Factor graph framework for semantic video indexing

Video query by semantic keywords is one of the most challenging research issues in video data management. To go beyond low-level similarity and access video data content by semantics, we need to bridge the gap between the low-level representation and high-level semantics. This is a difficult multime...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on circuits and systems for video technology Ročník 12; číslo 1; s. 40 - 52
Hlavní autori: Ramesh Naphade, M., Kozintsev, I.V., Huang, T.S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.01.2002
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1051-8215, 1558-2205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Video query by semantic keywords is one of the most challenging research issues in video data management. To go beyond low-level similarity and access video data content by semantics, we need to bridge the gap between the low-level representation and high-level semantics. This is a difficult multimedia understanding problem. We formulate this problem as a probabilistic pattern-recognition problem for modeling semantics in terms of concepts and context. To map low-level features to high-level semantics, we propose probabilistic multimedia objects (multijects). Examples of multijects in movies include explosion, mountain, beach, outdoor, music, etc. Semantic concepts in videos interact and appear in context. To model this interaction explicitly, we propose a network of multijects (multinet). To model the multinet computationally, we propose a factor graph framework which can enforce spatio-temporal constraints. Using probabilistic models for multijects, rocks, sky, snow, water-body, and forestry/greenery, and using a factor graph as the multinet, we demonstrate the application of this framework to semantic video indexing. We demonstrate how detection performance can be significantly improved using the multinet to take inter-conceptual relationships into account. Our experiments using a large video database consisting of clips from several movies and based on a set of five semantic concepts reveal a significant improvement in detection performance by over 22%. We also show how the multinet is extended to take temporal correlation into account. By constructing a dynamic multinet, we show that the detection performance is further enhanced by as much as 12%. With this framework, we show how keyword-based query and semantic filtering is possible for a predetermined set of concepts.
AbstractList Video query by semantic keywords is one of the most challenging research issues in video data management.
Video query by semantic keywords is one of the most challenging research issues in video data management. To go beyond low-level similarity and access video data content by semantics, we need to bridge the gap between the low-level representation and high-level semantics. This is a difficult multimedia understanding problem. We formulate this problem as a probabilistic pattern-recognition problem for modeling semantics in terms of concepts and context. To map low-level features to high-level semantics, we propose probabilistic multimedia objects (multijects). Examples of multijects in movies include explosion, mountain, beach, outdoor, music, etc. Semantic concepts in videos interact and appear in context. To model this interaction explicitly, we propose a network of multijects (multinet). To model the multinet computationally, we propose a factor graph framework which can enforce spatio-temporal constraints. Using probabilistic models for multijects, rocks, sky, snow, water-body, and forestry/greenery, and using a factor graph as the multinet, we demonstrate the application of this framework to semantic video indexing. We demonstrate how detection performance can be significantly improved using the multinet to take inter-conceptual relationships into account. Our experiments using a large video database consisting of clips from several movies and based on a set of five semantic concepts reveal a significant improvement in detection performance by over 22%. We also show how the multinet is extended to take temporal correlation into account. By constructing a dynamic multinet, we show that the detection performance is further enhanced by as much as 12%. With this framework, we show how keyword-based query and semantic filtering is possible for a predetermined set of concepts
Video query by semantic keywords is one of the most challenging research issues in video data management. To go beyond low-level similarity and access video data content by semantics, we need to bridge the gap between the low-level representation and high-level semantics. This is a difficult multimedia understanding problem. We formulate this problem as a probabilistic pattern-recognition problem for modeling semantics in terms of concepts and context. To map low-level features to high-level semantics, we propose probabilistic multimedia objects (multijects). Examples of multijects in movies include explosion, mountain, beach, outdoor, music, etc. Semantic concepts in videos interact and appear in context. To model this interaction explicitly, we propose a network of multijects (multinet). To model the multinet computationally, we propose a factor graph framework which can enforce spatio-temporal constraints. Using probabilistic models for multijects, rocks, sky, snow, water-body, and forestry/greenery, and using a factor graph as the multinet, we demonstrate the application of this framework to semantic video indexing. We demonstrate how detection performance can be significantly improved using the multinet to take inter-conceptual relationships into account. Our experiments using a large video database consisting of clips from several movies and based on a set of five semantic concepts reveal a significant improvement in detection performance by over 22%. We also show how the multinet is extended to take temporal correlation into account. By constructing a dynamic multinet, we show that the detection performance is further enhanced by as much as 12%. With this framework, we show how keyword-based query and semantic filtering is possible for a predetermined set of concepts.
Author Huang, T.S.
Kozintsev, I.V.
Ramesh Naphade, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Ramesh Naphade
  fullname: Ramesh Naphade, M.
  organization: IBM Thomas J. Watson Res. Center, Hawthorne, NY, USA
– sequence: 2
  givenname: I.V.
  surname: Kozintsev
  fullname: Kozintsev, I.V.
– sequence: 3
  givenname: T.S.
  surname: Huang
  fullname: Huang, T.S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13466967$$DView record in Pascal Francis
BookMark eNqF0UtLAzEQAOAgCrbVg1dPi6DiYWvemxyl-ALBi55DNptodJvUZOvj37u6pQcRPWVIvhkmM2OwGWKwAOwhOEUIytOKT6VAgtINMEKMiRJjyDb7GDJUCozYNhjn_AQhooJWI4AvtOliKh6SXjwWLum5fYvpuXD9XbZzHTpvilff2Fj40Nh3Hx52wJbTbba7q3MC7i_O72ZX5c3t5fXs7KY0VOKupEIgIpjQxNK678JQXWNhnJO1Zc4RhiA03FS1lbwmHHPaUGFMjbkRDXeaTMDxUHeR4svS5k7NfTa2bXWwcZmVhJXkUHDSy6M_JRaYS4jx_7BChDD6BQ9-wKe4TKH_rpJcUk4Jr3p0uEI6G932wwvGZ7VIfq7Th0KEci6_3engTIo5J-uU8Z3ufAxd0r5VCKqv3amKq2F3fcbJj4x10V_s_mC9tXbtVo-fTk6gtw
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TMM_2010_2066960
crossref_primary_10_1109_TBC_2005_854169
crossref_primary_10_1109_TMM_2007_900137
crossref_primary_10_1109_TMM_2007_911826
crossref_primary_10_1016_j_image_2008_04_014
crossref_primary_10_1145_2168996_2169003
crossref_primary_10_1007_s00530_006_0024_2
crossref_primary_10_1007_s10844_009_0083_x
crossref_primary_10_1109_TBC_2013_2265782
crossref_primary_10_1016_j_jvcir_2004_04_010
crossref_primary_10_1109_JSTARS_2012_2219507
crossref_primary_10_1016_j_patcog_2009_03_009
crossref_primary_10_1109_TNN_2002_1021881
crossref_primary_10_1109_TCSVT_2010_2087814
crossref_primary_10_1007_s11042_012_1060_x
crossref_primary_10_1109_TCSVT_2007_890635
crossref_primary_10_1109_TSMCA_2005_859184
crossref_primary_10_1016_j_cviu_2003_08_001
crossref_primary_10_1109_TCSVT_2005_854238
crossref_primary_10_1109_MSP_2006_1598086
crossref_primary_10_1109_TMM_2013_2250266
crossref_primary_10_1109_TMM_2012_2233723
crossref_primary_10_1145_3355089_3356520
crossref_primary_10_1007_s11042_014_1937_y
crossref_primary_10_1109_TMM_2015_2398195
crossref_primary_10_1109_TPAMI_2011_273
crossref_primary_10_1109_TBC_2008_2001143
crossref_primary_10_1145_1404880_1404883
crossref_primary_10_1155_2008_328052
crossref_primary_10_1007_s10044_018_0761_9
crossref_primary_10_1109_TCSVT_2004_826768
crossref_primary_10_1109_TMM_2007_900143
crossref_primary_10_1007_s11042_007_0161_4
crossref_primary_10_1049_ip_vis_20045079
crossref_primary_10_1109_TCSVT_2004_826759
crossref_primary_10_1145_1142020_1142021
crossref_primary_10_1016_j_patcog_2008_08_033
crossref_primary_10_1007_s11042_006_0028_0
crossref_primary_10_1007_s11042_009_0278_8
crossref_primary_10_1007_s11042_008_0254_8
crossref_primary_10_1109_TMM_2008_2009682
Cites_doi 10.1109/ICIP.1999.822861
10.1002/9780470191613
10.1109/IVL.2000.853836
10.7551/mitpress/3348.001.0001
10.1007/s005300050139
10.1109/18.910572
10.1145/244130.244151
10.1109/76.475896
10.1109/ICIP.1998.999006
10.1109/ICIP.1998.999041
10.7551/mitpress/4347.001.0001
10.1109/ICIP.1995.529715
10.1117/12.403809
10.1109/ICIP.1997.638826
10.1117/12.171062
10.1109/ICIP.1997.647372
10.1109/TC.1977.5009272
10.1109/TIT.1974.1055186
10.1109/ICIP.1998.727321
10.1109/5.18626
10.1109/ICIP.1997.647374
10.1109/ICIP.1998.723662
10.1109/ICASSP.1997.595323
10.1109/CVPR.1999.786939
10.1016/S0031-3203(97)00131-3
ContentType Journal Article
Copyright 2002 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002
Copyright_xml – notice: 2002 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002
DBID RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7U5
F28
FR3
DOI 10.1109/76.981844
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore Digital Libary (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database
Technology Research Database
Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Forestry
Applied Sciences
EISSN 1558-2205
EndPage 52
ExternalDocumentID 2627742931
13466967
10_1109_76_981844
981844
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7U5
F28
FR3
ID FETCH-LOGICAL-c492t-48813858a3e4b220c4ab28cff9be5ff35100c6c7be96b36264d48ccb26c8d6fa3
IEDL.DBID RIE
ISICitedReferencesCount 103
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000173716500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Sun Nov 09 13:28:32 EST 2025
Mon Sep 29 06:43:20 EDT 2025
Thu Oct 02 11:26:46 EDT 2025
Mon Jun 30 04:30:25 EDT 2025
Mon Jul 21 09:17:58 EDT 2025
Sat Nov 29 08:07:02 EST 2025
Tue Nov 18 21:29:30 EST 2025
Tue Aug 26 16:34:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Performance evaluation
Multimedia
Probabilistic approach
Database query
Hidden Markov models
Likelihood ratio test
Feature extraction
Graph method
Pattern recognition
Video signal processing
Indexing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-48813858a3e4b220c4ab28cff9be5ff35100c6c7be96b36264d48ccb26c8d6fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 969464367
PQPubID 23500
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_76_981844
ieee_primary_981844
pascalfrancis_primary_13466967
crossref_primary_10_1109_76_981844
proquest_miscellaneous_27133542
proquest_miscellaneous_907960863
proquest_journals_969464367
proquest_miscellaneous_28269022
PublicationCentury 2000
PublicationDate 2002-Jan.
2002-01-00
2002
20020101
PublicationDateYYYYMMDD 2002-01-01
PublicationDate_xml – month: 01
  year: 2002
  text: 2002-Jan.
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2002
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref36
ref30
ref11
Pearl (ref29) 1988
ref10
ref2
ref1
Zhang (ref14); 3972
Naphade (ref22); 3972
Jensson (ref34) 1996
ref17
ref16
Duda (ref19) 1973
ref38
Meng (ref8); 2419
Frey (ref33)
ref24
ref26
Naphade (ref6); 3972
ref25
Wiberg (ref31) 1996
ref20
ref21
ref28
ref27
Naphade (ref23); 4315
Jain (ref37) 1999; 7
ref9
ref4
ref3
Yeo (ref7) 1995; 5
Poor (ref18) 1999
Jain (ref35) 1995
ref5
Frey (ref32)
References_xml – ident: ref16
  doi: 10.1109/ICIP.1999.822861
– volume-title: Introduction to Bayseian Networks
  year: 1996
  ident: ref34
– ident: ref20
  doi: 10.1002/9780470191613
– ident: ref25
  doi: 10.1109/IVL.2000.853836
– ident: ref26
  doi: 10.7551/mitpress/3348.001.0001
– volume-title: Codes and Decoding on General Graphs
  year: 1996
  ident: ref31
– volume: 7
  start-page: 369
  issue: 5
  year: 1999
  ident: ref37
  article-title: Query by video clip
  publication-title: Multimedia Syst.: Special Issue on Video Libraries
  doi: 10.1007/s005300050139
– volume-title: An Introduction to Signal Detection and Estimation
  year: 1999
  ident: ref18
– ident: ref27
  doi: 10.1109/18.910572
– ident: ref1
  doi: 10.1145/244130.244151
– volume: 3972
  start-page: 168
  volume-title: Proc. SPIE Storage and Retrieval for Multimedia Databases
  ident: ref22
  article-title: Stochastic modeling of soundtrack for efficient segmentation and indexing of video
– volume: 5
  start-page: 533
  year: 1995
  ident: ref7
  article-title: Rapid scene change detection on compressed video
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/76.475896
– ident: ref17
  doi: 10.1109/ICIP.1998.999006
– volume-title: Proc. Annu. Allerton Conf. Communication, Control and Computing
  ident: ref32
  article-title: Probability propagation and iterative decoding
– ident: ref11
  doi: 10.1109/ICIP.1998.999041
– volume-title: Probabilistic Reasoning in Intelligent Systems
  year: 1988
  ident: ref29
– volume-title: Pattern Classification and Scene Analysis
  year: 1973
  ident: ref19
– ident: ref30
  doi: 10.7551/mitpress/4347.001.0001
– ident: ref5
  doi: 10.1109/ICIP.1995.529715
– ident: ref24
  doi: 10.1117/12.403809
– volume: 2419
  start-page: 1
  volume-title: Proc. SPIE Symp.
  ident: ref8
  article-title: Scene change detection in a mpeg compressed video sequence
– ident: ref3
  doi: 10.1109/ICIP.1997.638826
– ident: ref9
  doi: 10.1117/12.171062
– volume-title: Machine Vision
  year: 1995
  ident: ref35
– ident: ref4
  doi: 10.1109/ICIP.1997.647372
– volume: 3972
  start-page: 564
  volume-title: Proc. SPIE Storage and Retrieval for Multimedia Databases
  ident: ref6
  article-title: A novel scheme for fast and efficient video sequence matching using compact signatures
– volume: 4315
  start-page: 270
  volume-title: Proc. SPIE Storage and Retrieval for Multimedia Databases
  ident: ref23
  article-title: Semantic filtering of video content
– ident: ref38
  doi: 10.1109/TC.1977.5009272
– ident: ref28
  doi: 10.1109/TIT.1974.1055186
– volume: 3972
  start-page: 506
  volume-title: Proc. SPIE, IS&T Storage and Retrieval for Media Databases
  ident: ref14
  article-title: An integrated approach to multimodal media content analysis
– ident: ref12
  doi: 10.1109/ICIP.1998.727321
– ident: ref21
  doi: 10.1109/5.18626
– volume-title: Proc. 34th Annu. Allerton Conf. Communication, Control and Computing
  ident: ref33
  article-title: Probability propagation and iterative decoding
– ident: ref2
  doi: 10.1109/ICIP.1997.647374
– ident: ref10
  doi: 10.1109/ICIP.1998.723662
– ident: ref15
  doi: 10.1109/ICASSP.1997.595323
– ident: ref13
  doi: 10.1109/CVPR.1999.786939
– ident: ref36
  doi: 10.1016/S0031-3203(97)00131-3
SSID ssj0014847
Score 2.0656128
Snippet Video query by semantic keywords is one of the most challenging research issues in video data management. To go beyond low-level similarity and access video...
Video query by semantic keywords is one of the most challenging research issues in video data management.
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 40
SubjectTerms Applied sciences
Artificial intelligence
Bridges
Computational modeling
Computer science; control theory; systems
Context modeling
Exact sciences and technology
Explosions
Filtering
Forestry
Graphs
Image processing
Indexing
Information, signal and communications theory
Mathematical models
Motion pictures
Mountains
Pattern recognition. Digital image processing. Computational geometry
Probabilistic methods
Probability theory
Semantics
Signal processing
Snow
Studies
Telecommunications and information theory
Video data
Title Factor graph framework for semantic video indexing
URI https://ieeexplore.ieee.org/document/981844
https://www.proquest.com/docview/969464367
https://www.proquest.com/docview/27133542
https://www.proquest.com/docview/28269022
https://www.proquest.com/docview/907960863
Volume 12
WOSCitedRecordID wos000173716500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4BQggeYJRNlDJmIR54CaTOxY4fEVq1J8QDk3iLnMtFQtraqWn3-3d20m4ImMRbFJ8l6-zz3fns7wO4YGuoFseU-Jo4QWt84pHyxDMGBCviVFMkm7B3d8Xjo7vvcbbjWxhmjpfP-Cp8xlp-PaNlOCq7duJdEDdh01rbPdVaFwywiFxiEi2Mk0LcWA8iNE7dtTVXXcdnridyqYSbkL4VZTQdi8WLDTl6mcnBu8b3Afb7YFLddLN_CBs8HcDePxCDA9gJ3JuB0O0IZDsOJ_QqYlSrZnUrS0nYqlr-KSp-IhWe5c1UxFCU_h_h--Trw-23pKdMSAidXiRijuNQ6vMZY6V1SugrXVDTuIrzpsnEAlMyZCt2pgpINFhjQVRpQ0VtGp99gq3pbMrHoBjRujGS0VhhnaNPnc1NnWbeoKutHcLlSpsl9XjigdbiRxnzitSV1pSdRoZwvhb91YFovCY0CBpdC6z-nj2bob_9MzTGGRnGaDVlZW9-bemMQwm1QuuXdavYTSiG-CnPlm2pQ3aeo_6PhGReTkKcIag3JFxqJQEsTHby6thHsBu5Y-KBzSlsLeZL_gzb9Hvx1M7P4vr9Aye17p8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yIk0PfWxbsk2biNJDL05seSxZxxASUpouPSSQm5HHYwikuyXe7e_vSPZuG5oWcjPWCMRIo5nRSN8H8JGtoUYcU-Ib4gSt8YlHKhLPGBCsiFNNkWzCTibl9bX7NuBsx7cwzBwvn_Fh-Iy1_GZGi3BUduTEuyCuw2aBqLP-sdaqZIBlZBOTeCFLSnFkA4xQlrojaw77rvecT2RTCXchfSfqaHsei7-25Ohnzp4_aoQv4NkQTqrjfv5fwhpPR_D0D5DBEWwH9s1A6fYKZEMOZ_QqolSrdnkvS0ngqjr-Lkq-IRUe5s1URFGU_q_h6uz08uQ8GUgTEkKn54kYZBaKfT5nrLVOCX2tS2pbV3PRtrnYYEqGbM3O1AGLBhssiWptqGxM6_M3sDGdTXkXFCNalyEZjTU2BfrU2cI0ae4NusbaMXxaarOiAVE8EFvcVjGzSF1lTdVrZAwfVqI_ehiNh4RGQaMrgeXf_Xsz9Lt_jsY4I8PYW05ZNRhgVznjUIKt0HqwahXLCeUQP-XZoqt0yM8L1P-RkNzLSZAzBvUPCZdaSQFLk799cOwH8OT88utFdfF58mUPdiKTTDy-eQcb87sFv4ct-jm_6e7241r-BbLJ8eY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+factor+graph+framework+for+semantic+video+indexing&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=MILIND+RAMESH+NAPHADE&rft.au=KOZINTSEV%2C+Igor+V&rft.au=HUANG%2C+Thomas+S&rft.date=2002&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1051-8215&rft.volume=12&rft.issue=1&rft.spage=40&rft.epage=52&rft_id=info:doi/10.1109%2F76.981844&rft.externalDBID=n%2Fa&rft.externalDocID=13466967
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon