1109_ACCESS_2020_2968536 crossref_primary_10_1016_j_enbuild_2021_110740 crossref_primary_10_1016_j_jclepro_2020_121787 crossref_primary_10_1016_j_enbuild_2020_110301 crossref_primary_10_3390_buildings13020532 crossref_primary_10_3390_su142114446 crossref_primary_10_1002_cae_22548 crossref_primary_10_1007_s12273_018_0431_2 crossref_primary_10_1016_j_aei_2025_103754 crossref_primary_10_1109_JIOT_2024_3401236 crossref_primary_10_1016_j_enbuild_2019_109383 crossref_primary_10_1016_j_enbuild_2023_113499 crossref_primary_10_1016_j_enbuild_2023_113258 crossref_primary_10_1080_17512549_2022_2136240 crossref_primary_10_1177_1550147719877616 crossref_primary_10_1007_s12273_023_1053_x crossref_primary_10_1016_j_energy_2024_131395 crossref_primary_10_1016_j_apenergy_2020_115237 crossref_primary_10_3390_data9010013 crossref_primary_10_1002_2475_8876_12272 crossref_primary_10_1016_j_enbenv_2025_05_012 crossref_primary_10_1016_j_rser_2021_111685 crossref_primary_10_1016_j_apenergy_2023_121446 crossref_primary_10_1088_1742_6596_2160_1_012044 crossref_primary_10_1016_j_enbuild_2022_112098 |
| Cites_doi | 10.1016/j.apenergy.2013.11.064 10.1016/j.apenergy.2016.01.054 10.1016/j.enbuild.2008.06.013 10.1016/j.enbuild.2005.02.005 10.1109/TST.2015.7085625 10.1016/j.apenergy.2015.12.066 10.1016/j.patrec.2014.01.008 10.1016/j.enbuild.2007.03.007 10.1016/j.enconman.2008.08.033 10.1016/j.rser.2014.05.056 10.1016/j.autcon.2016.01.005 10.1002/er.1458 10.1016/j.rser.2014.08.039 10.1016/j.apenergy.2015.02.025 10.1016/j.rser.2012.02.049 10.1016/j.apenergy.2016.03.112 10.1016/j.apenergy.2009.06.010 10.1080/10789669.2007.10390952 10.1016/j.enbuild.2003.12.007 10.1016/j.enbuild.2015.12.010 10.1016/j.neunet.2014.09.003 10.1016/j.apenergy.2008.11.035 10.1016/j.eswa.2013.01.047 10.1080/10789669.2002.10391290 10.1260/1748-3018.4.2.231 10.1016/j.enconman.2003.10.009 10.1016/j.apenergy.2005.08.006 10.1038/nature14539 10.1016/j.neucom.2009.09.020 10.1016/j.apenergy.2014.04.016 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd |
| Copyright_xml | – notice: 2017 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2017.03.064 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| EndPage | 233 |
| ExternalDocumentID | 10_1016_j_apenergy_2017_03_064 S0306261917302921 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c492t-5debcb878c4f869f9c8b795bbe3f7a9842970b33ef76be9c2c131bb1895c9b603 |
| ISICitedReferencesCount | 525 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400227000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sun Sep 28 02:57:22 EDT 2025 Wed Oct 01 14:22:42 EDT 2025 Tue Nov 18 22:24:04 EST 2025 Sat Nov 29 07:21:42 EST 2025 Fri Feb 23 02:31:40 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Building energy prediction Big data Data mining Building cooling load |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c492t-5debcb878c4f869f9c8b795bbe3f7a9842970b33ef76be9c2c131bb1895c9b603 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3779-3943 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0306261917302921 |
| PQID | 2000356620 |
| PQPubID | 24069 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2116878272 proquest_miscellaneous_2000356620 crossref_citationtrail_10_1016_j_apenergy_2017_03_064 crossref_primary_10_1016_j_apenergy_2017_03_064 elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_03_064 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-01 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang, Xu, Lu, Yuan (b0055) 2016; 169 Brandt T, DeForest N, Stadler M, Neumann D. Power systems 2.0: Designing an energy information system for microgrid operation. In: Proceedings of 2014 international conference on information systems, Auckland, New Zealand, December 14–17; 2014. Grolinger, L’Heureux, Capretz, Seewald (b0115) 2016; 112 [accessed on September 9, 2016]. Ben-Nakhi, Mahmoud (b0035) 2004; 45 Lu, Cai, Xie, Li, Soh (b0040) 2005; 37 Zhao, Magoules (b0080) 2010; 4 American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). ASHRAE guideline 14-2002: Measurement of energy demand and savings, Atlanta, GA, USA; 2002. Yang, Rivard, Zmeureanu (b0100) 2005; 37 Federal Energy Management Program (FEMP). M&V guidelines: measurement and verification for federal energy projects version 3.0. Washington, DC, USA: U.S. Department of Energy; 2008. Benedetti, Cesarotti, Introna, Serranti (b0105) 2016; 165 Kusiak, Li (b0025) 2010; 87 LeCun, Bengio, Hinton (b0145) 2015; 321 Cui, Wu, Hu, Weir, Li (b0110) 2016; 172 Lemke, Gabrys (b0120) 2010; 73 Li, Wen (b0020) 2014; 37 Zhou, Wang, Xu, Xiao (b0065) 2008; 32 Fan, Xiao, Wang (b0150) 2014; 127 Xue, Wang, Sun, Xiao (b0030) 2014; 116 Reddy, Maor, Panjapornpon (b0195) 2007; 13 Braun, Chaturvedi (b0070) 2002; 8 Shan, Wang, Gao, Xiao (b0045) 2016; 65 United Nations Environment Program Liaw, Wiener (b0165) 2002; 2 Schmidhuber (b0140) 2015; 61 Wang, Chen, Kang, Zhang, Wang, Zhao (b0135) 2015; 20 Hou, Lian, Yao, Yuan (b0090) 2006; 83 Urge-Vorsatz, Cabeza, Serrano, Barreneche, Petrichenko (b0005) 2015; 41 Heaton J. Introduction to neural networks for JAVA. 2nd ed. Heaton Research Inc; 2008. Gao, Wang, Shan, Yan (b0050) 2016; 164 Neto, Fiorelli (b0085) 2008; 40 Matijas, Suykens, Krajcar (b0125) 2013; 40 Langkvist, Karlsson, Loutfi (b0160) 2014; 42 Zhao, Magoules (b0060) 2012; 16 R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, ISBN 3-900051-07-0; 2008. URL Perez-Lombard, Ortiz, Pout (b0015) 2008; 40 Goodfellow IJ, Warde-Farley D, Mirza M, Courville A, Bengio Y. Maxout networks. In: Proceedings of the 30th international conference on machine learning, Atlanta, Georgia, USA; 2013. Li, Meng, Cai, Yoshino, Mochida (b0075) 2009; 86 Chen TQ, Guestrin C. XGBoost: a scalable tree boosting system. KDD 2016, San Francisco, CA, USA, August 13–17; 2016. Heaton J. Introduction to neural networks for Java. 2nd ed. Heaton Research Inc; 2005. Li, Meng, Cai, Yoshino, Mochida (b0095) 2009; 50 Wang (10.1016/j.apenergy.2017.03.064_b0055) 2016; 169 Liaw (10.1016/j.apenergy.2017.03.064_b0165) 2002; 2 Yang (10.1016/j.apenergy.2017.03.064_b0100) 2005; 37 Lu (10.1016/j.apenergy.2017.03.064_b0040) 2005; 37 Li (10.1016/j.apenergy.2017.03.064_b0020) 2014; 37 Cui (10.1016/j.apenergy.2017.03.064_b0110) 2016; 172 10.1016/j.apenergy.2017.03.064_b0010 10.1016/j.apenergy.2017.03.064_b0175 Zhao (10.1016/j.apenergy.2017.03.064_b0080) 2010; 4 10.1016/j.apenergy.2017.03.064_b0155 Hou (10.1016/j.apenergy.2017.03.064_b0090) 2006; 83 10.1016/j.apenergy.2017.03.064_b0190 10.1016/j.apenergy.2017.03.064_b0170 Neto (10.1016/j.apenergy.2017.03.064_b0085) 2008; 40 Lemke (10.1016/j.apenergy.2017.03.064_b0120) 2010; 73 10.1016/j.apenergy.2017.03.064_b0130 Fan (10.1016/j.apenergy.2017.03.064_b0150) 2014; 127 Benedetti (10.1016/j.apenergy.2017.03.064_b0105) 2016; 165 Ben-Nakhi (10.1016/j.apenergy.2017.03.064_b0035) 2004; 45 Shan (10.1016/j.apenergy.2017.03.064_b0045) 2016; 65 Perez-Lombard (10.1016/j.apenergy.2017.03.064_b0015) 2008; 40 Xue (10.1016/j.apenergy.2017.03.064_b0030) 2014; 116 LeCun (10.1016/j.apenergy.2017.03.064_b0145) 2015; 321 Langkvist (10.1016/j.apenergy.2017.03.064_b0160) 2014; 42 Schmidhuber (10.1016/j.apenergy.2017.03.064_b0140) 2015; 61 Kusiak (10.1016/j.apenergy.2017.03.064_b0025) 2010; 87 Matijas (10.1016/j.apenergy.2017.03.064_b0125) 2013; 40 Urge-Vorsatz (10.1016/j.apenergy.2017.03.064_b0005) 2015; 41 Braun (10.1016/j.apenergy.2017.03.064_b0070) 2002; 8 Li (10.1016/j.apenergy.2017.03.064_b0095) 2009; 50 Li (10.1016/j.apenergy.2017.03.064_b0075) 2009; 86 Wang (10.1016/j.apenergy.2017.03.064_b0135) 2015; 20 Reddy (10.1016/j.apenergy.2017.03.064_b0195) 2007; 13 10.1016/j.apenergy.2017.03.064_b0200 Zhou (10.1016/j.apenergy.2017.03.064_b0065) 2008; 32 Gao (10.1016/j.apenergy.2017.03.064_b0050) 2016; 164 10.1016/j.apenergy.2017.03.064_b0180 Zhao (10.1016/j.apenergy.2017.03.064_b0060) 2012; 16 Grolinger (10.1016/j.apenergy.2017.03.064_b0115) 2016; 112 10.1016/j.apenergy.2017.03.064_b0185 |
| References_xml | – volume: 116 start-page: 297 year: 2014 end-page: 310 ident: b0030 article-title: An interactive building power demand management strategy for facilitating smart grid optimization publication-title: Appl Energy – reference: Brandt T, DeForest N, Stadler M, Neumann D. Power systems 2.0: Designing an energy information system for microgrid operation. In: Proceedings of 2014 international conference on information systems, Auckland, New Zealand, December 14–17; 2014. – reference: Federal Energy Management Program (FEMP). M&V guidelines: measurement and verification for federal energy projects version 3.0. Washington, DC, USA: U.S. Department of Energy; 2008. – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b0140 article-title: Deep learning in neural networks: an overview publication-title: Neural Networks – volume: 16 start-page: 3586 year: 2012 end-page: 3592 ident: b0060 article-title: A review on the prediction of building energy consumption publication-title: Renew Sustain Energy Rev – volume: 40 start-page: 2169 year: 2008 end-page: 2176 ident: b0085 article-title: Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption publication-title: Energy Build – reference: Goodfellow IJ, Warde-Farley D, Mirza M, Courville A, Bengio Y. Maxout networks. In: Proceedings of the 30th international conference on machine learning, Atlanta, Georgia, USA; 2013. – reference: Heaton J. Introduction to neural networks for Java. 2nd ed. Heaton Research Inc; 2005. – volume: 86 start-page: 2249 year: 2009 end-page: 2256 ident: b0075 article-title: Applying support vector machine to predict hourly cooling load in the building publication-title: Appl Energy – reference: Heaton J. Introduction to neural networks for JAVA. 2nd ed. Heaton Research Inc; 2008. – volume: 37 start-page: 11 year: 2005 end-page: 22 ident: b0040 article-title: HVAC system optimization – in-building section publication-title: Energy Build – volume: 321 start-page: 436 year: 2015 end-page: 444 ident: b0145 article-title: Deep learning publication-title: Nature – volume: 40 start-page: 4427 year: 2013 end-page: 4437 ident: b0125 article-title: Load forecasting using a multivariate meta-learning system publication-title: Expert Syst Appl – volume: 50 start-page: 90 year: 2009 end-page: 96 ident: b0095 article-title: Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks publication-title: Energy Convers Manage – volume: 40 start-page: 394 year: 2008 end-page: 398 ident: b0015 article-title: A review on buildings energy consumption information publication-title: Energy Build – volume: 37 start-page: 1250 year: 2005 end-page: 1259 ident: b0100 article-title: On-line building energy prediction using adaptive artificial neural networks publication-title: Energy Build – reference: > [accessed on September 9, 2016]. – volume: 73 start-page: 2006 year: 2010 end-page: 2016 ident: b0120 article-title: Meta-learning for time series forecasting and forecast combination publication-title: Neurocomputing – volume: 45 start-page: 2127 year: 2004 end-page: 2141 ident: b0035 article-title: Cooling load prediction for buildings using general regression neural networks publication-title: Energy Convers Manage – reference: American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). ASHRAE guideline 14-2002: Measurement of energy demand and savings, Atlanta, GA, USA; 2002. – volume: 83 start-page: 1033 year: 2006 end-page: 1046 ident: b0090 article-title: Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data fusion techniques publication-title: Appl Energy – volume: 65 start-page: 78 year: 2016 end-page: 85 ident: b0045 article-title: Development and validation of an effective and robust chiller sequencing control strategy using data-driven models publication-title: Automat Constr – volume: 87 start-page: 901 year: 2010 end-page: 909 ident: b0025 article-title: Cooling output optimization of an air handling unit publication-title: Appl Energy – reference: Chen TQ, Guestrin C. XGBoost: a scalable tree boosting system. KDD 2016, San Francisco, CA, USA, August 13–17; 2016. – volume: 165 start-page: 60 year: 2016 end-page: 71 ident: b0105 article-title: Energy consumption control automation using artificial neural networks and adaptive algorithms: Proposal of a new methodology and case study publication-title: Appl Energy – volume: 8 start-page: 73 year: 2002 end-page: 99 ident: b0070 article-title: An inverse gray-box model for transient building load prediction publication-title: HVAC&R Res – volume: 13 start-page: 221 year: 2007 end-page: 241 ident: b0195 article-title: Calibrating detailed building energy simulation programs with measured data-Part II: Application to three case study office buildings (RP-1051) publication-title: HVAC&R Res – volume: 172 start-page: 251 year: 2016 end-page: 263 ident: b0110 article-title: Short-term building energy model recommendation system: a meta-learning approach publication-title: Appl Energy – volume: 37 start-page: 517 year: 2014 end-page: 537 ident: b0020 article-title: Review of building energy modeling for control and operation publication-title: Renew Sustain Energy Rev – volume: 164 start-page: 1028 year: 2016 end-page: 1038 ident: b0050 article-title: A system-level fault detection and diagnosis method for low delta-T syndrome in the complex HVAC systems publication-title: Appl Energy – volume: 169 start-page: 14 year: 2016 end-page: 27 ident: b0055 article-title: Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels publication-title: Appl Energy – volume: 42 start-page: 11 year: 2014 end-page: 24 ident: b0160 article-title: A review of unsupervised feature learning and deep learning for time-series modeling publication-title: Pattern Recogn Lett – volume: 4 start-page: 231 year: 2010 end-page: 249 ident: b0080 article-title: Parallel support vector machines applied to the prediction of multiple building energy consumption publication-title: J Algorithm Comput Technol – volume: 112 start-page: 222 year: 2016 end-page: 233 ident: b0115 article-title: Energy forecasting for event venues: big data and prediction accuracy publication-title: Energy Build – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: b0165 article-title: Classification and regression by randomForest publication-title: R News – volume: 32 start-page: 1418 year: 2008 end-page: 1431 ident: b0065 article-title: A grey-box model of next-day buildings thermal load prediction for energy efficient control publication-title: Int J Energy Res – volume: 20 start-page: 117 year: 2015 end-page: 129 ident: b0135 article-title: Load profiling and its application to demand response: a review publication-title: Tsinghua Sci Technol – volume: 41 start-page: 85 year: 2015 end-page: 98 ident: b0005 article-title: Heating and cooling energy trends and drivers in buildings publication-title: Renew Sust Energy Rev – reference: R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, ISBN 3-900051-07-0; 2008. URL < – volume: 127 start-page: 1 year: 2014 end-page: 10 ident: b0150 article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques publication-title: Appl Energy – reference: United Nations Environment Program, < – volume: 116 start-page: 297 year: 2014 ident: 10.1016/j.apenergy.2017.03.064_b0030 article-title: An interactive building power demand management strategy for facilitating smart grid optimization publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.11.064 – volume: 169 start-page: 14 year: 2016 ident: 10.1016/j.apenergy.2017.03.064_b0055 article-title: Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.01.054 – volume: 40 start-page: 2169 year: 2008 ident: 10.1016/j.apenergy.2017.03.064_b0085 article-title: Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption publication-title: Energy Build doi: 10.1016/j.enbuild.2008.06.013 – ident: 10.1016/j.apenergy.2017.03.064_b0155 – volume: 37 start-page: 1250 year: 2005 ident: 10.1016/j.apenergy.2017.03.064_b0100 article-title: On-line building energy prediction using adaptive artificial neural networks publication-title: Energy Build doi: 10.1016/j.enbuild.2005.02.005 – ident: 10.1016/j.apenergy.2017.03.064_b0130 – ident: 10.1016/j.apenergy.2017.03.064_b0170 – volume: 20 start-page: 117 year: 2015 ident: 10.1016/j.apenergy.2017.03.064_b0135 article-title: Load profiling and its application to demand response: a review publication-title: Tsinghua Sci Technol doi: 10.1109/TST.2015.7085625 – volume: 165 start-page: 60 year: 2016 ident: 10.1016/j.apenergy.2017.03.064_b0105 article-title: Energy consumption control automation using artificial neural networks and adaptive algorithms: Proposal of a new methodology and case study publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.12.066 – ident: 10.1016/j.apenergy.2017.03.064_b0185 – volume: 42 start-page: 11 year: 2014 ident: 10.1016/j.apenergy.2017.03.064_b0160 article-title: A review of unsupervised feature learning and deep learning for time-series modeling publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2014.01.008 – volume: 40 start-page: 394 year: 2008 ident: 10.1016/j.apenergy.2017.03.064_b0015 article-title: A review on buildings energy consumption information publication-title: Energy Build doi: 10.1016/j.enbuild.2007.03.007 – volume: 50 start-page: 90 year: 2009 ident: 10.1016/j.apenergy.2017.03.064_b0095 article-title: Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2008.08.033 – ident: 10.1016/j.apenergy.2017.03.064_b0200 – volume: 37 start-page: 517 year: 2014 ident: 10.1016/j.apenergy.2017.03.064_b0020 article-title: Review of building energy modeling for control and operation publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.05.056 – volume: 65 start-page: 78 year: 2016 ident: 10.1016/j.apenergy.2017.03.064_b0045 article-title: Development and validation of an effective and robust chiller sequencing control strategy using data-driven models publication-title: Automat Constr doi: 10.1016/j.autcon.2016.01.005 – volume: 32 start-page: 1418 year: 2008 ident: 10.1016/j.apenergy.2017.03.064_b0065 article-title: A grey-box model of next-day buildings thermal load prediction for energy efficient control publication-title: Int J Energy Res doi: 10.1002/er.1458 – volume: 41 start-page: 85 year: 2015 ident: 10.1016/j.apenergy.2017.03.064_b0005 article-title: Heating and cooling energy trends and drivers in buildings publication-title: Renew Sust Energy Rev doi: 10.1016/j.rser.2014.08.039 – volume: 164 start-page: 1028 year: 2016 ident: 10.1016/j.apenergy.2017.03.064_b0050 article-title: A system-level fault detection and diagnosis method for low delta-T syndrome in the complex HVAC systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.02.025 – volume: 16 start-page: 3586 year: 2012 ident: 10.1016/j.apenergy.2017.03.064_b0060 article-title: A review on the prediction of building energy consumption publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2012.02.049 – volume: 172 start-page: 251 year: 2016 ident: 10.1016/j.apenergy.2017.03.064_b0110 article-title: Short-term building energy model recommendation system: a meta-learning approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.112 – ident: 10.1016/j.apenergy.2017.03.064_b0175 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.apenergy.2017.03.064_b0165 article-title: Classification and regression by randomForest publication-title: R News – volume: 87 start-page: 901 year: 2010 ident: 10.1016/j.apenergy.2017.03.064_b0025 article-title: Cooling output optimization of an air handling unit publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.06.010 – volume: 13 start-page: 221 year: 2007 ident: 10.1016/j.apenergy.2017.03.064_b0195 article-title: Calibrating detailed building energy simulation programs with measured data-Part II: Application to three case study office buildings (RP-1051) publication-title: HVAC&R Res doi: 10.1080/10789669.2007.10390952 – volume: 37 start-page: 11 year: 2005 ident: 10.1016/j.apenergy.2017.03.064_b0040 article-title: HVAC system optimization – in-building section publication-title: Energy Build doi: 10.1016/j.enbuild.2003.12.007 – volume: 112 start-page: 222 year: 2016 ident: 10.1016/j.apenergy.2017.03.064_b0115 article-title: Energy forecasting for event venues: big data and prediction accuracy publication-title: Energy Build doi: 10.1016/j.enbuild.2015.12.010 – ident: 10.1016/j.apenergy.2017.03.064_b0190 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.apenergy.2017.03.064_b0140 article-title: Deep learning in neural networks: an overview publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – volume: 86 start-page: 2249 year: 2009 ident: 10.1016/j.apenergy.2017.03.064_b0075 article-title: Applying support vector machine to predict hourly cooling load in the building publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.11.035 – volume: 40 start-page: 4427 year: 2013 ident: 10.1016/j.apenergy.2017.03.064_b0125 article-title: Load forecasting using a multivariate meta-learning system publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.01.047 – volume: 8 start-page: 73 year: 2002 ident: 10.1016/j.apenergy.2017.03.064_b0070 article-title: An inverse gray-box model for transient building load prediction publication-title: HVAC&R Res doi: 10.1080/10789669.2002.10391290 – volume: 4 start-page: 231 year: 2010 ident: 10.1016/j.apenergy.2017.03.064_b0080 article-title: Parallel support vector machines applied to the prediction of multiple building energy consumption publication-title: J Algorithm Comput Technol doi: 10.1260/1748-3018.4.2.231 – ident: 10.1016/j.apenergy.2017.03.064_b0180 – volume: 45 start-page: 2127 year: 2004 ident: 10.1016/j.apenergy.2017.03.064_b0035 article-title: Cooling load prediction for buildings using general regression neural networks publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2003.10.009 – volume: 83 start-page: 1033 year: 2006 ident: 10.1016/j.apenergy.2017.03.064_b0090 article-title: Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data fusion techniques publication-title: Appl Energy doi: 10.1016/j.apenergy.2005.08.006 – volume: 321 start-page: 436 year: 2015 ident: 10.1016/j.apenergy.2017.03.064_b0145 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 73 start-page: 2006 year: 2010 ident: 10.1016/j.apenergy.2017.03.064_b0120 article-title: Meta-learning for time series forecasting and forecast combination publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.09.020 – ident: 10.1016/j.apenergy.2017.03.064_b0010 – volume: 127 start-page: 1 year: 2014 ident: 10.1016/j.apenergy.2017.03.064_b0150 article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.04.016 |
| SSID | ssj0002120 |
| Score | 2.6690753 |
| Snippet | •Deep learning-based methods are developed for building cooling load prediction.•Accurate predictions on 24-h ahead building cooling load profiles are... Short-term building cooling load prediction is the essentialfoundation for manybuilding energy managementtasks, such as fault detection and diagnosis,... Short-term building cooling load prediction is the essential foundation for many building energy management tasks, such as fault detection and diagnosis,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 222 |
| SubjectTerms | algorithms artificial intelligence Big data Building cooling load Building energy prediction buildings cooling data analysis Data mining Deep learning energy prediction |
| Title | A short-term building cooling load prediction method using deep learning algorithms |
| URI | https://dx.doi.org/10.1016/j.apenergy.2017.03.064 https://www.proquest.com/docview/2000356620 https://www.proquest.com/docview/2116878272 |
| Volume | 195 |
| WOSCitedRecordID | wos000400227000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBej3cP2MNZuZd0XGuzNeLMlO5Iew0hZxyiDdpA9GUmW25Rghzgp_fN7-oqz7qMbYy8mCCmR7345nU663yH0tjCc1k1RpkKZ0qbk0FSpWqS1qk2t7Tmc55n9zE5O-HQqvoT7870rJ8Dall9fi8V_VTW0gbJt6uxfqHvzpdAAn0Hp8AS1w_OPFD9O-gvwqVNrcxMVql4nuutc4vm8k44YoJ75GuG-gnSydiGD2phFrCNxnsj5ebecrS4Cn3mkqg1uq3FJgxv1y3B4b8JKCG3TmXRx2KP1VnTatXyToVcIN-RsuBblY2AxD2a4dORyr6CX3Yv5VcWbUs6INaX8O1srym1r6VOSw8JLPCPGDzbdhxcu38mFfzN7H485ZlrPf36LL_vUTsbOJQfjRYQlGdglrBRg8nbHx5Ppp81CTQJrZ5z8VgL5z3_tV77LrVXcuSZnj9GjsKfAY4-FPXTPtPvo4RbT5D46mAwJjdA1WPT-CTod4wEuOMIFB7hgCxc8wAV7uGAHF2zhgiNc8ACXp-jr0eTsw8c0FNpIdSHIKi1ro7TijOui4SPRCM0VE6VShjZMCg4-C8sUpaZhI2WEJjqnuVI5F6UWapTRA7TTdq15hnChhdZMWcolWeRFIzXsmZUhRaPAcZflISqjCCsdWOhtMZR5Fa8bXlZR9JUVfZXRCkR_iN5vxi08D8udI0TUUBW8Se8lVgCsO8e-iSqtwNzaMzTZmm7d26qtGYUtEMl-0yfPRyBMwsjzf5jDC_Rg-P-9RDur5dq8Qvf11WrWL18HLN8A9Pi3lA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+short-term+building+cooling+load+prediction+method+using+deep+learning+algorithms&rft.jtitle=Applied+energy&rft.au=Fan%2C+Cheng&rft.au=Xiao%2C+Fu&rft.au=Zhao%2C+Yang&rft.date=2017-06-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=195&rft.spage=222&rft.epage=233&rft_id=info:doi/10.1016%2Fj.apenergy.2017.03.064&rft.externalDocID=S0306261917302921 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |