Factor graph framework for semantic video indexing
Video query by semantic keywords is one of the most challenging research issues in video data management. To go beyond low-level similarity and access video data content by semantics, we need to bridge the gap between the low-level representation and high-level semantics. This is a difficult multime...
Uložené v:
| Vydané v: | IEEE transactions on circuits and systems for video technology Ročník 12; číslo 1; s. 40 - 52 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
IEEE
01.01.2002
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1051-8215, 1558-2205 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Video query by semantic keywords is one of the most challenging research issues in video data management. To go beyond low-level similarity and access video data content by semantics, we need to bridge the gap between the low-level representation and high-level semantics. This is a difficult multimedia understanding problem. We formulate this problem as a probabilistic pattern-recognition problem for modeling semantics in terms of concepts and context. To map low-level features to high-level semantics, we propose probabilistic multimedia objects (multijects). Examples of multijects in movies include explosion, mountain, beach, outdoor, music, etc. Semantic concepts in videos interact and appear in context. To model this interaction explicitly, we propose a network of multijects (multinet). To model the multinet computationally, we propose a factor graph framework which can enforce spatio-temporal constraints. Using probabilistic models for multijects, rocks, sky, snow, water-body, and forestry/greenery, and using a factor graph as the multinet, we demonstrate the application of this framework to semantic video indexing. We demonstrate how detection performance can be significantly improved using the multinet to take inter-conceptual relationships into account. Our experiments using a large video database consisting of clips from several movies and based on a set of five semantic concepts reveal a significant improvement in detection performance by over 22%. We also show how the multinet is extended to take temporal correlation into account. By constructing a dynamic multinet, we show that the detection performance is further enhanced by as much as 12%. With this framework, we show how keyword-based query and semantic filtering is possible for a predetermined set of concepts. |
|---|---|
| AbstractList | Video query by semantic keywords is one of the most challenging research issues in video data management. Video query by semantic keywords is one of the most challenging research issues in video data management. To go beyond low-level similarity and access video data content by semantics, we need to bridge the gap between the low-level representation and high-level semantics. This is a difficult multimedia understanding problem. We formulate this problem as a probabilistic pattern-recognition problem for modeling semantics in terms of concepts and context. To map low-level features to high-level semantics, we propose probabilistic multimedia objects (multijects). Examples of multijects in movies include explosion, mountain, beach, outdoor, music, etc. Semantic concepts in videos interact and appear in context. To model this interaction explicitly, we propose a network of multijects (multinet). To model the multinet computationally, we propose a factor graph framework which can enforce spatio-temporal constraints. Using probabilistic models for multijects, rocks, sky, snow, water-body, and forestry/greenery, and using a factor graph as the multinet, we demonstrate the application of this framework to semantic video indexing. We demonstrate how detection performance can be significantly improved using the multinet to take inter-conceptual relationships into account. Our experiments using a large video database consisting of clips from several movies and based on a set of five semantic concepts reveal a significant improvement in detection performance by over 22%. We also show how the multinet is extended to take temporal correlation into account. By constructing a dynamic multinet, we show that the detection performance is further enhanced by as much as 12%. With this framework, we show how keyword-based query and semantic filtering is possible for a predetermined set of concepts Video query by semantic keywords is one of the most challenging research issues in video data management. To go beyond low-level similarity and access video data content by semantics, we need to bridge the gap between the low-level representation and high-level semantics. This is a difficult multimedia understanding problem. We formulate this problem as a probabilistic pattern-recognition problem for modeling semantics in terms of concepts and context. To map low-level features to high-level semantics, we propose probabilistic multimedia objects (multijects). Examples of multijects in movies include explosion, mountain, beach, outdoor, music, etc. Semantic concepts in videos interact and appear in context. To model this interaction explicitly, we propose a network of multijects (multinet). To model the multinet computationally, we propose a factor graph framework which can enforce spatio-temporal constraints. Using probabilistic models for multijects, rocks, sky, snow, water-body, and forestry/greenery, and using a factor graph as the multinet, we demonstrate the application of this framework to semantic video indexing. We demonstrate how detection performance can be significantly improved using the multinet to take inter-conceptual relationships into account. Our experiments using a large video database consisting of clips from several movies and based on a set of five semantic concepts reveal a significant improvement in detection performance by over 22%. We also show how the multinet is extended to take temporal correlation into account. By constructing a dynamic multinet, we show that the detection performance is further enhanced by as much as 12%. With this framework, we show how keyword-based query and semantic filtering is possible for a predetermined set of concepts. |
| Author | Huang, T.S. Kozintsev, I.V. Ramesh Naphade, M. |
| Author_xml | – sequence: 1 givenname: M. surname: Ramesh Naphade fullname: Ramesh Naphade, M. organization: IBM Thomas J. Watson Res. Center, Hawthorne, NY, USA – sequence: 2 givenname: I.V. surname: Kozintsev fullname: Kozintsev, I.V. – sequence: 3 givenname: T.S. surname: Huang fullname: Huang, T.S. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13466967$$DView record in Pascal Francis |
| BookMark | eNqF0UtLAzEQAOAgCrbVg1dPi6DiYWvemxyl-ALBi55DNptodJvUZOvj37u6pQcRPWVIvhkmM2OwGWKwAOwhOEUIytOKT6VAgtINMEKMiRJjyDb7GDJUCozYNhjn_AQhooJWI4AvtOliKh6SXjwWLum5fYvpuXD9XbZzHTpvilff2Fj40Nh3Hx52wJbTbba7q3MC7i_O72ZX5c3t5fXs7KY0VOKupEIgIpjQxNK678JQXWNhnJO1Zc4RhiA03FS1lbwmHHPaUGFMjbkRDXeaTMDxUHeR4svS5k7NfTa2bXWwcZmVhJXkUHDSy6M_JRaYS4jx_7BChDD6BQ9-wKe4TKH_rpJcUk4Jr3p0uEI6G932wwvGZ7VIfq7Th0KEci6_3engTIo5J-uU8Z3ufAxd0r5VCKqv3amKq2F3fcbJj4x10V_s_mC9tXbtVo-fTk6gtw |
| CODEN | ITCTEM |
| CitedBy_id | crossref_primary_10_1109_TMM_2010_2066960 crossref_primary_10_1109_TBC_2005_854169 crossref_primary_10_1109_TMM_2007_900137 crossref_primary_10_1109_TMM_2007_911826 crossref_primary_10_1016_j_image_2008_04_014 crossref_primary_10_1145_2168996_2169003 crossref_primary_10_1007_s00530_006_0024_2 crossref_primary_10_1007_s10844_009_0083_x crossref_primary_10_1109_TBC_2013_2265782 crossref_primary_10_1016_j_jvcir_2004_04_010 crossref_primary_10_1109_JSTARS_2012_2219507 crossref_primary_10_1016_j_patcog_2009_03_009 crossref_primary_10_1109_TNN_2002_1021881 crossref_primary_10_1109_TCSVT_2010_2087814 crossref_primary_10_1007_s11042_012_1060_x crossref_primary_10_1109_TCSVT_2007_890635 crossref_primary_10_1109_TSMCA_2005_859184 crossref_primary_10_1016_j_cviu_2003_08_001 crossref_primary_10_1109_TCSVT_2005_854238 crossref_primary_10_1109_MSP_2006_1598086 crossref_primary_10_1109_TMM_2013_2250266 crossref_primary_10_1109_TMM_2012_2233723 crossref_primary_10_1145_3355089_3356520 crossref_primary_10_1007_s11042_014_1937_y crossref_primary_10_1109_TMM_2015_2398195 crossref_primary_10_1109_TPAMI_2011_273 crossref_primary_10_1109_TBC_2008_2001143 crossref_primary_10_1145_1404880_1404883 crossref_primary_10_1155_2008_328052 crossref_primary_10_1007_s10044_018_0761_9 crossref_primary_10_1109_TCSVT_2004_826768 crossref_primary_10_1109_TMM_2007_900143 crossref_primary_10_1007_s11042_007_0161_4 crossref_primary_10_1049_ip_vis_20045079 crossref_primary_10_1109_TCSVT_2004_826759 crossref_primary_10_1145_1142020_1142021 crossref_primary_10_1016_j_patcog_2008_08_033 crossref_primary_10_1007_s11042_006_0028_0 crossref_primary_10_1007_s11042_009_0278_8 crossref_primary_10_1007_s11042_008_0254_8 crossref_primary_10_1109_TMM_2008_2009682 |
| Cites_doi | 10.1109/ICIP.1999.822861 10.1002/9780470191613 10.1109/IVL.2000.853836 10.7551/mitpress/3348.001.0001 10.1007/s005300050139 10.1109/18.910572 10.1145/244130.244151 10.1109/76.475896 10.1109/ICIP.1998.999006 10.1109/ICIP.1998.999041 10.7551/mitpress/4347.001.0001 10.1109/ICIP.1995.529715 10.1117/12.403809 10.1109/ICIP.1997.638826 10.1117/12.171062 10.1109/ICIP.1997.647372 10.1109/TC.1977.5009272 10.1109/TIT.1974.1055186 10.1109/ICIP.1998.727321 10.1109/5.18626 10.1109/ICIP.1997.647374 10.1109/ICIP.1998.723662 10.1109/ICASSP.1997.595323 10.1109/CVPR.1999.786939 10.1016/S0031-3203(97)00131-3 |
| ContentType | Journal Article |
| Copyright | 2002 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002 |
| Copyright_xml | – notice: 2002 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002 |
| DBID | RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D 7U5 F28 FR3 |
| DOI | 10.1109/76.981844 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore Digital Libary (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Forestry Applied Sciences |
| EISSN | 1558-2205 |
| EndPage | 52 |
| ExternalDocumentID | 2627742931 13466967 10_1109_76_981844 981844 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D 7U5 F28 FR3 |
| ID | FETCH-LOGICAL-c492t-48813858a3e4b220c4ab28cff9be5ff35100c6c7be96b36264d48ccb26c8d6fa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 103 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000173716500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-8215 |
| IngestDate | Sun Nov 09 13:28:32 EST 2025 Mon Sep 29 06:43:20 EDT 2025 Thu Oct 02 11:26:46 EDT 2025 Mon Jun 30 04:30:25 EDT 2025 Mon Jul 21 09:17:58 EDT 2025 Sat Nov 29 08:07:02 EST 2025 Tue Nov 18 21:29:30 EST 2025 Tue Aug 26 16:34:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Performance evaluation Multimedia Probabilistic approach Database query Hidden Markov models Likelihood ratio test Feature extraction Graph method Pattern recognition Video signal processing Indexing |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-48813858a3e4b220c4ab28cff9be5ff35100c6c7be96b36264d48ccb26c8d6fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 969464367 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_76_981844 ieee_primary_981844 pascalfrancis_primary_13466967 crossref_primary_10_1109_76_981844 proquest_miscellaneous_27133542 proquest_miscellaneous_907960863 proquest_journals_969464367 proquest_miscellaneous_28269022 |
| PublicationCentury | 2000 |
| PublicationDate | 2002-Jan. 2002-01-00 2002 20020101 |
| PublicationDateYYYYMMDD | 2002-01-01 |
| PublicationDate_xml | – month: 01 year: 2002 text: 2002-Jan. |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems for video technology |
| PublicationTitleAbbrev | TCSVT |
| PublicationYear | 2002 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref36 ref30 ref11 Pearl (ref29) 1988 ref10 ref2 ref1 Zhang (ref14); 3972 Naphade (ref22); 3972 Jensson (ref34) 1996 ref17 ref16 Duda (ref19) 1973 ref38 Meng (ref8); 2419 Frey (ref33) ref24 ref26 Naphade (ref6); 3972 ref25 Wiberg (ref31) 1996 ref20 ref21 ref28 ref27 Naphade (ref23); 4315 Jain (ref37) 1999; 7 ref9 ref4 ref3 Yeo (ref7) 1995; 5 Poor (ref18) 1999 Jain (ref35) 1995 ref5 Frey (ref32) |
| References_xml | – ident: ref16 doi: 10.1109/ICIP.1999.822861 – volume-title: Introduction to Bayseian Networks year: 1996 ident: ref34 – ident: ref20 doi: 10.1002/9780470191613 – ident: ref25 doi: 10.1109/IVL.2000.853836 – ident: ref26 doi: 10.7551/mitpress/3348.001.0001 – volume-title: Codes and Decoding on General Graphs year: 1996 ident: ref31 – volume: 7 start-page: 369 issue: 5 year: 1999 ident: ref37 article-title: Query by video clip publication-title: Multimedia Syst.: Special Issue on Video Libraries doi: 10.1007/s005300050139 – volume-title: An Introduction to Signal Detection and Estimation year: 1999 ident: ref18 – ident: ref27 doi: 10.1109/18.910572 – ident: ref1 doi: 10.1145/244130.244151 – volume: 3972 start-page: 168 volume-title: Proc. SPIE Storage and Retrieval for Multimedia Databases ident: ref22 article-title: Stochastic modeling of soundtrack for efficient segmentation and indexing of video – volume: 5 start-page: 533 year: 1995 ident: ref7 article-title: Rapid scene change detection on compressed video publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/76.475896 – ident: ref17 doi: 10.1109/ICIP.1998.999006 – volume-title: Proc. Annu. Allerton Conf. Communication, Control and Computing ident: ref32 article-title: Probability propagation and iterative decoding – ident: ref11 doi: 10.1109/ICIP.1998.999041 – volume-title: Probabilistic Reasoning in Intelligent Systems year: 1988 ident: ref29 – volume-title: Pattern Classification and Scene Analysis year: 1973 ident: ref19 – ident: ref30 doi: 10.7551/mitpress/4347.001.0001 – ident: ref5 doi: 10.1109/ICIP.1995.529715 – ident: ref24 doi: 10.1117/12.403809 – volume: 2419 start-page: 1 volume-title: Proc. SPIE Symp. ident: ref8 article-title: Scene change detection in a mpeg compressed video sequence – ident: ref3 doi: 10.1109/ICIP.1997.638826 – ident: ref9 doi: 10.1117/12.171062 – volume-title: Machine Vision year: 1995 ident: ref35 – ident: ref4 doi: 10.1109/ICIP.1997.647372 – volume: 3972 start-page: 564 volume-title: Proc. SPIE Storage and Retrieval for Multimedia Databases ident: ref6 article-title: A novel scheme for fast and efficient video sequence matching using compact signatures – volume: 4315 start-page: 270 volume-title: Proc. SPIE Storage and Retrieval for Multimedia Databases ident: ref23 article-title: Semantic filtering of video content – ident: ref38 doi: 10.1109/TC.1977.5009272 – ident: ref28 doi: 10.1109/TIT.1974.1055186 – volume: 3972 start-page: 506 volume-title: Proc. SPIE, IS&T Storage and Retrieval for Media Databases ident: ref14 article-title: An integrated approach to multimodal media content analysis – ident: ref12 doi: 10.1109/ICIP.1998.727321 – ident: ref21 doi: 10.1109/5.18626 – volume-title: Proc. 34th Annu. Allerton Conf. Communication, Control and Computing ident: ref33 article-title: Probability propagation and iterative decoding – ident: ref2 doi: 10.1109/ICIP.1997.647374 – ident: ref10 doi: 10.1109/ICIP.1998.723662 – ident: ref15 doi: 10.1109/ICASSP.1997.595323 – ident: ref13 doi: 10.1109/CVPR.1999.786939 – ident: ref36 doi: 10.1016/S0031-3203(97)00131-3 |
| SSID | ssj0014847 |
| Score | 2.0656128 |
| Snippet | Video query by semantic keywords is one of the most challenging research issues in video data management. To go beyond low-level similarity and access video... Video query by semantic keywords is one of the most challenging research issues in video data management. |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 40 |
| SubjectTerms | Applied sciences Artificial intelligence Bridges Computational modeling Computer science; control theory; systems Context modeling Exact sciences and technology Explosions Filtering Forestry Graphs Image processing Indexing Information, signal and communications theory Mathematical models Motion pictures Mountains Pattern recognition. Digital image processing. Computational geometry Probabilistic methods Probability theory Semantics Signal processing Snow Studies Telecommunications and information theory Video data |
| Title | Factor graph framework for semantic video indexing |
| URI | https://ieeexplore.ieee.org/document/981844 https://www.proquest.com/docview/969464367 https://www.proquest.com/docview/27133542 https://www.proquest.com/docview/28269022 https://www.proquest.com/docview/907960863 |
| Volume | 12 |
| WOSCitedRecordID | wos000173716500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2205 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014847 issn: 1051-8215 databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4BQggeYJRNlDJmIR54CaTOxY4fEVq1J8QDk3iLnMtFQtraqWn3-3d20m4ImMRbFJ8l6-zz3fns7wO4YGuoFseU-Jo4QWt84pHyxDMGBCviVFMkm7B3d8Xjo7vvcbbjWxhmjpfP-Cp8xlp-PaNlOCq7duJdEDdh01rbPdVaFwywiFxiEi2Mk0LcWA8iNE7dtTVXXcdnridyqYSbkL4VZTQdi8WLDTl6mcnBu8b3Afb7YFLddLN_CBs8HcDePxCDA9gJ3JuB0O0IZDsOJ_QqYlSrZnUrS0nYqlr-KSp-IhWe5c1UxFCU_h_h--Trw-23pKdMSAidXiRijuNQ6vMZY6V1SugrXVDTuIrzpsnEAlMyZCt2pgpINFhjQVRpQ0VtGp99gq3pbMrHoBjRujGS0VhhnaNPnc1NnWbeoKutHcLlSpsl9XjigdbiRxnzitSV1pSdRoZwvhb91YFovCY0CBpdC6z-nj2bob_9MzTGGRnGaDVlZW9-bemMQwm1QuuXdavYTSiG-CnPlm2pQ3aeo_6PhGReTkKcIag3JFxqJQEsTHby6thHsBu5Y-KBzSlsLeZL_gzb9Hvx1M7P4vr9Aye17p8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yIk0PfWxbsk2biNJDL05seSxZxxASUpouPSSQm5HHYwikuyXe7e_vSPZuG5oWcjPWCMRIo5nRSN8H8JGtoUYcU-Ib4gSt8YlHKhLPGBCsiFNNkWzCTibl9bX7NuBsx7cwzBwvn_Fh-Iy1_GZGi3BUduTEuyCuw2aBqLP-sdaqZIBlZBOTeCFLSnFkA4xQlrojaw77rvecT2RTCXchfSfqaHsei7-25Ohnzp4_aoQv4NkQTqrjfv5fwhpPR_D0D5DBEWwH9s1A6fYKZEMOZ_QqolSrdnkvS0ngqjr-Lkq-IRUe5s1URFGU_q_h6uz08uQ8GUgTEkKn54kYZBaKfT5nrLVOCX2tS2pbV3PRtrnYYEqGbM3O1AGLBhssiWptqGxM6_M3sDGdTXkXFCNalyEZjTU2BfrU2cI0ae4NusbaMXxaarOiAVE8EFvcVjGzSF1lTdVrZAwfVqI_ehiNh4RGQaMrgeXf_Xsz9Lt_jsY4I8PYW05ZNRhgVznjUIKt0HqwahXLCeUQP-XZoqt0yM8L1P-RkNzLSZAzBvUPCZdaSQFLk799cOwH8OT88utFdfF58mUPdiKTTDy-eQcb87sFv4ct-jm_6e7241r-BbLJ8eY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+factor+graph+framework+for+semantic+video+indexing&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=MILIND+RAMESH+NAPHADE&rft.au=KOZINTSEV%2C+Igor+V&rft.au=HUANG%2C+Thomas+S&rft.date=2002&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1051-8215&rft.volume=12&rft.issue=1&rft.spage=40&rft.epage=52&rft_id=info:doi/10.1109%2F76.981844&rft.externalDBID=n%2Fa&rft.externalDocID=13466967 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |