A short-term building cooling load prediction method using deep learning algorithms

•Deep learning-based methods are developed for building cooling load prediction.•Accurate predictions on 24-h ahead building cooling load profiles are achieved.•The potentials of supervised and unsupervised deep learning is investigated.•Features extracted by unsupervised deep learning can improve m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied energy Ročník 195; s. 222 - 233
Hlavní autori: Fan, Cheng, Xiao, Fu, Zhao, Yang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.06.2017
Predmet:
ISSN:0306-2619, 1872-9118
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Deep learning-based methods are developed for building cooling load prediction.•Accurate predictions on 24-h ahead building cooling load profiles are achieved.•The potentials of supervised and unsupervised deep learning is investigated.•Features extracted by unsupervised deep learning can improve model performance.•Supervised deep learning does not show obvious advantages in model development. Short-term building cooling load prediction is the essential foundation for many building energy management tasks, such as fault detection and diagnosis, demand-side management and control optimization. Conventional methods, which heavily rely on physical principles, have limited power in practice as their performance is subject to many physical assumptions. By contrast, data-driven methods have gained huge interests due to their flexibility in model development and the rich data available in modern buildings. The rapid development in data science has provided advanced data analytics to tackle prediction problems in a more convenient, efficient and effective way. This paper investigates the potential of one of the most promising techniques in advanced data analytics, i.e., deep learning, in predicting 24-h ahead building cooling load profiles. Deep learning refers to a collection of machine learning algorithms which are powerful in revealing nonlinear and complex patterns in big data. Deep learning can be used either in a supervised manner to develop prediction models with given inputs and output (i.e., cooling load), or in an unsupervised manner to extract meaningful features from raw data as model inputs. This study exploits the potential of deep learning in both manners, and compares its performance in cooling load prediction with typical feature extraction methods and popular prediction techniques in the building field. The results show that deep learning can enhance the performance of building cooling load prediction, especially when used in an unsupervised manner for constructing high-level features as model inputs. Using the features extracted by unsupervised deep learning as inputs for cooling load prediction can evidently enhance the prediction performance. The findings are enlightening and could bring more flexible and effective solutions for building energy predictions.
AbstractList •Deep learning-based methods are developed for building cooling load prediction.•Accurate predictions on 24-h ahead building cooling load profiles are achieved.•The potentials of supervised and unsupervised deep learning is investigated.•Features extracted by unsupervised deep learning can improve model performance.•Supervised deep learning does not show obvious advantages in model development. Short-term building cooling load prediction is the essential foundation for many building energy management tasks, such as fault detection and diagnosis, demand-side management and control optimization. Conventional methods, which heavily rely on physical principles, have limited power in practice as their performance is subject to many physical assumptions. By contrast, data-driven methods have gained huge interests due to their flexibility in model development and the rich data available in modern buildings. The rapid development in data science has provided advanced data analytics to tackle prediction problems in a more convenient, efficient and effective way. This paper investigates the potential of one of the most promising techniques in advanced data analytics, i.e., deep learning, in predicting 24-h ahead building cooling load profiles. Deep learning refers to a collection of machine learning algorithms which are powerful in revealing nonlinear and complex patterns in big data. Deep learning can be used either in a supervised manner to develop prediction models with given inputs and output (i.e., cooling load), or in an unsupervised manner to extract meaningful features from raw data as model inputs. This study exploits the potential of deep learning in both manners, and compares its performance in cooling load prediction with typical feature extraction methods and popular prediction techniques in the building field. The results show that deep learning can enhance the performance of building cooling load prediction, especially when used in an unsupervised manner for constructing high-level features as model inputs. Using the features extracted by unsupervised deep learning as inputs for cooling load prediction can evidently enhance the prediction performance. The findings are enlightening and could bring more flexible and effective solutions for building energy predictions.
Short-term building cooling load prediction is the essentialfoundation for manybuilding energy managementtasks, such as fault detection and diagnosis, demand-side management and control optimization.Conventional methods, which heavily rely on physical principles,have limited power in practiceas their performance is subjectto many physical assumptions. By contrast, data-driven methods have gained hugeinterests due to their flexibility in model development and the rich dataavailable in modern buildings. The rapid development in data sciencehas provided advanced data analytics to tackle prediction problems in a more convenient, efficient and effective way.This paper investigates the potential of one of the most promisingtechniquesin advanced data analytics, i.e., deep learning, in predicting 24-hour ahead building cooling load profiles.Deep learning refers to a collection of machine learning algorithms whichare powerful in revealing nonlinear and complex patterns inbig data. Deep learning can be used either in a supervised manner todevelop prediction models with given inputs and output (i.e., cooling load), or in an unsupervised manner to extract meaningfulfeatures from raw data as model inputs. This study exploits the potential of deep learning in both manners, and compares its performance incooling load predictionwith typical feature extraction methods and popular prediction techniques in the building field. The results show that deep learning can enhance the performance of building cooling load prediction, especially when used in an unsupervised manner for constructing high-level features as model inputs.Using the features extracted by unsupervised deep learning as inputs for cooling load prediction can evidently enhance the prediction performance. The findings are enlightening and could bring more flexible and effective solutions for building energy predictions.
Short-term building cooling load prediction is the essential foundation for many building energy management tasks, such as fault detection and diagnosis, demand-side management and control optimization. Conventional methods, which heavily rely on physical principles, have limited power in practice as their performance is subject to many physical assumptions. By contrast, data-driven methods have gained huge interests due to their flexibility in model development and the rich data available in modern buildings. The rapid development in data science has provided advanced data analytics to tackle prediction problems in a more convenient, efficient and effective way.This paper investigates the potential of one of the most promising techniques in advanced data analytics, i.e., deep learning, in predicting 24-h ahead building cooling load profiles. Deep learning refers to a collection of machine learning algorithms which are powerful in revealing nonlinear and complex patterns in big data. Deep learning can be used either in a supervised manner to develop prediction models with given inputs and output (i.e., cooling load), or in an unsupervised manner to extract meaningful features from raw data as model inputs. This study exploits the potential of deep learning in both manners, and compares its performance in cooling load prediction with typical feature extraction methods and popular prediction techniques in the building field. The results show that deep learning can enhance the performance of building cooling load prediction, especially when used in an unsupervised manner for constructing high-level features as model inputs. Using the features extracted by unsupervised deep learning as inputs for cooling load prediction can evidently enhance the prediction performance. The findings are enlightening and could bring more flexible and effective solutions for building energy predictions.
Author Fan, Cheng
Xiao, Fu
Zhao, Yang
Author_xml – sequence: 1
  givenname: Cheng
  surname: Fan
  fullname: Fan, Cheng
  organization: Department of Construction Management and Real Estate, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Fu
  orcidid: 0000-0002-3779-3943
  surname: Xiao
  fullname: Xiao, Fu
  email: linda.xiao@polyu.edu.hk
  organization: Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
– sequence: 3
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
  organization: Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou, China
BookMark eNqFkE1LAzEQhoMo2Fb_guzRy675aLMb8GApfkHBg3oOSXa2Tclu1iQV-u_dpXrx0tMwzPu8MM8UnXe-A4RuCC4IJvxuV6geOgibQ0ExKQvMCsznZ2hCqpLmgpDqHE0wwzynnIhLNI1xhzGmhOIJel9mcetDyhOENtN762rbbTLjvRun86rO-gC1Ncn6LmshbX2d7eN4rAH6zIEK3bgpt_HBpm0br9BFo1yE6985Q59Pjx-rl3z99vy6Wq5zMxc05YsatNFVWZl5U3HRCFPpUiy0BtaUSlRzKkqsGYOm5BqEoYYwojWpxMIIzTGbodtjbx_81x5ikq2NBpxTHfh9lJQQPtTTkp6ODkLYgnM6tt4foyb4GAM00tikxu9TUNZJguWoXe7kn3Y5apeYyUH7gPN_eB9sq8LhNPhwBGFQ9m0hyGgsdGZwH8AkWXt7quIHol-kTw
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3042758
crossref_primary_10_1016_j_apenergy_2021_116652
crossref_primary_10_1016_j_jobe_2025_113809
crossref_primary_10_1016_j_enbuild_2021_111574
crossref_primary_10_1016_j_cles_2023_100060
crossref_primary_10_1016_j_rser_2025_115817
crossref_primary_10_1016_j_buildenv_2022_109081
crossref_primary_10_3390_en17184714
crossref_primary_10_1016_j_enbuild_2025_115815
crossref_primary_10_3390_technologies12100194
crossref_primary_10_1007_s10115_021_01641_w
crossref_primary_10_1016_j_rser_2022_112704
crossref_primary_10_1080_23744731_2022_2067466
crossref_primary_10_1016_j_buildenv_2023_110350
crossref_primary_10_1016_j_apenergy_2017_08_204
crossref_primary_10_1016_j_solener_2022_06_045
crossref_primary_10_1016_j_eswa_2024_123169
crossref_primary_10_1007_s40745_020_00300_1
crossref_primary_10_1016_j_solener_2024_113070
crossref_primary_10_1080_01496395_2024_2418292
crossref_primary_10_1016_j_applthermaleng_2021_117153
crossref_primary_10_1007_s10586_024_04993_4
crossref_primary_10_1016_j_aei_2022_101674
crossref_primary_10_1016_j_energy_2024_130608
crossref_primary_10_1016_j_apenergy_2018_05_075
crossref_primary_10_1016_j_enbuild_2024_114457
crossref_primary_10_1016_j_apenergy_2019_113998
crossref_primary_10_3390_buildings14113699
crossref_primary_10_1016_j_enbuild_2020_110096
crossref_primary_10_1016_j_apenergy_2020_115144
crossref_primary_10_1016_j_enbuild_2021_111478
crossref_primary_10_1007_s12273_021_0807_6
crossref_primary_10_3390_buildings15040648
crossref_primary_10_1016_j_jclepro_2024_142162
crossref_primary_10_1016_j_compag_2024_109273
crossref_primary_10_3390_buildings14020397
crossref_primary_10_1016_j_apenergy_2018_03_125
crossref_primary_10_1109_TCPMT_2019_2930741
crossref_primary_10_1016_j_apenergy_2020_115383
crossref_primary_10_3390_buildings12050502
crossref_primary_10_3390_en16062574
crossref_primary_10_1016_j_autcon_2024_105579
crossref_primary_10_1016_j_apenergy_2018_12_042
crossref_primary_10_1016_j_jclepro_2019_05_085
crossref_primary_10_3390_en12101856
crossref_primary_10_1088_1757_899X_563_5_052035
crossref_primary_10_1109_TASE_2020_3033664
crossref_primary_10_3390_en16083446
crossref_primary_10_1016_j_scs_2021_103202
crossref_primary_10_1038_s41598_024_70341_6
crossref_primary_10_1016_j_jobe_2023_106992
crossref_primary_10_3233_JIFS_221188
crossref_primary_10_1016_j_scs_2020_102194
crossref_primary_10_1007_s42452_024_05698_4
crossref_primary_10_1016_j_energy_2021_122073
crossref_primary_10_1016_j_enbuild_2019_109675
crossref_primary_10_1016_j_enbuild_2019_109564
crossref_primary_10_1016_j_enbuild_2024_114123
crossref_primary_10_1016_j_ijrefrig_2019_07_018
crossref_primary_10_3233_JIFS_179209
crossref_primary_10_1016_j_enbuild_2019_109563
crossref_primary_10_1016_j_knosys_2025_114300
crossref_primary_10_1016_j_ijrefrig_2022_07_020
crossref_primary_10_1108_ECAM_01_2024_0144
crossref_primary_10_1016_j_enbuild_2024_115217
crossref_primary_10_1016_j_energy_2021_123036
crossref_primary_10_1007_s12273_020_0608_3
crossref_primary_10_1016_j_jobe_2022_104445
crossref_primary_10_3390_en14030608
crossref_primary_10_1016_j_apenergy_2021_116452
crossref_primary_10_1016_j_jobe_2023_107958
crossref_primary_10_1016_j_enbuild_2020_110161
crossref_primary_10_1016_j_jobe_2023_106868
crossref_primary_10_1016_j_applthermaleng_2019_04_040
crossref_primary_10_1016_j_apm_2024_05_037
crossref_primary_10_1109_ACCESS_2023_3322167
crossref_primary_10_1016_j_apenergy_2024_124196
crossref_primary_10_1016_j_energy_2023_130149
crossref_primary_10_1016_j_egyr_2020_09_019
crossref_primary_10_3390_su14074033
crossref_primary_10_1016_j_apenergy_2018_12_065
crossref_primary_10_1016_j_enbuild_2021_111407
crossref_primary_10_1016_j_enbuild_2019_109424
crossref_primary_10_1016_j_buildenv_2022_109054
crossref_primary_10_1016_j_enbuild_2024_114254
crossref_primary_10_1109_ACCESS_2020_3007727
crossref_primary_10_1016_j_applthermaleng_2025_125811
crossref_primary_10_1088_1755_1315_944_1_012010
crossref_primary_10_1016_j_apenergy_2018_10_107
crossref_primary_10_1016_j_apenergy_2018_06_064
crossref_primary_10_1016_j_foodcont_2024_110604
crossref_primary_10_1016_j_enbuild_2021_111556
crossref_primary_10_1016_j_enbuild_2022_111832
crossref_primary_10_1016_j_enbuild_2020_110022
crossref_primary_10_1016_j_jobe_2024_110034
crossref_primary_10_3390_en13071848
crossref_primary_10_3390_su9112119
crossref_primary_10_1016_j_est_2024_114959
crossref_primary_10_1186_s40494_022_00805_3
crossref_primary_10_1016_j_energy_2018_05_111
crossref_primary_10_1016_j_energy_2023_127459
crossref_primary_10_1109_TSG_2020_3014055
crossref_primary_10_1007_s00366_019_00882_2
crossref_primary_10_1016_j_enbuild_2021_111791
crossref_primary_10_1007_s11760_024_03422_8
crossref_primary_10_1016_j_fluid_2021_113094
crossref_primary_10_1007_s12273_020_0707_1
crossref_primary_10_1016_j_jobe_2022_105316
crossref_primary_10_1016_j_jobe_2022_105558
crossref_primary_10_1016_j_scs_2021_103227
crossref_primary_10_1016_j_apenergy_2021_118410
crossref_primary_10_3390_en17020376
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121075
crossref_primary_10_1016_j_enbuild_2020_110156
crossref_primary_10_1093_ijlct_cty057
crossref_primary_10_1016_j_engappai_2022_105287
crossref_primary_10_1109_TEM_2024_3422821
crossref_primary_10_1016_j_energy_2023_127331
crossref_primary_10_1016_j_enbuild_2019_109402
crossref_primary_10_1007_s12053_024_10234_9
crossref_primary_10_1016_j_apenergy_2019_05_102
crossref_primary_10_3390_buildings9050131
crossref_primary_10_1007_s12273_019_0548_y
crossref_primary_10_1016_j_enconman_2017_10_008
crossref_primary_10_3390_app9132630
crossref_primary_10_3390_buildings13061542
crossref_primary_10_1016_j_apenergy_2022_119806
crossref_primary_10_3390_buildings13061423
crossref_primary_10_1016_j_ijrefrig_2025_04_018
crossref_primary_10_1016_j_autcon_2024_105380
crossref_primary_10_1016_j_apenergy_2018_07_085
crossref_primary_10_1016_j_jclepro_2020_121082
crossref_primary_10_1016_j_jobe_2021_103041
crossref_primary_10_1016_j_enbuild_2023_112823
crossref_primary_10_3390_en14010081
crossref_primary_10_1016_j_enbuild_2023_112826
crossref_primary_10_1016_j_eswa_2023_120109
crossref_primary_10_1109_ACCESS_2021_3053317
crossref_primary_10_1016_j_egyr_2023_05_263
crossref_primary_10_3390_en14164785
crossref_primary_10_3390_en18010201
crossref_primary_10_1016_j_enbuild_2021_111054
crossref_primary_10_3233_JIFS_189045
crossref_primary_10_1016_j_chaos_2025_116448
crossref_primary_10_1007_s12273_020_0723_1
crossref_primary_10_1007_s00521_020_05165_2
crossref_primary_10_3390_en13112907
crossref_primary_10_1109_ACCESS_2024_3482572
crossref_primary_10_1109_TIM_2020_2967247
crossref_primary_10_1016_j_jobe_2020_101827
crossref_primary_10_1109_ACCESS_2022_3161654
crossref_primary_10_3390_en16010276
crossref_primary_10_3390_en14040968
crossref_primary_10_1016_j_enbuild_2022_112552
crossref_primary_10_1016_j_energy_2019_116361
crossref_primary_10_1016_j_enbuild_2024_115021
crossref_primary_10_1007_s12273_023_0984_6
crossref_primary_10_1016_j_earscirev_2019_103076
crossref_primary_10_1016_j_enbuild_2023_112807
crossref_primary_10_1371_journal_pone_0266373
crossref_primary_10_1016_j_aei_2019_100982
crossref_primary_10_1016_j_buildenv_2020_107154
crossref_primary_10_1061__ASCE_WR_1943_5452_0000992
crossref_primary_10_1016_j_jobe_2021_103182
crossref_primary_10_1016_j_egyai_2025_100561
crossref_primary_10_1016_j_enbuild_2025_115436
crossref_primary_10_1007_s12273_024_1149_y
crossref_primary_10_1109_ACCESS_2019_2958383
crossref_primary_10_1007_s00231_025_03545_9
crossref_primary_10_1016_j_enbuild_2021_111073
crossref_primary_10_1016_j_apenergy_2021_117238
crossref_primary_10_1016_j_enbenv_2023_07_005
crossref_primary_10_1016_j_scs_2020_102283
crossref_primary_10_17770_etr2025vol2_8601
crossref_primary_10_1016_j_enbuild_2022_112337
crossref_primary_10_1016_j_enbuild_2020_109921
crossref_primary_10_1080_19401493_2024_2403027
crossref_primary_10_3233_JIFS_211607
crossref_primary_10_1016_j_ijrefrig_2024_05_017
crossref_primary_10_1016_j_enbuild_2024_115001
crossref_primary_10_3390_urbansci9060202
crossref_primary_10_3390_su15097458
crossref_primary_10_3390_en13246654
crossref_primary_10_2139_ssrn_5191258
crossref_primary_10_1016_j_egypro_2019_01_378
crossref_primary_10_3389_fenrg_2023_1296037
crossref_primary_10_1016_j_apenergy_2023_122183
crossref_primary_10_1016_j_apenergy_2024_123276
crossref_primary_10_1016_j_buildenv_2019_106394
crossref_primary_10_1016_j_energy_2020_117714
crossref_primary_10_1016_j_jobe_2024_111549
crossref_primary_10_1016_j_jobe_2023_108095
crossref_primary_10_1016_j_enbenv_2023_06_005
crossref_primary_10_1016_j_jobe_2022_105815
crossref_primary_10_1016_j_enbuild_2025_115333
crossref_primary_10_3390_en13040839
crossref_primary_10_3390_en15030810
crossref_primary_10_1016_j_isatra_2021_01_058
crossref_primary_10_1016_j_apenergy_2022_119962
crossref_primary_10_4271_12_09_01_0001
crossref_primary_10_1016_j_enbuild_2022_112635
crossref_primary_10_3390_s19132868
crossref_primary_10_1016_j_enbuild_2019_109705
crossref_primary_10_1016_j_energy_2020_117846
crossref_primary_10_3390_make6020045
crossref_primary_10_3390_electronics7100222
crossref_primary_10_1016_j_rineng_2023_101077
crossref_primary_10_1016_j_apenergy_2021_118343
crossref_primary_10_1016_j_enbuild_2022_112521
crossref_primary_10_1016_j_jobe_2023_108071
crossref_primary_10_3390_su16177249
crossref_primary_10_3390_su15043725
crossref_primary_10_1016_j_apenergy_2017_12_051
crossref_primary_10_1016_j_buildenv_2018_09_024
crossref_primary_10_1016_j_apenergy_2024_123016
crossref_primary_10_1016_j_apenergy_2024_123379
crossref_primary_10_1016_j_jobe_2021_103017
crossref_primary_10_3233_JIFS_233544
crossref_primary_10_1016_j_epsr_2019_106073
crossref_primary_10_3233_JIFS_190095
crossref_primary_10_1016_j_energy_2021_120065
crossref_primary_10_1016_j_apenergy_2018_12_004
crossref_primary_10_1007_s12652_019_01317_y
crossref_primary_10_1016_j_enbuild_2025_116446
crossref_primary_10_1007_s11831_023_10054_7
crossref_primary_10_3390_en13174358
crossref_primary_10_1016_j_apenergy_2019_113664
crossref_primary_10_1016_j_scs_2021_103511
crossref_primary_10_1155_2021_1682163
crossref_primary_10_1016_j_enbuild_2019_05_043
crossref_primary_10_1016_j_energy_2020_117949
crossref_primary_10_1016_j_egyr_2022_10_441
crossref_primary_10_1016_j_energy_2024_130621
crossref_primary_10_3389_fenrg_2022_786027
crossref_primary_10_3390_en13092357
crossref_primary_10_1109_ACCESS_2022_3141767
crossref_primary_10_2166_wpt_2024_292
crossref_primary_10_1016_j_rser_2025_116061
crossref_primary_10_1016_j_tsep_2019_03_002
crossref_primary_10_1016_j_asej_2025_103481
crossref_primary_10_1109_ACCESS_2020_3027061
crossref_primary_10_1016_j_apenergy_2021_117276
crossref_primary_10_1016_j_enbuild_2020_109897
crossref_primary_10_1016_j_proeng_2017_09_967
crossref_primary_10_1016_j_enbuild_2023_113513
crossref_primary_10_1016_j_enbuild_2018_03_042
crossref_primary_10_1016_j_enbuild_2024_113913
crossref_primary_10_1016_j_buildenv_2022_109641
crossref_primary_10_1080_00038628_2023_2193167
crossref_primary_10_1016_j_heliyon_2024_e27343
crossref_primary_10_3390_app15147682
crossref_primary_10_1016_j_rser_2021_110929
crossref_primary_10_1007_s12053_025_10379_1
crossref_primary_10_3992_1943_4618_14_3_115
crossref_primary_10_1016_j_jobe_2024_108724
crossref_primary_10_1051_wujns_2023283223
crossref_primary_10_1007_s42524_021_0181_1
crossref_primary_10_1016_j_enbuild_2018_10_004
crossref_primary_10_1109_ACCESS_2021_3136091
crossref_primary_10_1016_j_enbuild_2019_04_018
crossref_primary_10_1007_s10462_025_11343_2
crossref_primary_10_3390_buildings12101701
crossref_primary_10_1016_j_enbuild_2023_112896
crossref_primary_10_1016_j_rser_2025_115387
crossref_primary_10_3390_en12050866
crossref_primary_10_1016_j_enbuild_2023_113507
crossref_primary_10_3390_ijgi12070264
crossref_primary_10_1680_jmapl_21_00027
crossref_primary_10_1016_j_applthermaleng_2025_126421
crossref_primary_10_1016_j_jobe_2025_112295
crossref_primary_10_1016_j_buildenv_2024_112142
crossref_primary_10_3390_en16031480
crossref_primary_10_1016_j_applthermaleng_2020_115261
crossref_primary_10_1016_j_future_2019_01_045
crossref_primary_10_1016_j_energy_2024_132456
crossref_primary_10_3390_en12071351
crossref_primary_10_1016_j_knosys_2024_111967
crossref_primary_10_1016_j_procs_2021_10_014
crossref_primary_10_1016_j_scs_2023_104674
crossref_primary_10_3390_en14227590
crossref_primary_10_1016_j_jobe_2023_107464
crossref_primary_10_1016_j_enbuild_2018_03_065
crossref_primary_10_3390_su12177110
crossref_primary_10_1016_j_enbenv_2019_11_003
crossref_primary_10_1016_j_buildenv_2024_111186
crossref_primary_10_1016_j_enbuild_2019_04_034
crossref_primary_10_1007_s12273_022_0935_7
crossref_primary_10_1016_j_scs_2024_105723
crossref_primary_10_1080_17517575_2019_1600724
crossref_primary_10_1016_j_energy_2024_130388
crossref_primary_10_3390_en12173254
crossref_primary_10_1016_j_autcon_2023_104984
crossref_primary_10_1007_s12273_021_0811_x
crossref_primary_10_1016_j_autcon_2022_104440
crossref_primary_10_1016_j_enbuild_2023_113846
crossref_primary_10_3390_en11071708
crossref_primary_10_1016_j_rser_2021_110714
crossref_primary_10_1016_j_energy_2020_118045
crossref_primary_10_3992_jgb_17_3_63
crossref_primary_10_1016_j_apenergy_2018_02_069
crossref_primary_10_1016_j_apenergy_2020_115402
crossref_primary_10_1016_j_apenergy_2018_09_052
crossref_primary_10_1049_iet_gtd_2020_0048
crossref_primary_10_1016_j_enbuild_2018_02_039
crossref_primary_10_1016_j_energy_2022_126274
crossref_primary_10_1080_15325008_2020_1793838
crossref_primary_10_1108_BEPAM_04_2018_0074
crossref_primary_10_3390_en11123408
crossref_primary_10_1016_j_applthermaleng_2017_09_007
crossref_primary_10_3390_buildings14072212
crossref_primary_10_1016_j_jobe_2020_102020
crossref_primary_10_1016_j_apenergy_2022_119443
crossref_primary_10_3390_buildings13071677
crossref_primary_10_1016_j_apenergy_2020_114561
crossref_primary_10_1016_j_apenergy_2020_114683
crossref_primary_10_1016_j_enbuild_2018_12_034
crossref_primary_10_1016_j_jhydrol_2021_126253
crossref_primary_10_1016_j_apenergy_2020_115410
crossref_primary_10_1016_j_enbuild_2022_112479
crossref_primary_10_1016_j_matt_2023_04_016
crossref_primary_10_1016_j_enbuild_2022_112478
crossref_primary_10_1016_j_enbuild_2023_113428
crossref_primary_10_1016_j_apenergy_2019_113395
crossref_primary_10_1016_j_energy_2018_03_179
crossref_primary_10_1016_j_enbuild_2022_112593
crossref_primary_10_1016_j_apenergy_2019_02_066
crossref_primary_10_3390_en12183588
crossref_primary_10_3390_su13063198
crossref_primary_10_1007_s40684_023_00537_0
crossref_primary_10_1016_j_enbuild_2017_10_054
crossref_primary_10_1016_j_engappai_2022_105617
crossref_primary_10_1016_j_rser_2022_112327
crossref_primary_10_1016_j_matpr_2021_07_264
crossref_primary_10_3390_en10111905
crossref_primary_10_1016_j_applthermaleng_2025_127328
crossref_primary_10_1016_j_apenergy_2023_121830
crossref_primary_10_1016_j_buildenv_2019_106216
crossref_primary_10_1016_j_apenergy_2019_02_052
crossref_primary_10_1016_j_prime_2024_100628
crossref_primary_10_1049_gtd2_12684
crossref_primary_10_1088_1742_6596_1217_1_012122
crossref_primary_10_1016_j_solener_2018_07_050
crossref_primary_10_1111_risa_13425
crossref_primary_10_1016_j_jobe_2023_106047
crossref_primary_10_1016_j_energy_2024_131317
crossref_primary_10_1016_j_renene_2019_10_113
crossref_primary_10_3390_su12083103
crossref_primary_10_3390_buildings13020487
crossref_primary_10_1016_j_apenergy_2019_01_013
crossref_primary_10_1016_j_apenergy_2017_07_018
crossref_primary_10_1016_j_enbuild_2023_113409
crossref_primary_10_1016_j_energy_2019_115973
crossref_primary_10_1016_j_apenergy_2019_113492
crossref_primary_10_1016_j_renene_2020_01_133
crossref_primary_10_1016_j_buildenv_2019_106204
crossref_primary_10_1016_j_apenergy_2021_118088
crossref_primary_10_1016_j_jobe_2020_102139
crossref_primary_10_1016_j_jobe_2021_103406
crossref_primary_10_1007_s12273_020_0711_5
crossref_primary_10_1371_journal_pone_0312573
crossref_primary_10_1016_j_enbuild_2021_110886
crossref_primary_10_1016_j_enbuild_2025_116190
crossref_primary_10_3390_educsci11020082
crossref_primary_10_1016_j_rser_2024_114284
crossref_primary_10_3390_buildings13020312
crossref_primary_10_1016_j_buildenv_2018_10_062
crossref_primary_10_1007_s10270_020_00856_9
crossref_primary_10_1016_j_enbuild_2019_109364
crossref_primary_10_1016_j_apenergy_2024_124960
crossref_primary_10_1016_j_apenergy_2018_11_077
crossref_primary_10_1016_j_autcon_2020_103517
crossref_primary_10_1016_j_scs_2019_101601
crossref_primary_10_1016_j_energy_2018_01_180
crossref_primary_10_1016_j_enbuild_2021_110998
crossref_primary_10_1109_TIM_2020_3031186
crossref_primary_10_1016_j_enbuild_2023_113348
crossref_primary_10_1016_j_heliyon_2024_e26888
crossref_primary_10_1016_j_enbuild_2023_113349
crossref_primary_10_1016_j_enbuild_2023_113229
crossref_primary_10_1016_j_enbuild_2024_114735
crossref_primary_10_1016_j_jobe_2025_113777
crossref_primary_10_3390_su14148584
crossref_primary_10_1016_j_scs_2021_103092
crossref_primary_10_1016_j_apenergy_2022_120481
crossref_primary_10_1016_j_powtec_2018_09_017
crossref_primary_10_1016_j_aei_2020_101034
crossref_primary_10_1016_j_enbuild_2017_06_019
crossref_primary_10_1016_j_enbuild_2020_110493
crossref_primary_10_1016_j_enbuild_2020_110220
crossref_primary_10_1016_j_applthermaleng_2018_03_009
crossref_primary_10_1016_j_enbuild_2023_113339
crossref_primary_10_1016_j_enbuild_2019_109579
crossref_primary_10_1016_j_rser_2022_112401
crossref_primary_10_1016_j_scp_2023_101323
crossref_primary_10_3390_pr11123389
crossref_primary_10_1016_j_jobe_2021_103851
crossref_primary_10_3389_fenrg_2021_652801
crossref_primary_10_1016_j_aei_2020_101122
crossref_primary_10_1016_j_aei_2018_06_004
crossref_primary_10_1016_j_enbuild_2017_08_077
crossref_primary_10_1016_j_apenergy_2020_115660
crossref_primary_10_1016_j_enbuild_2020_110232
crossref_primary_10_1016_j_apenergy_2018_10_053
crossref_primary_10_1016_j_enbenv_2024_10_002
crossref_primary_10_1016_j_energy_2020_118676
crossref_primary_10_1177_17442591241299036
crossref_primary_10_1016_j_jclepro_2020_122843
crossref_primary_10_1109_ACCESS_2020_3040980
crossref_primary_10_1016_j_apenergy_2022_120144
crossref_primary_10_3390_su11040987
crossref_primary_10_1016_j_enbuild_2021_111505
crossref_primary_10_1016_j_energy_2023_127645
crossref_primary_10_1016_j_enbuild_2023_113444
crossref_primary_10_1016_j_apenergy_2018_11_081
crossref_primary_10_1016_j_enbuild_2020_110350
crossref_primary_10_3390_math10091508
crossref_primary_10_1016_j_jobe_2021_102514
crossref_primary_10_1016_j_apenergy_2021_117821
crossref_primary_10_3390_en16196927
crossref_primary_10_1016_j_epsr_2023_109415
crossref_primary_10_1016_j_energy_2024_133242
crossref_primary_10_1016_j_apenergy_2021_117829
crossref_primary_10_1016_j_apenergy_2022_120279
crossref_primary_10_1088_1755_1315_238_1_012042
crossref_primary_10_1007_s40518_018_0112_x
crossref_primary_10_1016_j_rineng_2023_100888
crossref_primary_10_1007_s42979_024_03221_5
crossref_primary_10_1016_j_scs_2019_101642
crossref_primary_10_1016_j_segan_2021_100543
crossref_primary_10_1016_j_enbuild_2017_11_002
crossref_primary_10_1016_j_est_2023_106872
crossref_primary_10_1016_j_egyr_2022_01_162
crossref_primary_10_1016_j_apenergy_2020_115135
crossref_primary_10_3390_en14102779
crossref_primary_10_1108_CI_01_2023_0005
crossref_primary_10_3389_fpsyg_2022_965926
crossref_primary_10_1016_j_energy_2025_134508
crossref_primary_10_1016_j_est_2024_112126
crossref_primary_10_1016_j_neuri_2022_100062
crossref_primary_10_1016_j_jksuci_2022_04_016
crossref_primary_10_3390_app10248968
crossref_primary_10_1016_j_apenergy_2023_121783
crossref_primary_10_1016_j_rser_2020_110287
crossref_primary_10_1088_1755_1315_238_1_012047
crossref_primary_10_1007_s12273_024_1152_3
crossref_primary_10_1016_j_scs_2019_101533
crossref_primary_10_1016_j_energy_2021_120950
crossref_primary_10_1016_j_apenergy_2023_121547
crossref_primary_10_1016_j_jobe_2022_105028
crossref_primary_10_1016_j_jobe_2023_106335
crossref_primary_10_3390_s24041157
crossref_primary_10_1016_j_enbuild_2025_116094
crossref_primary_10_1016_j_esd_2023_04_004
crossref_primary_10_1016_j_jobe_2022_104194
crossref_primary_10_1016_j_apenergy_2020_114499
crossref_primary_10_1016_j_enbuild_2021_110980
crossref_primary_10_1016_j_engappai_2023_107115
crossref_primary_10_1109_ACCESS_2020_2968536
crossref_primary_10_1016_j_enbuild_2021_110740
crossref_primary_10_1016_j_jclepro_2020_121787
crossref_primary_10_1016_j_enbuild_2020_110301
crossref_primary_10_3390_buildings13020532
crossref_primary_10_3390_su142114446
crossref_primary_10_1002_cae_22548
crossref_primary_10_1007_s12273_018_0431_2
crossref_primary_10_1016_j_aei_2025_103754
crossref_primary_10_1109_JIOT_2024_3401236
crossref_primary_10_1016_j_enbuild_2019_109383
crossref_primary_10_1016_j_enbuild_2023_113499
crossref_primary_10_1016_j_enbuild_2023_113258
crossref_primary_10_1080_17512549_2022_2136240
crossref_primary_10_1177_1550147719877616
crossref_primary_10_1007_s12273_023_1053_x
crossref_primary_10_1016_j_energy_2024_131395
crossref_primary_10_1016_j_apenergy_2020_115237
crossref_primary_10_3390_data9010013
crossref_primary_10_1002_2475_8876_12272
crossref_primary_10_1016_j_enbenv_2025_05_012
crossref_primary_10_1016_j_rser_2021_111685
crossref_primary_10_1016_j_apenergy_2023_121446
crossref_primary_10_1088_1742_6596_2160_1_012044
crossref_primary_10_1016_j_enbuild_2022_112098
Cites_doi 10.1016/j.apenergy.2013.11.064
10.1016/j.apenergy.2016.01.054
10.1016/j.enbuild.2008.06.013
10.1016/j.enbuild.2005.02.005
10.1109/TST.2015.7085625
10.1016/j.apenergy.2015.12.066
10.1016/j.patrec.2014.01.008
10.1016/j.enbuild.2007.03.007
10.1016/j.enconman.2008.08.033
10.1016/j.rser.2014.05.056
10.1016/j.autcon.2016.01.005
10.1002/er.1458
10.1016/j.rser.2014.08.039
10.1016/j.apenergy.2015.02.025
10.1016/j.rser.2012.02.049
10.1016/j.apenergy.2016.03.112
10.1016/j.apenergy.2009.06.010
10.1080/10789669.2007.10390952
10.1016/j.enbuild.2003.12.007
10.1016/j.enbuild.2015.12.010
10.1016/j.neunet.2014.09.003
10.1016/j.apenergy.2008.11.035
10.1016/j.eswa.2013.01.047
10.1080/10789669.2002.10391290
10.1260/1748-3018.4.2.231
10.1016/j.enconman.2003.10.009
10.1016/j.apenergy.2005.08.006
10.1038/nature14539
10.1016/j.neucom.2009.09.020
10.1016/j.apenergy.2014.04.016
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2017.03.064
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 233
ExternalDocumentID 10_1016_j_apenergy_2017_03_064
S0306261917302921
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c492t-5debcb878c4f869f9c8b795bbe3f7a9842970b33ef76be9c2c131bb1895c9b603
ISICitedReferencesCount 525
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400227000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Sep 28 02:57:22 EDT 2025
Wed Oct 01 14:22:42 EDT 2025
Tue Nov 18 22:24:04 EST 2025
Sat Nov 29 07:21:42 EST 2025
Fri Feb 23 02:31:40 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Building energy prediction
Big data
Data mining
Building cooling load
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c492t-5debcb878c4f869f9c8b795bbe3f7a9842970b33ef76be9c2c131bb1895c9b603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3779-3943
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0306261917302921
PQID 2000356620
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2116878272
proquest_miscellaneous_2000356620
crossref_citationtrail_10_1016_j_apenergy_2017_03_064
crossref_primary_10_1016_j_apenergy_2017_03_064
elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_03_064
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Xu, Lu, Yuan (b0055) 2016; 169
Brandt T, DeForest N, Stadler M, Neumann D. Power systems 2.0: Designing an energy information system for microgrid operation. In: Proceedings of 2014 international conference on information systems, Auckland, New Zealand, December 14–17; 2014.
Grolinger, L’Heureux, Capretz, Seewald (b0115) 2016; 112
[accessed on September 9, 2016].
Ben-Nakhi, Mahmoud (b0035) 2004; 45
Lu, Cai, Xie, Li, Soh (b0040) 2005; 37
Zhao, Magoules (b0080) 2010; 4
American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). ASHRAE guideline 14-2002: Measurement of energy demand and savings, Atlanta, GA, USA; 2002.
Yang, Rivard, Zmeureanu (b0100) 2005; 37
Federal Energy Management Program (FEMP). M&V guidelines: measurement and verification for federal energy projects version 3.0. Washington, DC, USA: U.S. Department of Energy; 2008.
Benedetti, Cesarotti, Introna, Serranti (b0105) 2016; 165
Kusiak, Li (b0025) 2010; 87
LeCun, Bengio, Hinton (b0145) 2015; 321
Cui, Wu, Hu, Weir, Li (b0110) 2016; 172
Lemke, Gabrys (b0120) 2010; 73
Li, Wen (b0020) 2014; 37
Zhou, Wang, Xu, Xiao (b0065) 2008; 32
Fan, Xiao, Wang (b0150) 2014; 127
Xue, Wang, Sun, Xiao (b0030) 2014; 116
Reddy, Maor, Panjapornpon (b0195) 2007; 13
Braun, Chaturvedi (b0070) 2002; 8
Shan, Wang, Gao, Xiao (b0045) 2016; 65
United Nations Environment Program
Liaw, Wiener (b0165) 2002; 2
Schmidhuber (b0140) 2015; 61
Wang, Chen, Kang, Zhang, Wang, Zhao (b0135) 2015; 20
Hou, Lian, Yao, Yuan (b0090) 2006; 83
Urge-Vorsatz, Cabeza, Serrano, Barreneche, Petrichenko (b0005) 2015; 41
Heaton J. Introduction to neural networks for JAVA. 2nd ed. Heaton Research Inc; 2008.
Gao, Wang, Shan, Yan (b0050) 2016; 164
Neto, Fiorelli (b0085) 2008; 40
Matijas, Suykens, Krajcar (b0125) 2013; 40
Langkvist, Karlsson, Loutfi (b0160) 2014; 42
Zhao, Magoules (b0060) 2012; 16
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, ISBN 3-900051-07-0; 2008. URL
Perez-Lombard, Ortiz, Pout (b0015) 2008; 40
Goodfellow IJ, Warde-Farley D, Mirza M, Courville A, Bengio Y. Maxout networks. In: Proceedings of the 30th international conference on machine learning, Atlanta, Georgia, USA; 2013.
Li, Meng, Cai, Yoshino, Mochida (b0075) 2009; 86
Chen TQ, Guestrin C. XGBoost: a scalable tree boosting system. KDD 2016, San Francisco, CA, USA, August 13–17; 2016.
Heaton J. Introduction to neural networks for Java. 2nd ed. Heaton Research Inc; 2005.
Li, Meng, Cai, Yoshino, Mochida (b0095) 2009; 50
Wang (10.1016/j.apenergy.2017.03.064_b0055) 2016; 169
Liaw (10.1016/j.apenergy.2017.03.064_b0165) 2002; 2
Yang (10.1016/j.apenergy.2017.03.064_b0100) 2005; 37
Lu (10.1016/j.apenergy.2017.03.064_b0040) 2005; 37
Li (10.1016/j.apenergy.2017.03.064_b0020) 2014; 37
Cui (10.1016/j.apenergy.2017.03.064_b0110) 2016; 172
10.1016/j.apenergy.2017.03.064_b0010
10.1016/j.apenergy.2017.03.064_b0175
Zhao (10.1016/j.apenergy.2017.03.064_b0080) 2010; 4
10.1016/j.apenergy.2017.03.064_b0155
Hou (10.1016/j.apenergy.2017.03.064_b0090) 2006; 83
10.1016/j.apenergy.2017.03.064_b0190
10.1016/j.apenergy.2017.03.064_b0170
Neto (10.1016/j.apenergy.2017.03.064_b0085) 2008; 40
Lemke (10.1016/j.apenergy.2017.03.064_b0120) 2010; 73
10.1016/j.apenergy.2017.03.064_b0130
Fan (10.1016/j.apenergy.2017.03.064_b0150) 2014; 127
Benedetti (10.1016/j.apenergy.2017.03.064_b0105) 2016; 165
Ben-Nakhi (10.1016/j.apenergy.2017.03.064_b0035) 2004; 45
Shan (10.1016/j.apenergy.2017.03.064_b0045) 2016; 65
Perez-Lombard (10.1016/j.apenergy.2017.03.064_b0015) 2008; 40
Xue (10.1016/j.apenergy.2017.03.064_b0030) 2014; 116
LeCun (10.1016/j.apenergy.2017.03.064_b0145) 2015; 321
Langkvist (10.1016/j.apenergy.2017.03.064_b0160) 2014; 42
Schmidhuber (10.1016/j.apenergy.2017.03.064_b0140) 2015; 61
Kusiak (10.1016/j.apenergy.2017.03.064_b0025) 2010; 87
Matijas (10.1016/j.apenergy.2017.03.064_b0125) 2013; 40
Urge-Vorsatz (10.1016/j.apenergy.2017.03.064_b0005) 2015; 41
Braun (10.1016/j.apenergy.2017.03.064_b0070) 2002; 8
Li (10.1016/j.apenergy.2017.03.064_b0095) 2009; 50
Li (10.1016/j.apenergy.2017.03.064_b0075) 2009; 86
Wang (10.1016/j.apenergy.2017.03.064_b0135) 2015; 20
Reddy (10.1016/j.apenergy.2017.03.064_b0195) 2007; 13
10.1016/j.apenergy.2017.03.064_b0200
Zhou (10.1016/j.apenergy.2017.03.064_b0065) 2008; 32
Gao (10.1016/j.apenergy.2017.03.064_b0050) 2016; 164
10.1016/j.apenergy.2017.03.064_b0180
Zhao (10.1016/j.apenergy.2017.03.064_b0060) 2012; 16
Grolinger (10.1016/j.apenergy.2017.03.064_b0115) 2016; 112
10.1016/j.apenergy.2017.03.064_b0185
References_xml – volume: 116
  start-page: 297
  year: 2014
  end-page: 310
  ident: b0030
  article-title: An interactive building power demand management strategy for facilitating smart grid optimization
  publication-title: Appl Energy
– reference: Brandt T, DeForest N, Stadler M, Neumann D. Power systems 2.0: Designing an energy information system for microgrid operation. In: Proceedings of 2014 international conference on information systems, Auckland, New Zealand, December 14–17; 2014.
– reference: Federal Energy Management Program (FEMP). M&V guidelines: measurement and verification for federal energy projects version 3.0. Washington, DC, USA: U.S. Department of Energy; 2008.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b0140
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Networks
– volume: 16
  start-page: 3586
  year: 2012
  end-page: 3592
  ident: b0060
  article-title: A review on the prediction of building energy consumption
  publication-title: Renew Sustain Energy Rev
– volume: 40
  start-page: 2169
  year: 2008
  end-page: 2176
  ident: b0085
  article-title: Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption
  publication-title: Energy Build
– reference: Goodfellow IJ, Warde-Farley D, Mirza M, Courville A, Bengio Y. Maxout networks. In: Proceedings of the 30th international conference on machine learning, Atlanta, Georgia, USA; 2013.
– reference: Heaton J. Introduction to neural networks for Java. 2nd ed. Heaton Research Inc; 2005.
– volume: 86
  start-page: 2249
  year: 2009
  end-page: 2256
  ident: b0075
  article-title: Applying support vector machine to predict hourly cooling load in the building
  publication-title: Appl Energy
– reference: Heaton J. Introduction to neural networks for JAVA. 2nd ed. Heaton Research Inc; 2008.
– volume: 37
  start-page: 11
  year: 2005
  end-page: 22
  ident: b0040
  article-title: HVAC system optimization – in-building section
  publication-title: Energy Build
– volume: 321
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0145
  article-title: Deep learning
  publication-title: Nature
– volume: 40
  start-page: 4427
  year: 2013
  end-page: 4437
  ident: b0125
  article-title: Load forecasting using a multivariate meta-learning system
  publication-title: Expert Syst Appl
– volume: 50
  start-page: 90
  year: 2009
  end-page: 96
  ident: b0095
  article-title: Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks
  publication-title: Energy Convers Manage
– volume: 40
  start-page: 394
  year: 2008
  end-page: 398
  ident: b0015
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build
– volume: 37
  start-page: 1250
  year: 2005
  end-page: 1259
  ident: b0100
  article-title: On-line building energy prediction using adaptive artificial neural networks
  publication-title: Energy Build
– reference: > [accessed on September 9, 2016].
– volume: 73
  start-page: 2006
  year: 2010
  end-page: 2016
  ident: b0120
  article-title: Meta-learning for time series forecasting and forecast combination
  publication-title: Neurocomputing
– volume: 45
  start-page: 2127
  year: 2004
  end-page: 2141
  ident: b0035
  article-title: Cooling load prediction for buildings using general regression neural networks
  publication-title: Energy Convers Manage
– reference: American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). ASHRAE guideline 14-2002: Measurement of energy demand and savings, Atlanta, GA, USA; 2002.
– volume: 83
  start-page: 1033
  year: 2006
  end-page: 1046
  ident: b0090
  article-title: Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data fusion techniques
  publication-title: Appl Energy
– volume: 65
  start-page: 78
  year: 2016
  end-page: 85
  ident: b0045
  article-title: Development and validation of an effective and robust chiller sequencing control strategy using data-driven models
  publication-title: Automat Constr
– volume: 87
  start-page: 901
  year: 2010
  end-page: 909
  ident: b0025
  article-title: Cooling output optimization of an air handling unit
  publication-title: Appl Energy
– reference: Chen TQ, Guestrin C. XGBoost: a scalable tree boosting system. KDD 2016, San Francisco, CA, USA, August 13–17; 2016.
– volume: 165
  start-page: 60
  year: 2016
  end-page: 71
  ident: b0105
  article-title: Energy consumption control automation using artificial neural networks and adaptive algorithms: Proposal of a new methodology and case study
  publication-title: Appl Energy
– volume: 8
  start-page: 73
  year: 2002
  end-page: 99
  ident: b0070
  article-title: An inverse gray-box model for transient building load prediction
  publication-title: HVAC&R Res
– volume: 13
  start-page: 221
  year: 2007
  end-page: 241
  ident: b0195
  article-title: Calibrating detailed building energy simulation programs with measured data-Part II: Application to three case study office buildings (RP-1051)
  publication-title: HVAC&R Res
– volume: 172
  start-page: 251
  year: 2016
  end-page: 263
  ident: b0110
  article-title: Short-term building energy model recommendation system: a meta-learning approach
  publication-title: Appl Energy
– volume: 37
  start-page: 517
  year: 2014
  end-page: 537
  ident: b0020
  article-title: Review of building energy modeling for control and operation
  publication-title: Renew Sustain Energy Rev
– volume: 164
  start-page: 1028
  year: 2016
  end-page: 1038
  ident: b0050
  article-title: A system-level fault detection and diagnosis method for low delta-T syndrome in the complex HVAC systems
  publication-title: Appl Energy
– volume: 169
  start-page: 14
  year: 2016
  end-page: 27
  ident: b0055
  article-title: Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels
  publication-title: Appl Energy
– volume: 42
  start-page: 11
  year: 2014
  end-page: 24
  ident: b0160
  article-title: A review of unsupervised feature learning and deep learning for time-series modeling
  publication-title: Pattern Recogn Lett
– volume: 4
  start-page: 231
  year: 2010
  end-page: 249
  ident: b0080
  article-title: Parallel support vector machines applied to the prediction of multiple building energy consumption
  publication-title: J Algorithm Comput Technol
– volume: 112
  start-page: 222
  year: 2016
  end-page: 233
  ident: b0115
  article-title: Energy forecasting for event venues: big data and prediction accuracy
  publication-title: Energy Build
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: b0165
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 32
  start-page: 1418
  year: 2008
  end-page: 1431
  ident: b0065
  article-title: A grey-box model of next-day buildings thermal load prediction for energy efficient control
  publication-title: Int J Energy Res
– volume: 20
  start-page: 117
  year: 2015
  end-page: 129
  ident: b0135
  article-title: Load profiling and its application to demand response: a review
  publication-title: Tsinghua Sci Technol
– volume: 41
  start-page: 85
  year: 2015
  end-page: 98
  ident: b0005
  article-title: Heating and cooling energy trends and drivers in buildings
  publication-title: Renew Sust Energy Rev
– reference: R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, ISBN 3-900051-07-0; 2008. URL <
– volume: 127
  start-page: 1
  year: 2014
  end-page: 10
  ident: b0150
  article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques
  publication-title: Appl Energy
– reference: United Nations Environment Program, <
– volume: 116
  start-page: 297
  year: 2014
  ident: 10.1016/j.apenergy.2017.03.064_b0030
  article-title: An interactive building power demand management strategy for facilitating smart grid optimization
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.11.064
– volume: 169
  start-page: 14
  year: 2016
  ident: 10.1016/j.apenergy.2017.03.064_b0055
  article-title: Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.01.054
– volume: 40
  start-page: 2169
  year: 2008
  ident: 10.1016/j.apenergy.2017.03.064_b0085
  article-title: Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2008.06.013
– ident: 10.1016/j.apenergy.2017.03.064_b0155
– volume: 37
  start-page: 1250
  year: 2005
  ident: 10.1016/j.apenergy.2017.03.064_b0100
  article-title: On-line building energy prediction using adaptive artificial neural networks
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2005.02.005
– ident: 10.1016/j.apenergy.2017.03.064_b0130
– ident: 10.1016/j.apenergy.2017.03.064_b0170
– volume: 20
  start-page: 117
  year: 2015
  ident: 10.1016/j.apenergy.2017.03.064_b0135
  article-title: Load profiling and its application to demand response: a review
  publication-title: Tsinghua Sci Technol
  doi: 10.1109/TST.2015.7085625
– volume: 165
  start-page: 60
  year: 2016
  ident: 10.1016/j.apenergy.2017.03.064_b0105
  article-title: Energy consumption control automation using artificial neural networks and adaptive algorithms: Proposal of a new methodology and case study
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.12.066
– ident: 10.1016/j.apenergy.2017.03.064_b0185
– volume: 42
  start-page: 11
  year: 2014
  ident: 10.1016/j.apenergy.2017.03.064_b0160
  article-title: A review of unsupervised feature learning and deep learning for time-series modeling
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2014.01.008
– volume: 40
  start-page: 394
  year: 2008
  ident: 10.1016/j.apenergy.2017.03.064_b0015
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2007.03.007
– volume: 50
  start-page: 90
  year: 2009
  ident: 10.1016/j.apenergy.2017.03.064_b0095
  article-title: Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2008.08.033
– ident: 10.1016/j.apenergy.2017.03.064_b0200
– volume: 37
  start-page: 517
  year: 2014
  ident: 10.1016/j.apenergy.2017.03.064_b0020
  article-title: Review of building energy modeling for control and operation
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.05.056
– volume: 65
  start-page: 78
  year: 2016
  ident: 10.1016/j.apenergy.2017.03.064_b0045
  article-title: Development and validation of an effective and robust chiller sequencing control strategy using data-driven models
  publication-title: Automat Constr
  doi: 10.1016/j.autcon.2016.01.005
– volume: 32
  start-page: 1418
  year: 2008
  ident: 10.1016/j.apenergy.2017.03.064_b0065
  article-title: A grey-box model of next-day buildings thermal load prediction for energy efficient control
  publication-title: Int J Energy Res
  doi: 10.1002/er.1458
– volume: 41
  start-page: 85
  year: 2015
  ident: 10.1016/j.apenergy.2017.03.064_b0005
  article-title: Heating and cooling energy trends and drivers in buildings
  publication-title: Renew Sust Energy Rev
  doi: 10.1016/j.rser.2014.08.039
– volume: 164
  start-page: 1028
  year: 2016
  ident: 10.1016/j.apenergy.2017.03.064_b0050
  article-title: A system-level fault detection and diagnosis method for low delta-T syndrome in the complex HVAC systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.02.025
– volume: 16
  start-page: 3586
  year: 2012
  ident: 10.1016/j.apenergy.2017.03.064_b0060
  article-title: A review on the prediction of building energy consumption
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.02.049
– volume: 172
  start-page: 251
  year: 2016
  ident: 10.1016/j.apenergy.2017.03.064_b0110
  article-title: Short-term building energy model recommendation system: a meta-learning approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.112
– ident: 10.1016/j.apenergy.2017.03.064_b0175
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.apenergy.2017.03.064_b0165
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 87
  start-page: 901
  year: 2010
  ident: 10.1016/j.apenergy.2017.03.064_b0025
  article-title: Cooling output optimization of an air handling unit
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.06.010
– volume: 13
  start-page: 221
  year: 2007
  ident: 10.1016/j.apenergy.2017.03.064_b0195
  article-title: Calibrating detailed building energy simulation programs with measured data-Part II: Application to three case study office buildings (RP-1051)
  publication-title: HVAC&R Res
  doi: 10.1080/10789669.2007.10390952
– volume: 37
  start-page: 11
  year: 2005
  ident: 10.1016/j.apenergy.2017.03.064_b0040
  article-title: HVAC system optimization – in-building section
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2003.12.007
– volume: 112
  start-page: 222
  year: 2016
  ident: 10.1016/j.apenergy.2017.03.064_b0115
  article-title: Energy forecasting for event venues: big data and prediction accuracy
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.12.010
– ident: 10.1016/j.apenergy.2017.03.064_b0190
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.apenergy.2017.03.064_b0140
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: 86
  start-page: 2249
  year: 2009
  ident: 10.1016/j.apenergy.2017.03.064_b0075
  article-title: Applying support vector machine to predict hourly cooling load in the building
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.11.035
– volume: 40
  start-page: 4427
  year: 2013
  ident: 10.1016/j.apenergy.2017.03.064_b0125
  article-title: Load forecasting using a multivariate meta-learning system
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.01.047
– volume: 8
  start-page: 73
  year: 2002
  ident: 10.1016/j.apenergy.2017.03.064_b0070
  article-title: An inverse gray-box model for transient building load prediction
  publication-title: HVAC&R Res
  doi: 10.1080/10789669.2002.10391290
– volume: 4
  start-page: 231
  year: 2010
  ident: 10.1016/j.apenergy.2017.03.064_b0080
  article-title: Parallel support vector machines applied to the prediction of multiple building energy consumption
  publication-title: J Algorithm Comput Technol
  doi: 10.1260/1748-3018.4.2.231
– ident: 10.1016/j.apenergy.2017.03.064_b0180
– volume: 45
  start-page: 2127
  year: 2004
  ident: 10.1016/j.apenergy.2017.03.064_b0035
  article-title: Cooling load prediction for buildings using general regression neural networks
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2003.10.009
– volume: 83
  start-page: 1033
  year: 2006
  ident: 10.1016/j.apenergy.2017.03.064_b0090
  article-title: Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data fusion techniques
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2005.08.006
– volume: 321
  start-page: 436
  year: 2015
  ident: 10.1016/j.apenergy.2017.03.064_b0145
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 73
  start-page: 2006
  year: 2010
  ident: 10.1016/j.apenergy.2017.03.064_b0120
  article-title: Meta-learning for time series forecasting and forecast combination
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.09.020
– ident: 10.1016/j.apenergy.2017.03.064_b0010
– volume: 127
  start-page: 1
  year: 2014
  ident: 10.1016/j.apenergy.2017.03.064_b0150
  article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.04.016
SSID ssj0002120
Score 2.6690753
Snippet •Deep learning-based methods are developed for building cooling load prediction.•Accurate predictions on 24-h ahead building cooling load profiles are...
Short-term building cooling load prediction is the essentialfoundation for manybuilding energy managementtasks, such as fault detection and diagnosis,...
Short-term building cooling load prediction is the essential foundation for many building energy management tasks, such as fault detection and diagnosis,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 222
SubjectTerms algorithms
artificial intelligence
Big data
Building cooling load
Building energy prediction
buildings
cooling
data analysis
Data mining
Deep learning
energy
prediction
Title A short-term building cooling load prediction method using deep learning algorithms
URI https://dx.doi.org/10.1016/j.apenergy.2017.03.064
https://www.proquest.com/docview/2000356620
https://www.proquest.com/docview/2116878272
Volume 195
WOSCitedRecordID wos000400227000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfQxgM8IBhMbHzISLxFgdhpYvuxQp2AhwlpQypPlu06W6cqqZoW7c_n_NWU8TEQ4iWqLDt1fL-cz5e73yH02qUGWBfnZzi85CM-s7kuFQdl2IxghKBVo32xCXZ6yqdT8SnGz_e-nABrW359LZb_VdTQBsJ2qbN_Ie7tTaEBfoPQ4Qpih-sfCX6c9ZdgU-dO52Y6Vr3OTNf5xPNFpzwxwGweaoSHCtLZxrsMZtYuUx2Ji0wtLrrVfH0Z-cwTVW00W61PGtyKX8WP9zbuhNA2nSvvhz3Z7HinfcsXFXtFdwNhQ1hU8IGlPJgh6MjnXkEvdxYLu0pQpZxRp0r5d7pWVLvaMqQkx42XBkaMH3R6cC9cvVHL8GQuHo95ZtrAf36DL_vMTcbNhYDyosKRDOxTVglQefvjD5Ppx-1GTSNrZ5r8TgL5z__tV7bLjV3cmybnD9GDeKbA44CFR-iObQ_Q_R2myQN0OBkSGqFr1Oj9Y3Q2xgNccIILjnDBDi54gAsOcMEeLtjBBSe44AEuT9Dnk8n5u_d5LLSRm5Gg67yaWW00Z9yMGl6LRhiumai0tmXDlOBgs7BCl6VtWK2tMNSQkmhNuKiM0HVRHqK9tmvtU4R5oUGONVyc64BZ1VCima6U5nBvTo5QlZZQmshC74qhLGQKN7ySaemlW3pZlBKW_gi93Y5bBh6WW0eIJCEZrclgJUoA1q1jXyWRSlC37huaam236V3V1qKEIxAtftOHkBoWkzJ6_A9zeIbuDe_fc7S3Xm3sC3TXfF3P-9XLiOVvD6e2mg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+short-term+building+cooling+load+prediction+method+using+deep+learning+algorithms&rft.jtitle=Applied+energy&rft.au=Fan%2C+Cheng&rft.au=Xiao%2C+Fu&rft.au=Zhao%2C+Yang&rft.date=2017-06-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=195&rft.spage=222&rft.epage=233&rft_id=info:doi/10.1016%2Fj.apenergy.2017.03.064&rft.externalDocID=S0306261917302921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon