Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo
Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gra...
Uložené v:
| Vydané v: | SoftwareX Ročník 13; s. 100658 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.01.2021
Elsevier |
| Predmet: | |
| ISSN: | 2352-7110, 2352-7110 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software. |
|---|---|
| AbstractList | Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software. |
| ArticleNumber | 100658 |
| Author | Chandra Mishra Anand S. Sengupta Volker Kringel Thibaut Jacqmin Kaye li Mariela Masso-Reid Kevin Barkett Arnab Dasgupta Stephen Appert Francesco Fidecaro Raymond Frey Marcos A. Okada Eugenio Coccia Ajit K. Mehta Om S. Salafia Antonella Bozzi Heesuk S. Cho Rajesh K. Nayak Thomas Shaffer Gautam Venugopalan Xu Chen Betsy Weaver Dominique Huet Stuart M. Aston Alicia M. Sintes Keith A. Thorne Dean Schaetzl Rahul Kashyap Timesh Mistry William Katzman Danny Sellers Jean-pierre Zendri Adam Zadrożny Alberto Gennai Norna A. Robertson Andrea Chincarini Huy-tuong Cao Janeen H. Romie Gihyuk Cho Lorenzo Mereni Sebastian Khan Amit K. Srivastava Brendan D. O’Brien Soumen Roy Vaibhav Tiwari Rory J. E. Smith Simone Mastrogiovanni Sascha Husa Hunter A. Gabbard Daniel George Manuela M. Hanke Ling Sun Rich G. Ormiston Niklas Gohlke Gregory Mendell Saravanan R. Saravanan Patrick M. Meyers Stephane Perriès Francesca Badaracco Maurizio Canepa Artemiy Dmitriev Bruno Giacomazzo Marco Drago David Hofman Robin Kirchhoff Scott B. Coughlin Gary Hemming Kevin A. Santiago Karelle Sie |
| Author_xml | – sequence: 1 fullname: Abbott, R. – sequence: 2 fullname: Baltus, Grégory – sequence: 3 orcidid: 0000-0002-4430-3703 fullname: Collette, Christophe – sequence: 4 orcidid: 0000-0002-2003-4238 fullname: Cudell, Jean-René – sequence: 5 orcidid: 0000-0002-4390-9746 fullname: Fays, Maxime – sequence: 6 fullname: scieentific, Others-Ligo – sequence: 7 fullname: collaborations, Virgo |
| BookMark | eNqFkc9OGzEQxi0EEhR4gl78Akn9d9c-9IBQC5Ei5QJcLa89Th0ta2SbCN6-zqaiVQ_taUaf5vdpZr5P6HRKEyD0mZIlJbT7sluWFOrbkhFGm0I6qU7QBeOSLXpKyekf_Tm6LmVHCKGSKcnEBXravMCEva0Wh5yecf0BOMRcKraTxwVcaiUNBfI-TlucX6eCU8A3fm8nBx6vV3ebefRDeYp5m67QWbBjgetf9RI9fv_2cHu_WG_uVrc364UTmtWF6DtwAULnpfJcKO0IHZizIKWGtmJvtdLECdlr7RgLQkpPueBWc80VeH6JVkdfn-zOvOT4bPO7STaaWUh5a2yu0Y1gNNNMDFJbJpQIklirOtmrYRDESxp48-JHrzHCFho7RLNns9ncv47NzJkBDGOdMqyjopO_KZdTKRnCxxaUmEM-ZmfmfMwhH3PMp1H6L8rFamtMU802jv9hvx5ZaI_dR8imuAiH38cMrrbL4z_5n0-DrFk |
| CitedBy_id | crossref_primary_10_1007_s10509_025_04465_0 crossref_primary_10_1007_s41114_024_00055_8 crossref_primary_10_1103_PhysRevD_111_043040 crossref_primary_10_1103_PhysRevD_105_064001 crossref_primary_10_1103_PhysRevD_106_043024 crossref_primary_10_1103_PhysRevD_108_123020 crossref_primary_10_3847_1538_4365_acc938 crossref_primary_10_1038_s41550_022_01849_y crossref_primary_10_1088_1475_7516_2024_07_011 crossref_primary_10_3847_1538_4357_ac1c03 crossref_primary_10_1088_1475_7516_2024_07_017 crossref_primary_10_3847_2041_8213_ac00a6 crossref_primary_10_1103_s3xh_dt13 crossref_primary_10_3847_1538_4357_ad9f36 crossref_primary_10_1088_1475_7516_2024_05_082 crossref_primary_10_1103_PhysRevD_103_063036 crossref_primary_10_1103_PhysRevD_111_062001 crossref_primary_10_1103_PhysRevC_108_025811 crossref_primary_10_1103_PhysRevD_104_123024 crossref_primary_10_1093_mnras_stad140 crossref_primary_10_1103_PhysRevD_104_084012 crossref_primary_10_1103_PhysRevLett_134_031402 crossref_primary_10_3847_1538_4357_ac7ec2 crossref_primary_10_1103_PhysRevD_103_124061 crossref_primary_10_1088_1475_7516_2023_06_042 crossref_primary_10_1103_PhysRevD_104_123030 crossref_primary_10_3390_galaxies10010028 crossref_primary_10_3847_1538_4357_ac0efd crossref_primary_10_1093_mnras_stad1364 crossref_primary_10_1103_PhysRevD_106_043019 crossref_primary_10_1103_ftw9_7xd5 crossref_primary_10_1103_PhysRevD_111_084049 crossref_primary_10_1103_PhysRevLett_126_151102 crossref_primary_10_1103_PhysRevD_105_063024 crossref_primary_10_1103_PhysRevD_110_122001 crossref_primary_10_1103_PhysRevD_110_122002 crossref_primary_10_3847_1538_4357_aca591 crossref_primary_10_1103_PhysRevD_106_043005 crossref_primary_10_1093_mnras_stac984 crossref_primary_10_1093_mnras_stab3224 crossref_primary_10_1093_mnras_stac989 crossref_primary_10_1088_1361_6382_acf26c crossref_primary_10_1093_mnras_stad1373 crossref_primary_10_1140_epjc_s10052_024_12550_x crossref_primary_10_3847_1538_4357_ada38e crossref_primary_10_3847_1538_4357_add5f5 crossref_primary_10_1093_ptep_ptac088 crossref_primary_10_1038_s41550_024_02323_7 crossref_primary_10_1103_PhysRevD_103_063011 crossref_primary_10_1088_1361_6382_ac6cc0 crossref_primary_10_1103_PhysRevD_103_063010 crossref_primary_10_1093_mnras_stad2909 crossref_primary_10_3847_1538_4357_ac4247 crossref_primary_10_1103_PhysRevD_106_084033 crossref_primary_10_1103_PhysRevX_15_021014 crossref_primary_10_1103_PhysRevD_105_104019 crossref_primary_10_1103_PhysRevD_104_044005 crossref_primary_10_1103_PhysRevD_111_064074 crossref_primary_10_1093_mnras_stac2961 crossref_primary_10_3390_universe9120507 crossref_primary_10_3847_1538_4357_ac92f3 crossref_primary_10_1103_PhysRevD_107_023027 crossref_primary_10_3847_2041_8213_ac62d7 crossref_primary_10_3847_1538_4357_abe40e crossref_primary_10_3847_1538_4357_ade87a crossref_primary_10_1103_PhysRevX_13_041048 crossref_primary_10_1103_PhysRevD_111_104070 crossref_primary_10_3847_1538_4357_ac2610 crossref_primary_10_3847_2041_8213_ac2f3e crossref_primary_10_1103_PhysRevD_103_103002 crossref_primary_10_1103_PhysRevD_104_083010 crossref_primary_10_1051_0004_6361_202142525 crossref_primary_10_1093_mnrasl_slac101 crossref_primary_10_3847_2041_8213_ac26c6 crossref_primary_10_1103_PhysRevD_103_044035 crossref_primary_10_1088_1475_7516_2024_10_070 crossref_primary_10_1007_s10714_024_03282_0 crossref_primary_10_1093_mnras_staf1432 crossref_primary_10_1103_PhysRevD_106_043504 crossref_primary_10_3847_1538_4357_ac33a0 crossref_primary_10_1103_PhysRevD_104_083003 crossref_primary_10_1088_1361_6382_add233 crossref_primary_10_1088_1572_9494_ad4bbb crossref_primary_10_1103_PhysRevD_111_063012 crossref_primary_10_1088_2632_2153_ad0938 crossref_primary_10_1103_PhysRevD_105_024023 crossref_primary_10_1103_PhysRevD_106_104021 crossref_primary_10_3847_1538_4357_ac1d4f crossref_primary_10_1103_PhysRevD_104_064046 crossref_primary_10_1088_1361_6382_acfa5d crossref_primary_10_1103_PhysRevD_103_104027 crossref_primary_10_1103_PhysRevD_104_102004 crossref_primary_10_3847_1538_4357_ac35cb crossref_primary_10_1103_PhysRevD_104_102005 crossref_primary_10_3847_1538_4357_ad96b4 crossref_primary_10_1103_PhysRevD_107_102001 crossref_primary_10_1103_PhysRevD_104_102003 crossref_primary_10_1103_PhysRevD_104_124039 crossref_primary_10_1103_PhysRevD_106_104017 crossref_primary_10_1103_PhysRevD_108_084044 crossref_primary_10_1140_epjc_s10052_023_11496_w crossref_primary_10_3847_2041_8213_abffcd crossref_primary_10_1103_PhysRevD_104_024037 crossref_primary_10_1088_1361_6382_ad40f0 crossref_primary_10_1103_PhysRevD_107_024017 crossref_primary_10_1103_PhysRevD_103_083009 crossref_primary_10_3847_2041_8213_acca70 crossref_primary_10_1088_1361_6382_ad5139 crossref_primary_10_3847_1538_4357_ac01d9 crossref_primary_10_1093_mnras_stad1728 crossref_primary_10_1093_mnras_stad2939 crossref_primary_10_3847_1538_4357_acdad4 crossref_primary_10_1103_PhysRevD_106_104014 crossref_primary_10_1103_PhysRevD_103_104036 crossref_primary_10_1088_2632_2153_ad2f54 crossref_primary_10_1103_PhysRevD_103_104002 crossref_primary_10_1088_1402_4896_ad579f crossref_primary_10_1103_jpjd_4b1n crossref_primary_10_1088_1361_6382_adf685 crossref_primary_10_1088_1475_7516_2025_05_029 crossref_primary_10_1093_mnras_stac029 crossref_primary_10_1103_PhysRevD_108_104040 crossref_primary_10_3847_1538_4357_aca5fc crossref_primary_10_3847_1538_4357_acc863 crossref_primary_10_1103_PhysRevD_107_024040 crossref_primary_10_1051_0004_6361_202449322 crossref_primary_10_1103_PhysRevD_103_062004 crossref_primary_10_1103_PhysRevD_106_104001 crossref_primary_10_3847_1538_4357_ac5019 crossref_primary_10_1088_1361_6382_adfffa crossref_primary_10_1103_PhysRevD_105_063012 crossref_primary_10_1088_1572_9494_adb5f5 crossref_primary_10_1093_mnras_stad588 crossref_primary_10_1093_mnras_stad341 crossref_primary_10_1103_PhysRevD_104_124023 crossref_primary_10_1051_epjconf_202429504047 crossref_primary_10_1063_5_0140766 crossref_primary_10_3847_1538_4365_acdc9f crossref_primary_10_3847_1538_4357_abc7c9 crossref_primary_10_1007_s10714_021_02889_x crossref_primary_10_1038_s41586_022_05212_z crossref_primary_10_3389_fams_2023_1206017 crossref_primary_10_1103_PhysRevD_104_082003 crossref_primary_10_1103_PhysRevLett_127_011103 crossref_primary_10_1159_000545589 crossref_primary_10_1103_PhysRevD_105_084040 crossref_primary_10_1103_PhysRevD_105_104056 crossref_primary_10_1088_2632_2153_acd90f crossref_primary_10_1103_PhysRevD_104_023014 crossref_primary_10_1103_PhysRevLett_129_111102 crossref_primary_10_1103_PhysRevResearch_3_043049 crossref_primary_10_3847_2041_8213_ad0560 crossref_primary_10_1103_PhysRevD_111_064025 crossref_primary_10_3847_1538_4357_ad65ce crossref_primary_10_3847_1538_4357_ac54a3 crossref_primary_10_1093_mnras_stac1704 crossref_primary_10_1103_PhysRevD_105_084019 crossref_primary_10_1088_1361_6382_ad2194 crossref_primary_10_1103_PhysRevResearch_4_033078 crossref_primary_10_1088_1475_7516_2025_05_084 crossref_primary_10_1103_PhysRevD_105_024066 crossref_primary_10_1103_PhysRevD_104_103018 crossref_primary_10_1088_1361_6382_ade35d crossref_primary_10_1103_5kbh_83k7 crossref_primary_10_1103_PhysRevD_106_103006 crossref_primary_10_1140_epjc_s10052_023_12332_x crossref_primary_10_1093_mnras_stab2780 crossref_primary_10_1051_0004_6361_202245693 crossref_primary_10_3847_2041_8213_ac11fc crossref_primary_10_1103_PhysRevD_106_044067 crossref_primary_10_1103_PhysRevD_108_064018 crossref_primary_10_1103_PhysRevD_111_104019 crossref_primary_10_1088_1361_6382_ad3279 crossref_primary_10_3847_1538_4357_ac82ae crossref_primary_10_1103_z85k_pdm9 crossref_primary_10_1051_0004_6361_202553941 crossref_primary_10_1007_s10509_023_04211_4 crossref_primary_10_1088_1361_6382_acb633 crossref_primary_10_1088_1361_6382_abde19 crossref_primary_10_1103_PhysRevX_14_021005 crossref_primary_10_3847_1538_4357_ac5f03 crossref_primary_10_3847_2041_8213_ac7052 crossref_primary_10_1093_mnras_stad3157 crossref_primary_10_1103_1vds_2cgh crossref_primary_10_3847_1538_4357_ac2582 crossref_primary_10_1103_PhysRevD_110_124038 crossref_primary_10_3847_1538_4357_acf5cd crossref_primary_10_1093_mnras_stac2332 crossref_primary_10_1103_PhysRevD_104_124057 crossref_primary_10_3847_2041_8213_ac2832 crossref_primary_10_1088_1361_6382_acd92d crossref_primary_10_3847_1538_4357_ac23db crossref_primary_10_1103_PhysRevD_103_104056 crossref_primary_10_3847_1538_4357_ad5353 crossref_primary_10_1088_1475_7516_2025_01_085 crossref_primary_10_1103_PhysRevD_108_084068 crossref_primary_10_1103_PhysRevD_108_063029 crossref_primary_10_1063_5_0070394 crossref_primary_10_1007_s00601_023_01799_9 crossref_primary_10_3847_1538_4357_abee11 crossref_primary_10_1103_PhysRevD_104_083528 crossref_primary_10_1103_PhysRevD_111_024016 crossref_primary_10_1093_mnras_stad1302 crossref_primary_10_1103_PhysRevD_111_063028 crossref_primary_10_1088_1361_6382_abfd85 crossref_primary_10_1088_1361_6382_ad84ae crossref_primary_10_1088_1361_6382_ace22f crossref_primary_10_3847_2041_8213_ac847e crossref_primary_10_1103_PhysRevD_111_083013 crossref_primary_10_1103_PhysRevD_107_104056 crossref_primary_10_1103_PhysRevD_111_L061305 crossref_primary_10_1088_1361_6382_ac45da crossref_primary_10_1103_PhysRevD_103_064053 crossref_primary_10_3847_2041_8213_ac84dc crossref_primary_10_1103_48ck_2fff crossref_primary_10_1103_PhysRevD_106_102006 crossref_primary_10_1103_jxrc_z298 crossref_primary_10_1103_PhysRevLett_133_201401 crossref_primary_10_3847_1538_4357_ad31a8 crossref_primary_10_1155_2021_6643546 crossref_primary_10_1109_ACCESS_2021_3139850 crossref_primary_10_3847_2041_8213_acd77a crossref_primary_10_1103_rb1c_nx5f crossref_primary_10_3847_1538_4357_ac3130 crossref_primary_10_1007_s10714_022_03016_0 crossref_primary_10_1103_PhysRevX_13_041039 crossref_primary_10_1093_mnras_stad1556 crossref_primary_10_1103_PhysRevD_107_104023 crossref_primary_10_3847_2041_8213_ac35dd crossref_primary_10_1177_20597991221111681 crossref_primary_10_3847_1538_4357_ac27ac crossref_primary_10_1088_1475_7516_2023_05_059 crossref_primary_10_1088_1475_7516_2022_12_011 crossref_primary_10_1109_MCSE_2023_3275711 crossref_primary_10_3847_2041_8213_abfbe7 crossref_primary_10_3847_1538_4357_ac589a crossref_primary_10_1103_PhysRevD_106_042009 crossref_primary_10_1103_PhysRevD_111_043018 crossref_primary_10_1088_1361_6382_ad0b9b crossref_primary_10_1103_PhysRevX_13_011048 crossref_primary_10_1103_PhysRevD_111_063520 crossref_primary_10_1103_PhysRevD_103_064037 crossref_primary_10_1103_PhysRevD_103_124023 crossref_primary_10_3847_1538_4357_ad3e83 crossref_primary_10_1103_PhysRevD_104_044056 crossref_primary_10_1103_PhysRevD_104_104045 crossref_primary_10_1103_PhysRevD_109_063019 crossref_primary_10_1103_PhysRevD_105_043006 crossref_primary_10_1093_mnras_stac3742 crossref_primary_10_3847_1538_4357_acd77d crossref_primary_10_3847_1538_4357_ad5ff6 crossref_primary_10_1088_1674_4527_adc64f crossref_primary_10_3390_galaxies10010012 crossref_primary_10_3847_1538_4357_ad3d5c crossref_primary_10_1103_PhysRevLett_126_171103 crossref_primary_10_3847_2041_8213_abd721 crossref_primary_10_3847_1538_4357_ad0ec9 crossref_primary_10_3847_2041_8213_add681 crossref_primary_10_1103_qhl7_lc3m crossref_primary_10_3847_1538_4357_adb966 crossref_primary_10_1103_PhysRevD_103_124015 crossref_primary_10_1093_mnras_stab2977 crossref_primary_10_3847_1538_4357_ac43bc crossref_primary_10_1103_81v4_pp8q crossref_primary_10_1103_ng8w_98sz crossref_primary_10_1088_1475_7516_2025_08_054 crossref_primary_10_3847_2041_8213_ac2ccc crossref_primary_10_1088_1402_4896_ace00c crossref_primary_10_1088_1475_7516_2023_03_005 crossref_primary_10_1103_PhysRevLett_134_191402 crossref_primary_10_1103_fp4b_mvzx crossref_primary_10_1103_PhysRevD_111_063063 crossref_primary_10_3847_1538_4357_ad90a9 crossref_primary_10_3847_2041_8213_abe949 |
| Cites_doi | 10.1088/2515-7639/ab206e 10.1088/0264-9381/19/7/377 10.1103/PhysRevD.100.061101 10.1103/PhysRevLett.123.161102 10.1103/PhysRevD.99.123029 10.1088/0264-9381/32/2/024001 10.1088/0264-9381/29/3/035003 10.1103/PhysRevD.99.083016 10.3847/1538-4357/ab0e8f 10.1088/0264-9381/31/24/245010 10.1088/1361-6382/ab01c5 10.3847/1538-4357/ab20cb 10.1088/1742-6596/1226/1/012019 10.1038/s41467-020-15984-5 10.1103/PhysRevD.100.064010 10.1364/AO.52.006452 10.1103/PhysRevD.93.042004 10.1103/PhysRevD.100.063015 10.1088/0264-9381/32/18/185003 10.1103/PhysRevLett.116.131103 10.1103/PhysRevD.93.112004 10.1088/1475-7516/2020/08/039 10.3847/1538-4357/ab0108 10.1103/PhysRevD.93.022002 10.1088/0264-9381/31/23/235001 10.1017/S1743921318003587 10.1088/0264-9381/33/13/134001 10.1088/1361-6382/ab4974 10.1117/12.2047327 10.1016/j.astropartphys.2019.07.005 10.1145/3093338.3093363 10.1103/PhysRevD.101.103004 10.1103/PhysRevD.101.104003 10.1088/0264-9381/31/10/105006 10.1103/PhysRevD.95.062003 10.1103/PhysRevD.99.122002 10.1364/AO.56.000C11 10.1088/0264-9381/33/21/215004 10.1103/PhysRevLett.114.161102 10.1088/0264-9381/21/9/003 10.1103/PhysRevD.91.042003 10.1364/AO.48.000355 10.1016/j.astropartphys.2019.102405 10.1016/j.physletb.2018.08.009 10.1109/JRPROC.1949.232969 10.1103/PhysRevLett.123.111102 10.1088/0264-9381/27/21/215001 10.1364/OE.16.010018 10.1088/0264-9381/31/16/165013 10.1088/0264-9381/29/12/124009 10.1103/PhysRevD.93.082005 10.1364/OE.20.010617 10.1016/j.jnoncrysol.2012.05.005 10.1088/0264-9381/32/1/015004 10.1103/PhysRevLett.118.221101 10.1088/1361-6382/aadf1a 10.3847/2041-8213/aa91c9 10.1103/PhysRevD.100.023007 10.1103/PhysRevD.100.104039 10.1103/PhysRevD.100.064064 10.1088/0264-9381/27/8/084025 10.1088/1742-6596/610/1/012021 10.1063/1.3532770 10.1103/PhysRevD.95.062002 10.1103/PhysRevD.99.124005 10.1093/mnras/staa1120 10.1088/1361-6382/ab075e 10.1063/1.3695405 10.3847/2041-8213/ab0c0f 10.1103/PhysRevD.100.024017 10.1088/1475-7516/2019/02/019 10.1088/0264-9381/32/3/035017 10.1103/PhysRevD.100.024004 10.1103/PhysRevD.100.124022 10.1103/PhysRevD.97.082002 10.1364/OE.23.019417 10.1088/1361-6382/aab658 10.1063/1.4961665 10.1103/PhysRevD.93.122003 10.1063/1.5045397 10.1103/PhysRevD.99.124035 10.1103/PhysRevD.100.084041 10.1093/ptep/ptz043 10.1088/0264-9381/27/8/084024 10.1002/j.1538-7305.1924.tb01361.x 10.1103/PhysRevD.94.044050 10.3847/1538-4357/ab64e8 10.1103/PhysRevD.96.102001 10.1103/PhysRevD.91.084034 10.1088/0264-9381/24/2/008 10.1007/s00340-011-4411-9 10.1063/1.4936974 10.1103/PhysRevD.100.104015 10.1088/0264-9381/29/11/115005 10.1103/PhysRevD.98.084016 10.1088/1361-6382/aaaafa 10.1103/PhysRevD.100.104004 10.1016/j.nima.2010.07.089 10.1016/j.precisioneng.2014.11.010 10.1038/s41597-019-0086-6 10.1088/0264-9381/29/23/235004 10.1088/0264-9381/26/24/245011 10.1088/0264-9381/29/15/155002 10.1364/JOSAB.29.001784 10.3847/1538-4365/ab06fc 10.1103/PhysRevD.93.012007 10.1103/PhysRevD.65.042001 10.1103/PhysRevD.91.082002 10.1016/j.precisioneng.2014.09.010 10.1088/0264-9381/27/8/084026 10.1103/PhysRevD.47.2198 10.3847/2041-8213/aac6c1 10.1103/PhysRevD.95.104046 10.1088/0264-9381/31/6/065010 10.1140/epja/i2019-12716-4 10.1103/PhysRevD.101.083030 |
| ContentType | Journal Article |
| Contributor | STAR - Space sciences, Technologies and Astrophysics Research - ULiège A&M - Aérospatiale et Mécanique - ULiège |
| Contributor_xml | – sequence: 1 fullname: STAR - Space sciences, Technologies and Astrophysics Research - ULiège – sequence: 2 fullname: A&M - Aérospatiale et Mécanique - ULiège |
| Copyright | 2021 |
| Copyright_xml | – notice: 2021 |
| CorporateAuthor | The Virgo Collaboration The LIGO Scientific Collaboration |
| CorporateAuthor_xml | – name: The LIGO Scientific Collaboration – name: The Virgo Collaboration |
| DBID | 6I. AAFTH AAYXX CITATION JLOSS Q33 DOA |
| DOI | 10.1016/j.softx.2021.100658 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only) Université de Liège - Open Repository and Bibliography (ORBI) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2352-7110 |
| ExternalDocumentID | oai_doaj_org_article_92924b59a2484f50aa86578bb40d51f3 oai_orbi_ulg_ac_be_2268_261465 10_1016_j_softx_2021_100658 S2352711021000030 |
| GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ IXB KQ8 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION JLOSS Q33 |
| ID | FETCH-LOGICAL-c492t-476ecfef6d58d3489c01b2cae559e5287a9890c45799c22f455d1343a93938ed3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 382 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000656825700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-7110 |
| IngestDate | Fri Oct 03 12:53:43 EDT 2025 Sat Nov 29 01:29:03 EST 2025 Wed Nov 12 18:32:53 EST 2025 Tue Nov 18 22:35:03 EST 2025 Sat Apr 27 15:45:00 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Scientific databases Gravitational Waves Data representation and management GWOSC |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-476ecfef6d58d3489c01b2cae559e5287a9890c45799c22f455d1343a93938ed3 |
| Notes | scopus-id:2-s2.0-85100090354 |
| ORCID | 0000-0002-4390-9746 0000-0002-4430-3703 0000-0002-2003-4238 |
| OpenAccessLink | https://doaj.org/article/92924b59a2484f50aa86578bb40d51f3 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_92924b59a2484f50aa86578bb40d51f3 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_261465 crossref_primary_10_1016_j_softx_2021_100658 crossref_citationtrail_10_1016_j_softx_2021_100658 elsevier_sciencedirect_doi_10_1016_j_softx_2021_100658 |
| PublicationCentury | 2000 |
| PublicationDate | January 2021 2021-01-00 2021 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | SoftwareX |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Carbone (b77) 2012; 29 Yamamoto, Hayama, Mano, Itoh, Kanda (b30) 2016; 93 Matichard (b83) 2015; 32 (b127) 2017 (b19) 2018 Buonanno, Chen (b71) 2002; 65 Harry (b67) 2007; 24 Abbott (b13) 2017; 119 Zackay, Dai, Venumadhav, Roulet, Zaldarriaga (b28) 2019 Abbott (b70) 2016; 116 Abbott (b163) 2017; 118 Biwer (b139) 2017; 95 (b167) 2019 (b162) 2017; 95 Gerosa, Vitale, Haster, Chatziioannou, Zimmerman (b37) 2017; 13 Carson, Chatziioannou, Haster, Yagi, Yunes (b44) 2019; 99 Abbott (b109) 2019; 875 Abbott (b153) 2019; 123 Abbott (b10) 2016; 6 Abbott (b121) 2017; 95 Ellis (b142) 2012 Zackay, Venumadhav, Dai, Roulet, Zaldarriaga (b25) 2019; 100 Abbott (b15) 2017; 848 Effler (b106) 2015; 32 Winkelmann (b61) 2011; 102 Nitz (b149) 2017 Chen (b108) 2017 Littenberg, Cornish (b178) 2015; 91 Maggiore (b1) 2008 Dai, Venumadhav, Zackay (b35) 2018 Chatziioannou (b38) 2019; 100 Wen (b84) 2014; 31 . Klimenko (b154) 2016; 93 Cirone (b101) 2018; 89 Lousto, Healy (b56) 2019; 100 Heptonstall (b79) 2011; 82 Kanner (b29) 2016; 93 Liu (b62) 2013; 52 Abbott (b105) 2016; 33 Goetz (b114) 2009; 26 Radice, Dai (b55) 2019; 55 Nitz (b24) 2019; 872 Davis (b137) 2019; 36 Bell (b73) 2014; 31 Gadre, Mitra, Dhurandhar (b34) 2019; 99 Hammond (b75) 2012; 29 Gebhard, Kilbertus, Harry, Schölkopf (b51) 2019; 100 Matichard (b82) 2015; 40 (b122) 2018 Adhikari (b131) 2004 Chatziioannou (b40) 2019; 100 Venumadhav, Zackay, Roulet, Dai, Zaldarriaga (b26) 2020; 101 Macleod (b173) 2019 URL (b17) 2019 Cirone (b100) 2019; 36 Fiori (b134) 2017 (b172) 2018 Acernese (b98) 2020; 116 Gayathri (b32) 2019; 100 Einstein (b3) 1918; 1918 Dooley (b64) 2012; 83 Goetz (b113) 2010; 27 Accadia (b117) 2010; 28 Ashton (b175) 2019; 241 Buscicchio, Roebber, Goldstein, Moore (b42) 2019; 100 Aasi (b5) 2015; 32 Chen, Huang (b59) 2020; 2020 Granata (b95) 2019 Brooks (b92) 2009; 48 Nicolaou, Lahav, Lemos, Hartley, Braden (b58) 2020; 495 Abbott (b164) 2019; 100 Home page for: GstLAL Bersanetti (b97) 2020; 117 (b128) 2017 Anderson, Williams (b16) 2017 (b168) 2019 Abbott (b14) 2019; 9 Abadie (b115) 2010; 624 (b18) 2018 Goetz, Savage (b112) 2010; 27 Nitz (b27) 2020 Abbott (b155) 2019; 100 Kwee (b60) 2012; 20 Lawrence, Zucker, Fritschel, Marfuta, Shoemaker (b93) 2002; 19 Mueller (b66) 2016; 87 Koziol, Robinson (b147) 2018 Hagihara, Era, Iikawa, Nishizawa, Asada (b47) 2019; 100 Isi, Giesler, Farr, Scheel, Teukolsky (b50) 2019; 123 Broadhurst, M. Diego, F. Smoot (b54) 2019 Granata (b68) 2016; 93 Kalaghatgi, Hannam, Raymond (b41) 2020; 101 Lynch, Vitale, Essick, Katsavounidis, Robinet (b157) 2017; 95 (b170) 2016 van Heijningen (b103) 2019; 36 Nielsen, Nitz, Capano, Brown (b23) 2019; 1902 Phelps, Gushwa, Torrie (b90) 2013; 8885 Nyquist (b145) 1928; 47 Staley (b104) 2014; 31 Acernese (b6) 2015; 32 Cody (b152) 2017; 95 (b180) 2018 Abbott (b4) 2016; 116 Rollins (b89) 2016; 87 Pinard (b69) 2017; 56 Veitch (b176) 2015; 91 (b166) 2015 Abbott (b11) 2017; 118 Smith (b91) 2012 Bartos (b111) 2010; 27 Green, Moffat (b22) 2018; 784 Shannon (b146) 1949; 37 Tringali (b102) 2019 Pratten, Schmidt, Hinderer (b46) 2020; 11 Sachdev (b151) 2019 De, Capano, Biwer, Nitz, Brown (b36) 2019; 6 Wang, Wu, Cao, Liu, Zhu (b52) 2020; 101 Acernese (b119) 2018; 35 (b123) 2016 Usman (b150) 2016; 33 Martynov (b130) 2016; 93 (b169) 2019 Abbott (b132) 2019 Pankow (b138) 2018; 98 Einstein (b2) 1916; 1916 Abbott (b12) 2017; 119 Yanagisawa (b33) 2019; 2019 Evans (b88) 2015; 114 (b126) 2017 (b129) 2017 Covas (b133) 2018; 97 Heptonstall (b72) 2014; 31 Heitmann (b94) 2018; 10700 Abbott (b136) 2018; 35 Abbott (b8) 2016; 93 Carullo, Del Pozzo, Veitch (b49) 2019; 99 Cahillane (b120) 2017; 96 Gravitational wave open science center (GWOSC). (b165) 2015 (b148) 2009 Abbott (b159) 2019; 100 Shapiro (b80) 2015; 32 Nyquist (b144) 1924; 3 Aiello (b99) 2019; 1226 Isi, Weinstein, Mead, Pitkin (b48) 2015; 91 Daw, Giaime, Lormand, Lubinski, Zweizig (b85) 2004; 21 Hannuksela (b53) 2019; 874 Jones (b143) 2001 Abbott (b156) 2019 Reyes, Brown (b45) 2020; 894 Green, Moffat (b31) 2018; 784 (b7) 2019 (b20) 2019 Abbott (b160) 2019; 99 Vallisneri, Kanner, Williams, Weinstein, Stephens (b21) 2015; 610 Abbott (b161) 2015; 879 Kumar (b39) 2019; 99 Aasi (b135) 2012; 29 Abbott (b110) 2019; 100 (b125) 2016 J., Littenberg (b177) 2015; 32 Accadia (b116) 2014; 31 Abbott (b9) 2016; 116 How to acknowledge use of LIGO/Virgo data through GWOSC. Viets (b118) 2018; 35 Finstad, De, Brown, Berger, Biwer (b57) 2018; 860 Barsotti, Evans, Fritschel (b86) 2010; 27 Staley (b87) 2015; 23 Tokmakov (b74) 2012; 358 Arain, Mueller (b65) 2008; 16 Matichard (b81) 2015; 40 Weitzel D et al. Data access for LIGO on the OSG. In: Proceedings of the practice and experience in advanced research computing 2017 on sustainability, success and impact; 2017. (b124) 2016 De (b43) 2018; 121 Cumming (b78) 2012; 29 Finn, Chernoff (b107) 1993; 47 Amato (b96) 2019; 2 Kluyver (b171) 2016 Littenberg, Kanner, Cornish, Millhouse (b158) 2016; 94 Palashov (b63) 2012; 29 Aston (b76) 2012; 29 Carbone (10.1016/j.softx.2021.100658_b77) 2012; 29 Sachdev (10.1016/j.softx.2021.100658_b151) 2019 Abbott (10.1016/j.softx.2021.100658_b8) 2016; 93 Abbott (10.1016/j.softx.2021.100658_b132) 2019 Nielsen (10.1016/j.softx.2021.100658_b23) 2019; 1902 Yanagisawa (10.1016/j.softx.2021.100658_b33) 2019; 2019 Nitz (10.1016/j.softx.2021.100658_b24) 2019; 872 Gebhard (10.1016/j.softx.2021.100658_b51) 2019; 100 Ashton (10.1016/j.softx.2021.100658_b175) 2019; 241 Lousto (10.1016/j.softx.2021.100658_b56) 2019; 100 Veitch (10.1016/j.softx.2021.100658_b176) 2015; 91 Rollins (10.1016/j.softx.2021.100658_b89) 2016; 87 Brooks (10.1016/j.softx.2021.100658_b92) 2009; 48 Abbott (10.1016/j.softx.2021.100658_b121) 2017; 95 Einstein (10.1016/j.softx.2021.100658_b2) 1916; 1916 Abbott (10.1016/j.softx.2021.100658_b70) 2016; 116 Adhikari (10.1016/j.softx.2021.100658_b131) 2004 Abbott (10.1016/j.softx.2021.100658_b13) 2017; 119 Liu (10.1016/j.softx.2021.100658_b62) 2013; 52 van Heijningen (10.1016/j.softx.2021.100658_b103) 2019; 36 Gayathri (10.1016/j.softx.2021.100658_b32) 2019; 100 Davis (10.1016/j.softx.2021.100658_b137) 2019; 36 (10.1016/j.softx.2021.100658_b18) 2018 (10.1016/j.softx.2021.100658_b170) 2016 Chatziioannou (10.1016/j.softx.2021.100658_b38) 2019; 100 Abbott (10.1016/j.softx.2021.100658_b15) 2017; 848 (10.1016/j.softx.2021.100658_b180) 2018 Buonanno (10.1016/j.softx.2021.100658_b71) 2002; 65 Abbott (10.1016/j.softx.2021.100658_b164) 2019; 100 Kalaghatgi (10.1016/j.softx.2021.100658_b41) 2020; 101 Goetz (10.1016/j.softx.2021.100658_b114) 2009; 26 Effler (10.1016/j.softx.2021.100658_b106) 2015; 32 De (10.1016/j.softx.2021.100658_b36) 2019; 6 (10.1016/j.softx.2021.100658_b168) 2019 Hannuksela (10.1016/j.softx.2021.100658_b53) 2019; 874 (10.1016/j.softx.2021.100658_b128) 2017 Bersanetti (10.1016/j.softx.2021.100658_b97) 2020; 117 Abbott (10.1016/j.softx.2021.100658_b9) 2016; 116 Matichard (10.1016/j.softx.2021.100658_b83) 2015; 32 Koziol (10.1016/j.softx.2021.100658_b147) 2018 Aasi (10.1016/j.softx.2021.100658_b135) 2012; 29 Nitz (10.1016/j.softx.2021.100658_b149) 2017 (10.1016/j.softx.2021.100658_b162) 2017; 95 De (10.1016/j.softx.2021.100658_b43) 2018; 121 Mueller (10.1016/j.softx.2021.100658_b66) 2016; 87 Accadia (10.1016/j.softx.2021.100658_b117) 2010; 28 Martynov (10.1016/j.softx.2021.100658_b130) 2016; 93 Aston (10.1016/j.softx.2021.100658_b76) 2012; 29 (10.1016/j.softx.2021.100658_b129) 2017 Shannon (10.1016/j.softx.2021.100658_b146) 1949; 37 Pankow (10.1016/j.softx.2021.100658_b138) 2018; 98 Jones (10.1016/j.softx.2021.100658_b143) 2001 Covas (10.1016/j.softx.2021.100658_b133) 2018; 97 (10.1016/j.softx.2021.100658_b148) 2009 Chen (10.1016/j.softx.2021.100658_b108) 2017 Zackay (10.1016/j.softx.2021.100658_b28) 2019 (10.1016/j.softx.2021.100658_b122) 2018 10.1016/j.softx.2021.100658_b179 Goetz (10.1016/j.softx.2021.100658_b112) 2010; 27 Hammond (10.1016/j.softx.2021.100658_b75) 2012; 29 Acernese (10.1016/j.softx.2021.100658_b119) 2018; 35 10.1016/j.softx.2021.100658_b174 Einstein (10.1016/j.softx.2021.100658_b3) 1918; 1918 Carson (10.1016/j.softx.2021.100658_b44) 2019; 99 Tringali (10.1016/j.softx.2021.100658_b102) 2019 Accadia (10.1016/j.softx.2021.100658_b116) 2014; 31 Dai (10.1016/j.softx.2021.100658_b35) 2018 Cirone (10.1016/j.softx.2021.100658_b100) 2019; 36 Daw (10.1016/j.softx.2021.100658_b85) 2004; 21 Green (10.1016/j.softx.2021.100658_b22) 2018; 784 Carullo (10.1016/j.softx.2021.100658_b49) 2019; 99 Littenberg (10.1016/j.softx.2021.100658_b178) 2015; 91 Goetz (10.1016/j.softx.2021.100658_b113) 2010; 27 Winkelmann (10.1016/j.softx.2021.100658_b61) 2011; 102 Acernese (10.1016/j.softx.2021.100658_b98) 2020; 116 Klimenko (10.1016/j.softx.2021.100658_b154) 2016; 93 Reyes (10.1016/j.softx.2021.100658_b45) 2020; 894 Palashov (10.1016/j.softx.2021.100658_b63) 2012; 29 Isi (10.1016/j.softx.2021.100658_b48) 2015; 91 (10.1016/j.softx.2021.100658_b19) 2018 Heptonstall (10.1016/j.softx.2021.100658_b72) 2014; 31 Evans (10.1016/j.softx.2021.100658_b88) 2015; 114 (10.1016/j.softx.2021.100658_b123) 2016 10.1016/j.softx.2021.100658_b181 Isi (10.1016/j.softx.2021.100658_b50) 2019; 123 Bartos (10.1016/j.softx.2021.100658_b111) 2010; 27 Cahillane (10.1016/j.softx.2021.100658_b120) 2017; 96 Abbott (10.1016/j.softx.2021.100658_b136) 2018; 35 Anderson (10.1016/j.softx.2021.100658_b16) 2017 Abbott (10.1016/j.softx.2021.100658_b159) 2019; 100 Nicolaou (10.1016/j.softx.2021.100658_b58) 2020; 495 Zackay (10.1016/j.softx.2021.100658_b25) 2019; 100 Abbott (10.1016/j.softx.2021.100658_b105) 2016; 33 Cumming (10.1016/j.softx.2021.100658_b78) 2012; 29 (10.1016/j.softx.2021.100658_b169) 2019 Yamamoto (10.1016/j.softx.2021.100658_b30) 2016; 93 Bell (10.1016/j.softx.2021.100658_b73) 2014; 31 Pinard (10.1016/j.softx.2021.100658_b69) 2017; 56 Nyquist (10.1016/j.softx.2021.100658_b145) 1928; 47 Chen (10.1016/j.softx.2021.100658_b59) 2020; 2020 Green (10.1016/j.softx.2021.100658_b31) 2018; 784 (10.1016/j.softx.2021.100658_b124) 2016 Harry (10.1016/j.softx.2021.100658_b67) 2007; 24 Biwer (10.1016/j.softx.2021.100658_b139) 2017; 95 Abbott (10.1016/j.softx.2021.100658_b153) 2019; 123 Abbott (10.1016/j.softx.2021.100658_b109) 2019; 875 Barsotti (10.1016/j.softx.2021.100658_b86) 2010; 27 Matichard (10.1016/j.softx.2021.100658_b81) 2015; 40 (10.1016/j.softx.2021.100658_b167) 2019 J. (10.1016/j.softx.2021.100658_b177) 2015; 32 (10.1016/j.softx.2021.100658_b127) 2017 Finstad (10.1016/j.softx.2021.100658_b57) 2018; 860 Abbott (10.1016/j.softx.2021.100658_b4) 2016; 116 Viets (10.1016/j.softx.2021.100658_b118) 2018; 35 Abbott (10.1016/j.softx.2021.100658_b156) 2019 Heptonstall (10.1016/j.softx.2021.100658_b79) 2011; 82 Venumadhav (10.1016/j.softx.2021.100658_b26) 2020; 101 Gerosa (10.1016/j.softx.2021.100658_b37) 2017; 13 Aiello (10.1016/j.softx.2021.100658_b99) 2019; 1226 Abbott (10.1016/j.softx.2021.100658_b163) 2017; 118 Pratten (10.1016/j.softx.2021.100658_b46) 2020; 11 Acernese (10.1016/j.softx.2021.100658_b6) 2015; 32 Wen (10.1016/j.softx.2021.100658_b84) 2014; 31 Buscicchio (10.1016/j.softx.2021.100658_b42) 2019; 100 Radice (10.1016/j.softx.2021.100658_b55) 2019; 55 Dooley (10.1016/j.softx.2021.100658_b64) 2012; 83 Abbott (10.1016/j.softx.2021.100658_b161) 2015; 879 Maggiore (10.1016/j.softx.2021.100658_b1) 2008 Aasi (10.1016/j.softx.2021.100658_b5) 2015; 32 Arain (10.1016/j.softx.2021.100658_b65) 2008; 16 Matichard (10.1016/j.softx.2021.100658_b82) 2015; 40 Fiori (10.1016/j.softx.2021.100658_b134) 2017 Abbott (10.1016/j.softx.2021.100658_b155) 2019; 100 Kwee (10.1016/j.softx.2021.100658_b60) 2012; 20 Abbott (10.1016/j.softx.2021.100658_b10) 2016; 6 (10.1016/j.softx.2021.100658_b17) 2019 Finn (10.1016/j.softx.2021.100658_b107) 1993; 47 (10.1016/j.softx.2021.100658_b172) 2018 Shapiro (10.1016/j.softx.2021.100658_b80) 2015; 32 Amato (10.1016/j.softx.2021.100658_b96) 2019; 2 Kanner (10.1016/j.softx.2021.100658_b29) 2016; 93 Tokmakov (10.1016/j.softx.2021.100658_b74) 2012; 358 Staley (10.1016/j.softx.2021.100658_b87) 2015; 23 Kluyver (10.1016/j.softx.2021.100658_b171) 2016 Broadhurst (10.1016/j.softx.2021.100658_b54) 2019 Abbott (10.1016/j.softx.2021.100658_b110) 2019; 100 (10.1016/j.softx.2021.100658_b20) 2019 Ellis (10.1016/j.softx.2021.100658_b142) 2012 (10.1016/j.softx.2021.100658_b165) 2015 Abbott (10.1016/j.softx.2021.100658_b160) 2019; 99 Nitz (10.1016/j.softx.2021.100658_b27) 2020 (10.1016/j.softx.2021.100658_b125) 2016 Gadre (10.1016/j.softx.2021.100658_b34) 2019; 99 Granata (10.1016/j.softx.2021.100658_b68) 2016; 93 Phelps (10.1016/j.softx.2021.100658_b90) 2013; 8885 Cody (10.1016/j.softx.2021.100658_b152) 2017; 95 Macleod (10.1016/j.softx.2021.100658_b173) 2019 Cirone (10.1016/j.softx.2021.100658_b101) 2018; 89 Heitmann (10.1016/j.softx.2021.100658_b94) 2018; 10700 Abbott (10.1016/j.softx.2021.100658_b12) 2017; 119 Chatziioannou (10.1016/j.softx.2021.100658_b40) 2019; 100 Nyquist (10.1016/j.softx.2021.100658_b144) 1924; 3 Vallisneri (10.1016/j.softx.2021.100658_b21) 2015; 610 Staley (10.1016/j.softx.2021.100658_b104) 2014; 31 (10.1016/j.softx.2021.100658_b7) 2019 10.1016/j.softx.2021.100658_b141 Granata (10.1016/j.softx.2021.100658_b95) 2019 Littenberg (10.1016/j.softx.2021.100658_b158) 2016; 94 10.1016/j.softx.2021.100658_b140 Abbott (10.1016/j.softx.2021.100658_b11) 2017; 118 Smith (10.1016/j.softx.2021.100658_b91) 2012 Usman (10.1016/j.softx.2021.100658_b150) 2016; 33 Abadie (10.1016/j.softx.2021.100658_b115) 2010; 624 (10.1016/j.softx.2021.100658_b126) 2017 Wang (10.1016/j.softx.2021.100658_b52) 2020; 101 (10.1016/j.softx.2021.100658_b166) 2015 Hagihara (10.1016/j.softx.2021.100658_b47) 2019; 100 Lawrence (10.1016/j.softx.2021.100658_b93) 2002; 19 Lynch (10.1016/j.softx.2021.100658_b157) 2017; 95 Abbott (10.1016/j.softx.2021.100658_b14) 2019; 9 Kumar (10.1016/j.softx.2021.100658_b39) 2019; 99 |
| References_xml | – volume: 99 year: 2019 ident: b39 article-title: Constraining the parameters of gw150914 and gw170104 with numerical relativity surrogates publication-title: Phys Rev D – volume: 118 year: 2017 ident: b163 article-title: Upper limits on the stochastic gravitational-wave background from Advanced LIGO’s first observing run publication-title: Phys Rev Lett – volume: 784 start-page: 312 year: 2018 end-page: 323 ident: b31 article-title: Extraction of black hole coalescence waveforms from noisy data publication-title: Phys Lett B – volume: 2 year: 2019 ident: b96 article-title: Optical properties of high-quality oxide coating materials used in gravitational-wave advanced detectors publication-title: J Phys Mater – volume: 116 year: 2016 ident: b70 article-title: GW150914: The Advanced LIGO detectors in the era of first discoveries publication-title: Phys Rev Lett – year: 2004 ident: b131 article-title: Sensitivity and noise analysis of 4 km laser interferometric gravitational wave antennae – volume: 100 year: 2019 ident: b56 article-title: Kicking gravitational wave detectors with recoiling black holes publication-title: Phys Rev D – volume: 117 year: 2020 ident: b97 article-title: New algorithm for the guided lock technique for a high-finesse optical cavity publication-title: Astropart Phys – volume: 47 start-page: 617 year: 1928 end-page: 644 ident: b145 article-title: Certain topics in telegraph transmission theory publication-title: Trans AIEE – volume: 495 start-page: 90 year: 2020 end-page: 97 ident: b58 article-title: The impact of peculiar velocities on the estimation of the hubble constant from gravitational wave standard sirens publication-title: Mon Not R Astron Soc – volume: 100 year: 2019 ident: b159 article-title: All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data publication-title: Phys Rev D – volume: 91 year: 2015 ident: b48 article-title: Detecting beyond-einstein polarizations of continuous gravitational waves publication-title: Phys Rev D – volume: 101 year: 2020 ident: b52 article-title: Gravitational-wave signal recognition of ligo data by deep learning publication-title: Phys Rev D – volume: 100 year: 2019 ident: b42 article-title: Label switching problem in bayesian analysis for gravitational wave astronomy publication-title: Phys Rev D – volume: 116 year: 2016 ident: b9 article-title: GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence publication-title: Phys Rev Lett – year: 2019 ident: b168 article-title: L1 lines cleaning file for O2 - version 2 – year: 2019 ident: b20 article-title: LIGO/Virgo O2 data release – volume: 100 year: 2019 ident: b38 article-title: Noise spectral estimation methods and their impact on gravitational wave measurement of compact binary mergers publication-title: Phys Rev D – year: 2017 ident: b16 article-title: LIGO data management plan – volume: 100 year: 2019 ident: b47 article-title: Constraining extra gravitational wave polarizations with advanced ligo, advanced virgo, and kagra and upper bounds from gw170817 publication-title: Phys Rev D – year: 2017 ident: b127 article-title: Data release for event GW170608 – volume: 97 year: 2018 ident: b133 article-title: Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO publication-title: Phys Rev D – volume: 29 year: 2012 ident: b77 article-title: Sensors and actuators for the Advanced LIGO mirror suspensions publication-title: Classical Quantum Gravity – volume: 35 year: 2018 ident: b119 article-title: Calibration of Advanced Virgo and reconstruction of the gravitational wave signal publication-title: Classical Quantum Gravity – volume: 96 year: 2017 ident: b120 article-title: Calibration uncertainty for Advanced LIGO’s first and second observing runs publication-title: Phys Rev D – volume: 99 year: 2019 ident: b160 article-title: Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run publication-title: Phys Rev D – volume: 93 year: 2016 ident: b29 article-title: Leveraging waveform complexity for confident detection of gravitational waves publication-title: Phys Rev D – volume: 31 year: 2014 ident: b72 article-title: Enhanced characteristics of fused silica fibers using laser polishing publication-title: Classical Quantum Gravity – start-page: 87 year: 2016 end-page: 90 ident: b171 article-title: Jupyter notebooks – a publishing format for reproducible computational workflows publication-title: Positioning and power in academic publishing: Players, agents and agendas – volume: 29 year: 2012 ident: b75 article-title: Reducing the suspension thermal noise of advanced gravitational wave detectors publication-title: Classical Quantum Gravity – volume: 35 year: 2018 ident: b118 article-title: Reconstructing the calibrated strain signal in the Advanced LIGO detectors publication-title: Classical Quantum Gravity – volume: 848 start-page: L12 year: 2017 ident: b15 article-title: Multi-messenger observations of a binary neutron star merger publication-title: Astrophys J – volume: 1226 year: 2019 ident: b99 article-title: Thermal compensation system in advanced and third generation gravitational wave interferometric detectors publication-title: J Phys Conf Ser – year: 2017 ident: b128 article-title: Data release for event GW170814 – volume: 241 start-page: 27 year: 2019 ident: b175 article-title: BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy publication-title: Astrophys J Suppl Ser – year: 2019 ident: b169 article-title: List of lines for Virgo V1 during O2 - 20190209, version 1 – volume: 91 year: 2015 ident: b176 article-title: Parameter estimation for compact binaries with ground-based gravitational-wave observations using the lalinference software library publication-title: Phys Rev D – volume: 1918 start-page: 154 year: 1918 end-page: 167 ident: b3 article-title: Über Gravitationswellen publication-title: Sitzungsber Preuss Akad Wiss Berlin (Math Phys) – volume: 9 year: 2019 ident: b14 article-title: GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and virgo during the first and second observing runs publication-title: Phys Rev X – year: 2017 ident: b149 article-title: PyCBC software – volume: 6 start-page: 81 year: 2019 ident: b36 article-title: Posterior samples of the parameters of binary black holes from Advanced LIGO, Virgo’s second observing run publication-title: Sci Data – volume: 55 start-page: 50 year: 2019 ident: b55 article-title: Multimessenger parameter estimation of GW170817 publication-title: Eur Phys J A – volume: 36 year: 2019 ident: b103 article-title: A multistage vibration isolation system for Advanced Virgo suspended optical benches publication-title: Classical Quantum Gravity – year: 2018 ident: b172 article-title: Source code for: LIGO algorithm library - LALSuite – volume: 95 year: 2017 ident: b139 article-title: Validating gravitational-wave detections: The Advanced LIGO hardware injection system publication-title: Phys Rev D – year: 2018 ident: b19 article-title: LIGO/Virgo O1 data release – volume: 32 year: 2015 ident: b80 article-title: Noise and control decoupling of Advanced LIGO suspensions publication-title: Classical Quantum Gravity – volume: 27 year: 2010 ident: b113 article-title: Accurate calibration of test mass displacement in the LIGO interferometers publication-title: Classical Quantum Gravity – volume: 95 year: 2017 ident: b121 article-title: Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914 publication-title: Phys Rev D – volume: 47 start-page: 2198 year: 1993 end-page: 2219 ident: b107 article-title: Observing binary inspiral in gravitational radiation: One interferometer publication-title: Phys Rev D – year: 2018 ident: b35 article-title: Parameter estimation for GW170817 using relative binning – volume: 119 year: 2017 ident: b13 article-title: GW170817: Observation of gravitational waves from a binary neutron star inspiral publication-title: Phys Rev Lett – volume: 40 start-page: 273 year: 2015 end-page: 286 ident: b81 article-title: ADvanced LIGO two-stage twelve-axis vibration isolation and positioning platform. part 1: Design and production overview publication-title: Precis Eng – volume: 31 year: 2014 ident: b116 article-title: Reconstruction of the gravitational wave signal h(t) during the Virgo science runs and independent validation with a photon calibrator publication-title: Classical Quantum Gravity – year: 2017 ident: b134 article-title: O2 lines summary – volume: 21 start-page: 2255 year: 2004 ident: b85 article-title: Long-term study of the seismic environment at LIGO publication-title: Classical Quantum Gravity – year: 2009 ident: b148 article-title: Specification of a common data frame format for interferometric gravitational wave detectors – volume: 91 year: 2015 ident: b178 article-title: Bayesian inference for spectral estimation of gravitational wave detector noise publication-title: Phys Rev D – year: 2017 ident: b129 article-title: Data release for event GW170817 – volume: 879 start-page: 10 year: 2015 ident: b161 article-title: Searches for gravitational waves from known pulsars at two harmonics in 2015–2017 LIGO data publication-title: Astrophys J – year: 2015 ident: b165 article-title: H1 lines cleaning file for O1 - version 3 – volume: 6 year: 2016 ident: b10 article-title: Binary black hole mergers in the first Advanced LIGO observing run publication-title: Phys Rev X – volume: 10700 year: 2018 ident: b94 article-title: Status of the Advanced Virgo gravitational wave detector publication-title: Proc SPIE – volume: 32 year: 2015 ident: b177 article-title: Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches publication-title: Classical Quantum Gravity – volume: 101 year: 2020 ident: b26 article-title: New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo publication-title: Phys Rev D – volume: 82 year: 2011 ident: b79 article-title: Invited article: publication-title: Rev Sci Instrum – volume: 93 year: 2016 ident: b154 article-title: Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors publication-title: Phys Rev D – volume: 16 start-page: 10018 year: 2008 end-page: 10032 ident: b65 article-title: Design of the Advanced LIGO recycling cavities publication-title: Opt Express – volume: 26 year: 2009 ident: b114 article-title: Precise calibration of LIGO test mass actuators using photon radiation pressure publication-title: Classical Quantum Gravity – reference: URL – year: 2018 ident: b180 article-title: GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs – volume: 2020 year: 2020 ident: b59 article-title: Distinguishing primordial black holes from astrophysical black holes by einstein telescope and cosmic explorer publication-title: J Cosmol Astropart Phys – volume: 48 start-page: 355 year: 2009 end-page: 364 ident: b92 article-title: Direct measurement of absorption-induced wavefront distortion in high optical power systems publication-title: Appl Opt – volume: 123 year: 2019 ident: b153 article-title: Search for subsolar mass ultracompact binaries in Advanced LIGO’s second observing run publication-title: Phys Rev Lett – volume: 100 year: 2019 ident: b51 article-title: Convolutional neural networks: A magic bullet for gravitational-wave detection? publication-title: Phys Rev D – year: 2019 ident: b54 article-title: Twin ligo/virgo detections of a viable gravitationally-lensed black hole merger – volume: 118 year: 2017 ident: b11 article-title: GW170104: Observation of a 50-solar-mass binary black hole coalescence at Redshift 0.2 publication-title: Phys Rev Lett – volume: 11 start-page: 2553 year: 2020 ident: b46 article-title: Gravitational-wave asteroseismology with fundamental modes from compact binary inspirals publication-title: Nature Commun – volume: 83 year: 2012 ident: b64 article-title: Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers publication-title: Rev Sci Instrum – year: 2017 ident: b108 article-title: Distance measures in gravitational-wave astrophysics and cosmology – volume: 1916 start-page: 688 year: 1916 end-page: 696 ident: b2 article-title: Approximative integration of the field equations of gravitation publication-title: Sitzungsber Preuss Akad Wiss Berlin (Math Phys) – volume: 100 year: 2019 ident: b32 article-title: Astrophysical signal consistency test adapted for gravitational-wave transient searches publication-title: Phys Rev D – year: 2019 ident: b28 article-title: Detecting gravitational waves with disparate detector responses: Two new binary black hole mergers – volume: 123 year: 2019 ident: b50 article-title: Testing the no-hair theorem with gw150914 publication-title: Phys Rev Lett – volume: 27 year: 2010 ident: b111 article-title: The Advanced LIGO timing system publication-title: Classical Quantum Gravity – volume: 872 start-page: 195 year: 2019 ident: b24 article-title: 1-OGC: The first open gravitational-wave catalog of binary mergers from analysis of public Advanced LIGO data publication-title: Astrophys J – volume: 36 year: 2019 ident: b100 article-title: Investigation of magnetic noise in Advanced Virgo publication-title: Classical Quantum Gravity – volume: 29 start-page: 1784 year: 2012 end-page: 1792 ident: b63 article-title: High-vacuum-compatible high-power faraday isolators for gravitational-wave interferometers publication-title: J Opt Soc Amer B – year: 2001 ident: b143 article-title: SciPy: Open source scientific tools for Python – year: 2016 ident: b123 article-title: Data release for event GW150914 – volume: 93 year: 2016 ident: b8 article-title: GW150914: First results from the search for binary black hole coalescence with Advanced LIGO publication-title: Phys Rev D – volume: 116 year: 2016 ident: b4 article-title: Observation of gravitational waves from a binary black hole merger publication-title: Phys Rev Lett – start-page: 123 year: 2020 ident: b27 article-title: 2-OGC: Open gravitational-wave catalog of binary mergers from analysis of public Advanced LIGO and Virgo data, 891 – volume: 102 start-page: 529 year: 2011 end-page: 538 ident: b61 article-title: Injection-locked single-frequency laser with an output power of 220 W publication-title: Appl Phys B – year: 2016 ident: b170 article-title: Data quality vetoes applied to the analysis of GW150914 – volume: 36 year: 2019 ident: b137 article-title: Improving the sensitivity of Advanced LIGO using noise subtraction publication-title: Classical Quantum Gravity – volume: 87 year: 2016 ident: b89 article-title: Distributed state machine supervision for long-baseline gravitational-wave detectors publication-title: Rev Sci Instrum – volume: 89 year: 2018 ident: b101 article-title: Magnetic coupling to the Advanced Virgo payloads and its impact on the low frequency sensitivity publication-title: Rev Sci Instrum – volume: 31 year: 2014 ident: b104 article-title: Achieving resonance in the advanced LIGO gravitational-wave interferometer publication-title: Classical Quantum Gravity – year: 2019 ident: b132 article-title: A guide to LIGO-virgo detector noise and extraction of transient gravitational-wave signals – volume: 37 start-page: 10 year: 1949 end-page: 21 ident: b146 article-title: Communication in the presence of noise publication-title: Proc IRE – reference: Home page for: GstLAL – – year: 2012 ident: b142 article-title: Control system design guide – year: 2019 ident: b173 article-title: Source code for: GWpy software – volume: 29 year: 2012 ident: b135 article-title: The characterization of virgo data and its impact on gravitational-wave searches publication-title: Classical Quantum Gravity – volume: 31 year: 2014 ident: b73 article-title: Experimental results for nulling the effective thermal expansion coefficient of fused silica fibres under a static stress publication-title: Classical Quantum Gravity – volume: 1902 start-page: 019 year: 2019 ident: b23 article-title: Investigating the noise residuals around the gravitational wave event GW150914 publication-title: J Cosmol Astropart Phys – volume: 27 year: 2010 ident: b86 article-title: Alignment sensing and control in Advanced LIGO publication-title: Classical Quantum Gravity – year: 2008 ident: b1 article-title: Gravitational waves, volume 1: theory and experiments – volume: 29 year: 2012 ident: b78 article-title: Design and development of the Advanced LIGO monolithic fused silica suspension publication-title: Classical Quantum Gravity – volume: 784 start-page: 312 year: 2018 ident: b22 article-title: Extraction of black hole coalescence waveforms from noisy data publication-title: Phys Lett B – volume: 358 start-page: 1699 year: 2012 end-page: 1709 ident: b74 article-title: A study of the fracture mechanisms in pristine silica fibres utilising high speed imaging techniques publication-title: J Non Cryst Solids – volume: 32 year: 2015 ident: b106 article-title: Environmental influences on the LIGO gravitational wave detectors during the 6th science run publication-title: Classical Quantum Gravity – volume: 95 year: 2017 ident: b162 article-title: Search for gravitational waves from scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model publication-title: Phys Rev D – volume: 52 start-page: 6452 year: 2013 end-page: 6457 ident: b62 article-title: Feedback control of optical beam spatial profiles using thermal lensing publication-title: Appl Opt – year: 2019 ident: b102 article-title: Seismic array measurements at Virgo’s west end building for the configuration of a Newtonian-noise cancellation system publication-title: Classical Quantum Gravity – volume: 33 year: 2016 ident: b150 article-title: The PyCBC search for gravitational waves from compact binary coalescence publication-title: Classical Quantum Gravity – volume: 100 year: 2019 ident: b25 article-title: A highly spinning and aligned binary black hole merger in the Advanced LIGO first observing run publication-title: Phys Rev D – volume: 93 year: 2016 ident: b30 article-title: Characterization of non-gaussianity in gravitational wave detector noise publication-title: Phys Rev D – volume: 56 start-page: C11 year: 2017 ident: b69 article-title: Mirrors used in the LIGO interferometers for first detection of gravitational waves publication-title: Appl Opt – volume: 100 year: 2019 ident: b164 article-title: Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run publication-title: Phys Rev D – volume: 610 year: 2015 ident: b21 article-title: The LIGO open science center publication-title: J Phys Conf Ser – volume: 32 year: 2015 ident: b83 article-title: Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance publication-title: Classical Quantum Gravity – year: 2019 ident: b167 article-title: H1 lines cleaning file for O2 - version 2 – volume: 8885 start-page: 88852E year: 2013 ident: b90 article-title: Optical contamination control in the Advanced LIGO ultra-high vacuum system publication-title: Proc SPIE – volume: 94 year: 2016 ident: b158 article-title: Enabling high confidence detections of gravitational-wave bursts publication-title: Phys Rev D – volume: 33 year: 2016 ident: b105 article-title: Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 publication-title: Classical Quantum Gravity – volume: 93 year: 2016 ident: b130 article-title: Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy publication-title: Phys Rev D – year: 2019 ident: b95 article-title: Amorphous optical coatings of present gravitational-wave interferometers – year: 2018 ident: b18 article-title: LIGO/Virgo GWTC-1 data release – volume: 114 year: 2015 ident: b88 article-title: Observation of parametric instability in Advanced LIGO publication-title: Phys Rev Lett – volume: 87 year: 2016 ident: b66 article-title: The Advanced LIGO input optics publication-title: Rev Sci Instrum – volume: 2019 start-page: 063F01 year: 2019 ident: b33 article-title: A time–frequency analysis of gravitational wave signals with non-harmonic analysis publication-title: Prog Theor Exp Phys – volume: 99 year: 2019 ident: b44 article-title: Equation-of-state insensitive relations after gw170817 publication-title: Phys Rev D – volume: 99 year: 2019 ident: b49 article-title: Observational black hole spectroscopy: A time-domain multimode analysis of gw150914 publication-title: Phys Rev D – year: 2012 ident: b91 article-title: Scattered light control in Advanced LIGO – volume: 13 start-page: 22 year: 2017 end-page: 28 ident: b37 article-title: Reanalysis of ligo black-hole coalescences with alternative prior assumptions publication-title: Proc Int Astron Union – volume: 3 start-page: 324 year: 1924 end-page: 346 ident: b144 article-title: Certain factors affecting telegraph speed publication-title: Bell Syst Tech J – volume: 95 year: 2017 ident: b157 article-title: Information-theoretic approach to the gravitational-wave burst detection problem publication-title: Phys Rev D – volume: 874 start-page: L2 year: 2019 ident: b53 article-title: Search for gravitational lensing signatures in LIGO-virgo binary black hole events publication-title: Astrophys J – year: 2019 ident: b7 article-title: Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA – volume: 24 start-page: 405 year: 2007 ident: b67 article-title: Titania-doped tantala/silica coatings for gravitational-wave detection publication-title: Classical Quantum Gravity – year: 2019 ident: b156 article-title: An optically targeted search for gravitational waves emitted by core-collapse Supernovae during the first and second observing runs of Advanced LIGO and Advanced Virgo – year: 2019 ident: b17 article-title: Memorandum of understanding between Virgo and LIGO – volume: 100 year: 2019 ident: b40 article-title: On the properties of the massive binary black hole merger gw170729 publication-title: Phys Rev D – volume: 100 year: 2019 ident: b155 article-title: All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run publication-title: Phys Rev D – volume: 32 year: 2015 ident: b5 article-title: Advanced LIGO publication-title: Classical Quantum Gravity – volume: 35 year: 2018 ident: b136 article-title: Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run publication-title: Classical Quantum Gravity – year: 2016 ident: b125 article-title: Data release for event GW151226 – reference: Weitzel D et al. Data access for LIGO on the OSG. In: Proceedings of the practice and experience in advanced research computing 2017 on sustainability, success and impact; 2017. – year: 2018 ident: b122 article-title: LIGO/Virgo public alerts user guide – volume: 875 start-page: 161 year: 2019 ident: b109 article-title: Low-latency gravitational-wave alerts for multimessenger astronomy during the second Advanced LIGO and virgo observing run publication-title: Astrophys J – volume: 894 start-page: 41 year: 2020 ident: b45 article-title: Constraints on nonlinear tides due to publication-title: Astrophys J – volume: 23 start-page: 19417 year: 2015 end-page: 19431 ident: b87 article-title: High precision optical cavity length and width measurements using double modulation publication-title: Opt Express – volume: 20 start-page: 10617 year: 2012 end-page: 10634 ident: b60 article-title: Stabilized high-power laser system for the gravitational wave detector Advanced LIGO publication-title: Opt Express – year: 2015 ident: b166 article-title: L1 lines cleaning file for O1 - version 3 – reference: Gravitational wave open science center (GWOSC). – year: 2019 ident: b151 article-title: The GstLAL search analysis methods for compact binary mergers in Advanced LIGO’s second and Advanced Virgo’s first observing runs publication-title: Phys Rev D – year: 2017 ident: b126 article-title: Data release for event GW170104 – reference: How to acknowledge use of LIGO/Virgo data through GWOSC. – volume: 101 year: 2020 ident: b41 article-title: Parameter estimation with a spinning multimode waveform model publication-title: Phys Rev D – volume: 40 start-page: 287 year: 2015 end-page: 297 ident: b82 article-title: ADvanced LIGO two-stage twelve-axis vibration isolation and positioning platform. part 2: Experimental investigation and tests results publication-title: Precis Eng – volume: 116 year: 2020 ident: b98 article-title: The advanced Virgo longitudinal control system for the O2 observing run publication-title: Astropart Phys – volume: 29 year: 2012 ident: b76 article-title: Update on quadruple suspension design for Advanced LIGO publication-title: Classical Quantum Gravity – year: 2016 ident: b124 article-title: Data release for event LVT151012 – volume: 99 year: 2019 ident: b34 article-title: Hierarchical search strategy for the efficient detection of gravitational waves from nonprecessing coalescing compact binaries with aligned-spins publication-title: Phys Rev D – volume: 860 start-page: L2 year: 2018 ident: b57 article-title: Measuring the viewing angle of GW170817 with electromagnetic and gravitational waves publication-title: Astrophys J – volume: 28 year: 2010 ident: b117 article-title: Calibration and sensitivity of the virgo detector during its second science run publication-title: Classical Quantum Gravity – volume: 100 year: 2019 ident: b110 article-title: Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and virgo network publication-title: Phys Rev D – year: 2018 ident: b147 article-title: HDF5 – volume: 65 year: 2002 ident: b71 article-title: Signal recycled laser-interferometer gravitational-wave detectors as optical springs publication-title: Phys Rev D – reference: . – volume: 19 start-page: 1803 year: 2002 ident: b93 article-title: Adaptive thermal compensation of test masses in Advanced LIGO publication-title: Classical Quantum Gravity – volume: 624 start-page: 223 year: 2010 end-page: 240 ident: b115 article-title: Calibration of the LIGO gravitational wave detectors in the fifth science run publication-title: Nucl Instrum Methods Phys Res A – volume: 98 year: 2018 ident: b138 article-title: Mitigation of the instrumental noise transient in gravitational-wave data surrounding GW170817 publication-title: Phys Rev D – volume: 31 year: 2014 ident: b84 article-title: Hydraulic external pre-isolator system for LIGO publication-title: Classical Quantum Gravity – volume: 27 year: 2010 ident: b112 article-title: Calibration of the LIGO displacement actuators via laser frequency modulation publication-title: Classical Quantum Gravity – volume: 93 year: 2016 ident: b68 article-title: Mechanical loss in state-of-the-art amorphous optical coatings publication-title: Phys Rev D – volume: 95 year: 2017 ident: b152 article-title: Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data publication-title: Phys Rev D – volume: 32 year: 2015 ident: b6 article-title: Advanced Virgo: a second-generation interferometric gravitational wave detector publication-title: Classical Quantum Gravity – volume: 121 year: 2018 ident: b43 article-title: Tidal deformabilities and radii of neutron stars from the observation of GW170817 publication-title: Phys Rev Lett – volume: 119 year: 2017 ident: b12 article-title: GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence publication-title: Phys Rev Lett – volume: 2 year: 2019 ident: 10.1016/j.softx.2021.100658_b96 article-title: Optical properties of high-quality oxide coating materials used in gravitational-wave advanced detectors publication-title: J Phys Mater doi: 10.1088/2515-7639/ab206e – volume: 19 start-page: 1803 year: 2002 ident: 10.1016/j.softx.2021.100658_b93 article-title: Adaptive thermal compensation of test masses in Advanced LIGO publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/19/7/377 – year: 2015 ident: 10.1016/j.softx.2021.100658_b166 – volume: 100 year: 2019 ident: 10.1016/j.softx.2021.100658_b164 article-title: Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run publication-title: Phys Rev D doi: 10.1103/PhysRevD.100.061101 – year: 2018 ident: 10.1016/j.softx.2021.100658_b180 – volume: 123 year: 2019 ident: 10.1016/j.softx.2021.100658_b153 article-title: Search for subsolar mass ultracompact binaries in Advanced LIGO’s second observing run publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.123.161102 – year: 2019 ident: 10.1016/j.softx.2021.100658_b156 – volume: 99 year: 2019 ident: 10.1016/j.softx.2021.100658_b49 article-title: Observational black hole spectroscopy: A time-domain multimode analysis of gw150914 publication-title: Phys Rev D doi: 10.1103/PhysRevD.99.123029 – year: 2019 ident: 10.1016/j.softx.2021.100658_b54 – volume: 32 year: 2015 ident: 10.1016/j.softx.2021.100658_b6 article-title: Advanced Virgo: a second-generation interferometric gravitational wave detector publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/32/2/024001 – volume: 29 year: 2012 ident: 10.1016/j.softx.2021.100658_b78 article-title: Design and development of the Advanced LIGO monolithic fused silica suspension publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/29/3/035003 – volume: 99 year: 2019 ident: 10.1016/j.softx.2021.100658_b44 article-title: Equation-of-state insensitive relations after gw170817 publication-title: Phys Rev D doi: 10.1103/PhysRevD.99.083016 – volume: 875 start-page: 161 year: 2019 ident: 10.1016/j.softx.2021.100658_b109 article-title: Low-latency gravitational-wave alerts for multimessenger astronomy during the second Advanced LIGO and virgo observing run publication-title: Astrophys J doi: 10.3847/1538-4357/ab0e8f – year: 2009 ident: 10.1016/j.softx.2021.100658_b148 – volume: 31 year: 2014 ident: 10.1016/j.softx.2021.100658_b104 article-title: Achieving resonance in the advanced LIGO gravitational-wave interferometer publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/31/24/245010 – volume: 36 year: 2019 ident: 10.1016/j.softx.2021.100658_b137 article-title: Improving the sensitivity of Advanced LIGO using noise subtraction publication-title: Classical Quantum Gravity doi: 10.1088/1361-6382/ab01c5 – volume: 879 start-page: 10 year: 2015 ident: 10.1016/j.softx.2021.100658_b161 article-title: Searches for gravitational waves from known pulsars at two harmonics in 2015–2017 LIGO data publication-title: Astrophys J doi: 10.3847/1538-4357/ab20cb – volume: 1226 year: 2019 ident: 10.1016/j.softx.2021.100658_b99 article-title: Thermal compensation system in advanced and third generation gravitational wave interferometric detectors publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1226/1/012019 – ident: 10.1016/j.softx.2021.100658_b181 – year: 2017 ident: 10.1016/j.softx.2021.100658_b128 – volume: 1918 start-page: 154 year: 1918 ident: 10.1016/j.softx.2021.100658_b3 article-title: Über Gravitationswellen publication-title: Sitzungsber Preuss Akad Wiss Berlin (Math Phys) – volume: 11 start-page: 2553 year: 2020 ident: 10.1016/j.softx.2021.100658_b46 article-title: Gravitational-wave asteroseismology with fundamental modes from compact binary inspirals publication-title: Nature Commun doi: 10.1038/s41467-020-15984-5 – volume: 100 year: 2019 ident: 10.1016/j.softx.2021.100658_b47 article-title: Constraining extra gravitational wave polarizations with advanced ligo, advanced virgo, and kagra and upper bounds from gw170817 publication-title: Phys Rev D doi: 10.1103/PhysRevD.100.064010 – volume: 28 year: 2010 ident: 10.1016/j.softx.2021.100658_b117 article-title: Calibration and sensitivity of the virgo detector during its second science run publication-title: Classical Quantum Gravity – volume: 52 start-page: 6452 year: 2013 ident: 10.1016/j.softx.2021.100658_b62 article-title: Feedback control of optical beam spatial profiles using thermal lensing publication-title: Appl Opt doi: 10.1364/AO.52.006452 – volume: 116 year: 2016 ident: 10.1016/j.softx.2021.100658_b9 article-title: GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence publication-title: Phys Rev Lett – volume: 93 year: 2016 ident: 10.1016/j.softx.2021.100658_b154 article-title: Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors publication-title: Phys Rev D doi: 10.1103/PhysRevD.93.042004 – volume: 100 year: 2019 ident: 10.1016/j.softx.2021.100658_b51 article-title: Convolutional neural networks: A magic bullet for gravitational-wave detection? publication-title: Phys Rev D doi: 10.1103/PhysRevD.100.063015 – year: 2016 ident: 10.1016/j.softx.2021.100658_b170 – volume: 32 year: 2015 ident: 10.1016/j.softx.2021.100658_b83 article-title: Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/32/18/185003 – year: 2019 ident: 10.1016/j.softx.2021.100658_b168 – volume: 116 year: 2016 ident: 10.1016/j.softx.2021.100658_b70 article-title: GW150914: The Advanced LIGO detectors in the era of first discoveries publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.116.131103 – year: 2016 ident: 10.1016/j.softx.2021.100658_b123 – volume: 93 year: 2016 ident: 10.1016/j.softx.2021.100658_b130 article-title: Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy publication-title: Phys Rev D doi: 10.1103/PhysRevD.93.112004 – volume: 2020 year: 2020 ident: 10.1016/j.softx.2021.100658_b59 article-title: Distinguishing primordial black holes from astrophysical black holes by einstein telescope and cosmic explorer publication-title: J Cosmol Astropart Phys doi: 10.1088/1475-7516/2020/08/039 – volume: 872 start-page: 195 year: 2019 ident: 10.1016/j.softx.2021.100658_b24 article-title: 1-OGC: The first open gravitational-wave catalog of binary mergers from analysis of public Advanced LIGO data publication-title: Astrophys J doi: 10.3847/1538-4357/ab0108 – ident: 10.1016/j.softx.2021.100658_b140 – year: 2008 ident: 10.1016/j.softx.2021.100658_b1 – volume: 6 year: 2016 ident: 10.1016/j.softx.2021.100658_b10 article-title: Binary black hole mergers in the first Advanced LIGO observing run publication-title: Phys Rev X – volume: 32 year: 2015 ident: 10.1016/j.softx.2021.100658_b5 article-title: Advanced LIGO publication-title: Classical Quantum Gravity – volume: 93 year: 2016 ident: 10.1016/j.softx.2021.100658_b29 article-title: Leveraging waveform complexity for confident detection of gravitational waves publication-title: Phys Rev D doi: 10.1103/PhysRevD.93.022002 – volume: 31 year: 2014 ident: 10.1016/j.softx.2021.100658_b84 article-title: Hydraulic external pre-isolator system for LIGO publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/31/23/235001 – volume: 13 start-page: 22 year: 2017 ident: 10.1016/j.softx.2021.100658_b37 article-title: Reanalysis of ligo black-hole coalescences with alternative prior assumptions publication-title: Proc Int Astron Union doi: 10.1017/S1743921318003587 – volume: 33 year: 2016 ident: 10.1016/j.softx.2021.100658_b105 article-title: Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/33/13/134001 – volume: 36 year: 2019 ident: 10.1016/j.softx.2021.100658_b100 article-title: Investigation of magnetic noise in Advanced Virgo publication-title: Classical Quantum Gravity doi: 10.1088/1361-6382/ab4974 – volume: 47 start-page: 617 year: 1928 ident: 10.1016/j.softx.2021.100658_b145 article-title: Certain topics in telegraph transmission theory publication-title: Trans AIEE – volume: 8885 start-page: 88852E year: 2013 ident: 10.1016/j.softx.2021.100658_b90 article-title: Optical contamination control in the Advanced LIGO ultra-high vacuum system publication-title: Proc SPIE doi: 10.1117/12.2047327 – volume: 95 year: 2017 ident: 10.1016/j.softx.2021.100658_b162 article-title: Search for gravitational waves from scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model publication-title: Phys Rev D – volume: 121 year: 2018 ident: 10.1016/j.softx.2021.100658_b43 article-title: Tidal deformabilities and radii of neutron stars from the observation of GW170817 publication-title: Phys Rev Lett – year: 2019 ident: 10.1016/j.softx.2021.100658_b102 article-title: Seismic array measurements at Virgo’s west end building for the configuration of a Newtonian-noise cancellation system publication-title: Classical Quantum Gravity – ident: 10.1016/j.softx.2021.100658_b174 – volume: 116 year: 2020 ident: 10.1016/j.softx.2021.100658_b98 article-title: The advanced Virgo longitudinal control system for the O2 observing run publication-title: Astropart Phys doi: 10.1016/j.astropartphys.2019.07.005 – year: 2012 ident: 10.1016/j.softx.2021.100658_b142 – ident: 10.1016/j.softx.2021.100658_b141 doi: 10.1145/3093338.3093363 – year: 2017 ident: 10.1016/j.softx.2021.100658_b149 – volume: 101 year: 2020 ident: 10.1016/j.softx.2021.100658_b41 article-title: Parameter estimation with a spinning multimode waveform model publication-title: Phys Rev D doi: 10.1103/PhysRevD.101.103004 – year: 2017 ident: 10.1016/j.softx.2021.100658_b129 – year: 2017 ident: 10.1016/j.softx.2021.100658_b134 – year: 2019 ident: 10.1016/j.softx.2021.100658_b151 article-title: The GstLAL search analysis methods for compact binary mergers in Advanced LIGO’s second and Advanced Virgo’s first observing runs publication-title: Phys Rev D – year: 2019 ident: 10.1016/j.softx.2021.100658_b95 – volume: 101 year: 2020 ident: 10.1016/j.softx.2021.100658_b52 article-title: Gravitational-wave signal recognition of ligo data by deep learning publication-title: Phys Rev D doi: 10.1103/PhysRevD.101.104003 – volume: 31 year: 2014 ident: 10.1016/j.softx.2021.100658_b72 article-title: Enhanced characteristics of fused silica fibers using laser polishing publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/31/10/105006 – year: 2018 ident: 10.1016/j.softx.2021.100658_b18 – volume: 95 year: 2017 ident: 10.1016/j.softx.2021.100658_b121 article-title: Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914 publication-title: Phys Rev D doi: 10.1103/PhysRevD.95.062003 – volume: 99 year: 2019 ident: 10.1016/j.softx.2021.100658_b160 article-title: Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run publication-title: Phys Rev D doi: 10.1103/PhysRevD.99.122002 – start-page: 123 year: 2020 ident: 10.1016/j.softx.2021.100658_b27 – volume: 56 start-page: C11 year: 2017 ident: 10.1016/j.softx.2021.100658_b69 article-title: Mirrors used in the LIGO interferometers for first detection of gravitational waves publication-title: Appl Opt doi: 10.1364/AO.56.000C11 – volume: 33 year: 2016 ident: 10.1016/j.softx.2021.100658_b150 article-title: The PyCBC search for gravitational waves from compact binary coalescence publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/33/21/215004 – volume: 114 year: 2015 ident: 10.1016/j.softx.2021.100658_b88 article-title: Observation of parametric instability in Advanced LIGO publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.114.161102 – volume: 21 start-page: 2255 year: 2004 ident: 10.1016/j.softx.2021.100658_b85 article-title: Long-term study of the seismic environment at LIGO publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/21/9/003 – volume: 91 year: 2015 ident: 10.1016/j.softx.2021.100658_b176 article-title: Parameter estimation for compact binaries with ground-based gravitational-wave observations using the lalinference software library publication-title: Phys Rev D doi: 10.1103/PhysRevD.91.042003 – volume: 48 start-page: 355 year: 2009 ident: 10.1016/j.softx.2021.100658_b92 article-title: Direct measurement of absorption-induced wavefront distortion in high optical power systems publication-title: Appl Opt doi: 10.1364/AO.48.000355 – volume: 117 year: 2020 ident: 10.1016/j.softx.2021.100658_b97 article-title: New algorithm for the guided lock technique for a high-finesse optical cavity publication-title: Astropart Phys doi: 10.1016/j.astropartphys.2019.102405 – volume: 784 start-page: 312 year: 2018 ident: 10.1016/j.softx.2021.100658_b31 article-title: Extraction of black hole coalescence waveforms from noisy data publication-title: Phys Lett B doi: 10.1016/j.physletb.2018.08.009 – volume: 37 start-page: 10 year: 1949 ident: 10.1016/j.softx.2021.100658_b146 article-title: Communication in the presence of noise publication-title: Proc IRE doi: 10.1109/JRPROC.1949.232969 – volume: 123 year: 2019 ident: 10.1016/j.softx.2021.100658_b50 article-title: Testing the no-hair theorem with gw150914 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.123.111102 – volume: 27 year: 2010 ident: 10.1016/j.softx.2021.100658_b112 article-title: Calibration of the LIGO displacement actuators via laser frequency modulation publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/27/21/215001 – year: 2017 ident: 10.1016/j.softx.2021.100658_b127 – volume: 16 start-page: 10018 year: 2008 ident: 10.1016/j.softx.2021.100658_b65 article-title: Design of the Advanced LIGO recycling cavities publication-title: Opt Express doi: 10.1364/OE.16.010018 – volume: 31 year: 2014 ident: 10.1016/j.softx.2021.100658_b116 article-title: Reconstruction of the gravitational wave signal h(t) during the Virgo science runs and independent validation with a photon calibrator publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/31/16/165013 – year: 2001 ident: 10.1016/j.softx.2021.100658_b143 – year: 2015 ident: 10.1016/j.softx.2021.100658_b165 – volume: 784 start-page: 312 year: 2018 ident: 10.1016/j.softx.2021.100658_b22 article-title: Extraction of black hole coalescence waveforms from noisy data publication-title: Phys Lett B doi: 10.1016/j.physletb.2018.08.009 – volume: 29 year: 2012 ident: 10.1016/j.softx.2021.100658_b75 article-title: Reducing the suspension thermal noise of advanced gravitational wave detectors publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/29/12/124009 – year: 2019 ident: 10.1016/j.softx.2021.100658_b7 – volume: 119 year: 2017 ident: 10.1016/j.softx.2021.100658_b13 article-title: GW170817: Observation of gravitational waves from a binary neutron star inspiral publication-title: Phys Rev Lett – year: 2019 ident: 10.1016/j.softx.2021.100658_b17 – volume: 93 year: 2016 ident: 10.1016/j.softx.2021.100658_b30 article-title: Characterization of non-gaussianity in gravitational wave detector noise publication-title: Phys Rev D doi: 10.1103/PhysRevD.93.082005 – volume: 10700 year: 2018 ident: 10.1016/j.softx.2021.100658_b94 article-title: Status of the Advanced Virgo gravitational wave detector publication-title: Proc SPIE – volume: 20 start-page: 10617 year: 2012 ident: 10.1016/j.softx.2021.100658_b60 article-title: Stabilized high-power laser system for the gravitational wave detector Advanced LIGO publication-title: Opt Express doi: 10.1364/OE.20.010617 – volume: 358 start-page: 1699 year: 2012 ident: 10.1016/j.softx.2021.100658_b74 article-title: A study of the fracture mechanisms in pristine silica fibres utilising high speed imaging techniques publication-title: J Non Cryst Solids doi: 10.1016/j.jnoncrysol.2012.05.005 – volume: 32 year: 2015 ident: 10.1016/j.softx.2021.100658_b80 article-title: Noise and control decoupling of Advanced LIGO suspensions publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/32/1/015004 – volume: 118 year: 2017 ident: 10.1016/j.softx.2021.100658_b11 article-title: GW170104: Observation of a 50-solar-mass binary black hole coalescence at Redshift 0.2 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.118.221101 – volume: 35 year: 2018 ident: 10.1016/j.softx.2021.100658_b119 article-title: Calibration of Advanced Virgo and reconstruction of the gravitational wave signal h(t) during the observing run O2 publication-title: Classical Quantum Gravity doi: 10.1088/1361-6382/aadf1a – year: 2004 ident: 10.1016/j.softx.2021.100658_b131 – volume: 848 start-page: L12 year: 2017 ident: 10.1016/j.softx.2021.100658_b15 article-title: Multi-messenger observations of a binary neutron star merger publication-title: Astrophys J doi: 10.3847/2041-8213/aa91c9 – volume: 100 year: 2019 ident: 10.1016/j.softx.2021.100658_b25 article-title: A highly spinning and aligned binary black hole merger in the Advanced LIGO first observing run publication-title: Phys Rev D doi: 10.1103/PhysRevD.100.023007 – volume: 100 year: 2019 ident: 10.1016/j.softx.2021.100658_b56 article-title: Kicking gravitational wave detectors with recoiling black holes publication-title: Phys Rev D doi: 10.1103/PhysRevD.100.104039 – year: 2019 ident: 10.1016/j.softx.2021.100658_b173 – year: 2019 ident: 10.1016/j.softx.2021.100658_b132 – volume: 100 year: 2019 ident: 10.1016/j.softx.2021.100658_b110 article-title: Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and virgo network publication-title: Phys Rev D doi: 10.1103/PhysRevD.100.064064 – volume: 27 year: 2010 ident: 10.1016/j.softx.2021.100658_b111 article-title: The Advanced LIGO timing system publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/27/8/084025 – volume: 610 year: 2015 ident: 10.1016/j.softx.2021.100658_b21 article-title: The LIGO open science center publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/610/1/012021 – volume: 82 year: 2011 ident: 10.1016/j.softx.2021.100658_b79 article-title: Invited article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions publication-title: Rev Sci Instrum doi: 10.1063/1.3532770 – volume: 95 year: 2017 ident: 10.1016/j.softx.2021.100658_b139 article-title: Validating gravitational-wave detections: The Advanced LIGO hardware injection system publication-title: Phys Rev D doi: 10.1103/PhysRevD.95.062002 – volume: 99 year: 2019 ident: 10.1016/j.softx.2021.100658_b39 article-title: Constraining the parameters of gw150914 and gw170104 with numerical relativity surrogates publication-title: Phys Rev D doi: 10.1103/PhysRevD.99.124005 – year: 2019 ident: 10.1016/j.softx.2021.100658_b28 – volume: 495 start-page: 90 year: 2020 ident: 10.1016/j.softx.2021.100658_b58 article-title: The impact of peculiar velocities on the estimation of the hubble constant from gravitational wave standard sirens publication-title: Mon Not R Astron Soc doi: 10.1093/mnras/staa1120 – volume: 36 year: 2019 ident: 10.1016/j.softx.2021.100658_b103 article-title: A multistage vibration isolation system for Advanced Virgo suspended optical benches publication-title: Classical Quantum Gravity doi: 10.1088/1361-6382/ab075e – start-page: 87 year: 2016 ident: 10.1016/j.softx.2021.100658_b171 article-title: Jupyter notebooks – a publishing format for reproducible computational workflows – volume: 83 year: 2012 ident: 10.1016/j.softx.2021.100658_b64 article-title: Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers publication-title: Rev Sci Instrum doi: 10.1063/1.3695405 – volume: 874 start-page: L2 year: 2019 ident: 10.1016/j.softx.2021.100658_b53 article-title: Search for gravitational lensing signatures in LIGO-virgo binary black hole events publication-title: Astrophys J doi: 10.3847/2041-8213/ab0c0f – year: 2017 ident: 10.1016/j.softx.2021.100658_b108 – year: 2018 ident: 10.1016/j.softx.2021.100658_b122 – volume: 100 year: 2019 ident: 10.1016/j.softx.2021.100658_b155 article-title: All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run publication-title: Phys Rev D doi: 10.1103/PhysRevD.100.024017 – volume: 1902 start-page: 019 year: 2019 ident: 10.1016/j.softx.2021.100658_b23 article-title: Investigating the noise residuals around the gravitational wave event GW150914 publication-title: J Cosmol Astropart Phys doi: 10.1088/1475-7516/2019/02/019 – volume: 32 year: 2015 ident: 10.1016/j.softx.2021.100658_b106 article-title: Environmental influences on the LIGO gravitational wave detectors during the 6th science run publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/32/3/035017 – volume: 100 year: 2019 ident: 10.1016/j.softx.2021.100658_b159 article-title: All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data publication-title: Phys Rev D doi: 10.1103/PhysRevD.100.024004 – volume: 100 year: 2019 ident: 10.1016/j.softx.2021.100658_b32 article-title: Astrophysical signal consistency test adapted for gravitational-wave transient searches publication-title: Phys Rev D doi: 10.1103/PhysRevD.100.124022 – volume: 97 year: 2018 ident: 10.1016/j.softx.2021.100658_b133 article-title: Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO publication-title: Phys Rev D doi: 10.1103/PhysRevD.97.082002 – year: 2019 ident: 10.1016/j.softx.2021.100658_b169 – volume: 23 start-page: 19417 year: 2015 ident: 10.1016/j.softx.2021.100658_b87 article-title: High precision optical cavity length and width measurements using double modulation publication-title: Opt Express doi: 10.1364/OE.23.019417 – volume: 35 year: 2018 ident: 10.1016/j.softx.2021.100658_b118 article-title: Reconstructing the calibrated strain signal in the Advanced LIGO detectors publication-title: Classical Quantum Gravity doi: 10.1088/1361-6382/aab658 – volume: 87 year: 2016 ident: 10.1016/j.softx.2021.100658_b89 article-title: Distributed state machine supervision for long-baseline gravitational-wave detectors publication-title: Rev Sci Instrum doi: 10.1063/1.4961665 – ident: 10.1016/j.softx.2021.100658_b179 – volume: 9 year: 2019 ident: 10.1016/j.softx.2021.100658_b14 article-title: GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and virgo during the first and second observing runs publication-title: Phys Rev X – volume: 93 year: 2016 ident: 10.1016/j.softx.2021.100658_b8 article-title: GW150914: First results from the search for binary black hole coalescence with Advanced LIGO publication-title: Phys Rev D doi: 10.1103/PhysRevD.93.122003 – volume: 89 year: 2018 ident: 10.1016/j.softx.2021.100658_b101 article-title: Magnetic coupling to the Advanced Virgo payloads and its impact on the low frequency sensitivity publication-title: Rev Sci Instrum doi: 10.1063/1.5045397 – volume: 118 year: 2017 ident: 10.1016/j.softx.2021.100658_b163 article-title: Upper limits on the stochastic gravitational-wave background from Advanced LIGO’s first observing run publication-title: Phys Rev Lett – volume: 99 year: 2019 ident: 10.1016/j.softx.2021.100658_b34 article-title: Hierarchical search strategy for the efficient detection of gravitational waves from nonprecessing coalescing compact binaries with aligned-spins publication-title: Phys Rev D doi: 10.1103/PhysRevD.99.124035 – volume: 100 year: 2019 ident: 10.1016/j.softx.2021.100658_b42 article-title: Label switching problem in bayesian analysis for gravitational wave astronomy publication-title: Phys Rev D doi: 10.1103/PhysRevD.100.084041 – year: 2016 ident: 10.1016/j.softx.2021.100658_b124 – volume: 2019 start-page: 063F01 year: 2019 ident: 10.1016/j.softx.2021.100658_b33 article-title: A time–frequency analysis of gravitational wave signals with non-harmonic analysis publication-title: Prog Theor Exp Phys doi: 10.1093/ptep/ptz043 – volume: 27 year: 2010 ident: 10.1016/j.softx.2021.100658_b113 article-title: Accurate calibration of test mass displacement in the LIGO interferometers publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/27/8/084024 – volume: 3 start-page: 324 year: 1924 ident: 10.1016/j.softx.2021.100658_b144 article-title: Certain factors affecting telegraph speed publication-title: Bell Syst Tech J doi: 10.1002/j.1538-7305.1924.tb01361.x – volume: 94 year: 2016 ident: 10.1016/j.softx.2021.100658_b158 article-title: Enabling high confidence detections of gravitational-wave bursts publication-title: Phys Rev D doi: 10.1103/PhysRevD.94.044050 – volume: 894 start-page: 41 year: 2020 ident: 10.1016/j.softx.2021.100658_b45 article-title: Constraints on nonlinear tides due to p-g mode coupling from the neutron-star merger GW170817 publication-title: Astrophys J doi: 10.3847/1538-4357/ab64e8 – volume: 96 year: 2017 ident: 10.1016/j.softx.2021.100658_b120 article-title: Calibration uncertainty for Advanced LIGO’s first and second observing runs publication-title: Phys Rev D doi: 10.1103/PhysRevD.96.102001 – year: 2018 ident: 10.1016/j.softx.2021.100658_b172 – volume: 91 year: 2015 ident: 10.1016/j.softx.2021.100658_b178 article-title: Bayesian inference for spectral estimation of gravitational wave detector noise publication-title: Phys Rev D doi: 10.1103/PhysRevD.91.084034 – year: 2018 ident: 10.1016/j.softx.2021.100658_b147 – volume: 116 year: 2016 ident: 10.1016/j.softx.2021.100658_b4 article-title: Observation of gravitational waves from a binary black hole merger publication-title: Phys Rev Lett – volume: 24 start-page: 405 year: 2007 ident: 10.1016/j.softx.2021.100658_b67 article-title: Titania-doped tantala/silica coatings for gravitational-wave detection publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/24/2/008 – volume: 102 start-page: 529 year: 2011 ident: 10.1016/j.softx.2021.100658_b61 article-title: Injection-locked single-frequency laser with an output power of 220 W publication-title: Appl Phys B doi: 10.1007/s00340-011-4411-9 – volume: 87 year: 2016 ident: 10.1016/j.softx.2021.100658_b66 article-title: The Advanced LIGO input optics publication-title: Rev Sci Instrum doi: 10.1063/1.4936974 – volume: 119 year: 2017 ident: 10.1016/j.softx.2021.100658_b12 article-title: GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence publication-title: Phys Rev Lett – volume: 100 year: 2019 ident: 10.1016/j.softx.2021.100658_b40 article-title: On the properties of the massive binary black hole merger gw170729 publication-title: Phys Rev D doi: 10.1103/PhysRevD.100.104015 – year: 2016 ident: 10.1016/j.softx.2021.100658_b125 – year: 2017 ident: 10.1016/j.softx.2021.100658_b16 – year: 2018 ident: 10.1016/j.softx.2021.100658_b35 – volume: 29 year: 2012 ident: 10.1016/j.softx.2021.100658_b77 article-title: Sensors and actuators for the Advanced LIGO mirror suspensions publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/29/11/115005 – volume: 98 year: 2018 ident: 10.1016/j.softx.2021.100658_b138 article-title: Mitigation of the instrumental noise transient in gravitational-wave data surrounding GW170817 publication-title: Phys Rev D doi: 10.1103/PhysRevD.98.084016 – volume: 35 year: 2018 ident: 10.1016/j.softx.2021.100658_b136 article-title: Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run publication-title: Classical Quantum Gravity doi: 10.1088/1361-6382/aaaafa – volume: 100 year: 2019 ident: 10.1016/j.softx.2021.100658_b38 article-title: Noise spectral estimation methods and their impact on gravitational wave measurement of compact binary mergers publication-title: Phys Rev D doi: 10.1103/PhysRevD.100.104004 – volume: 624 start-page: 223 year: 2010 ident: 10.1016/j.softx.2021.100658_b115 article-title: Calibration of the LIGO gravitational wave detectors in the fifth science run publication-title: Nucl Instrum Methods Phys Res A doi: 10.1016/j.nima.2010.07.089 – year: 2019 ident: 10.1016/j.softx.2021.100658_b167 – volume: 40 start-page: 287 year: 2015 ident: 10.1016/j.softx.2021.100658_b82 article-title: ADvanced LIGO two-stage twelve-axis vibration isolation and positioning platform. part 2: Experimental investigation and tests results publication-title: Precis Eng doi: 10.1016/j.precisioneng.2014.11.010 – volume: 6 start-page: 81 year: 2019 ident: 10.1016/j.softx.2021.100658_b36 article-title: Posterior samples of the parameters of binary black holes from Advanced LIGO, Virgo’s second observing run publication-title: Sci Data doi: 10.1038/s41597-019-0086-6 – volume: 29 year: 2012 ident: 10.1016/j.softx.2021.100658_b76 article-title: Update on quadruple suspension design for Advanced LIGO publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/29/23/235004 – year: 2012 ident: 10.1016/j.softx.2021.100658_b91 – volume: 26 year: 2009 ident: 10.1016/j.softx.2021.100658_b114 article-title: Precise calibration of LIGO test mass actuators using photon radiation pressure publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/26/24/245011 – volume: 29 year: 2012 ident: 10.1016/j.softx.2021.100658_b135 article-title: The characterization of virgo data and its impact on gravitational-wave searches publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/29/15/155002 – year: 2019 ident: 10.1016/j.softx.2021.100658_b20 – volume: 29 start-page: 1784 year: 2012 ident: 10.1016/j.softx.2021.100658_b63 article-title: High-vacuum-compatible high-power faraday isolators for gravitational-wave interferometers publication-title: J Opt Soc Amer B doi: 10.1364/JOSAB.29.001784 – volume: 241 start-page: 27 year: 2019 ident: 10.1016/j.softx.2021.100658_b175 article-title: BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy publication-title: Astrophys J Suppl Ser doi: 10.3847/1538-4365/ab06fc – volume: 93 year: 2016 ident: 10.1016/j.softx.2021.100658_b68 article-title: Mechanical loss in state-of-the-art amorphous optical coatings publication-title: Phys Rev D doi: 10.1103/PhysRevD.93.012007 – volume: 65 year: 2002 ident: 10.1016/j.softx.2021.100658_b71 article-title: Signal recycled laser-interferometer gravitational-wave detectors as optical springs publication-title: Phys Rev D doi: 10.1103/PhysRevD.65.042001 – volume: 91 year: 2015 ident: 10.1016/j.softx.2021.100658_b48 article-title: Detecting beyond-einstein polarizations of continuous gravitational waves publication-title: Phys Rev D doi: 10.1103/PhysRevD.91.082002 – volume: 40 start-page: 273 year: 2015 ident: 10.1016/j.softx.2021.100658_b81 article-title: ADvanced LIGO two-stage twelve-axis vibration isolation and positioning platform. part 1: Design and production overview publication-title: Precis Eng doi: 10.1016/j.precisioneng.2014.09.010 – volume: 27 year: 2010 ident: 10.1016/j.softx.2021.100658_b86 article-title: Alignment sensing and control in Advanced LIGO publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/27/8/084026 – volume: 47 start-page: 2198 year: 1993 ident: 10.1016/j.softx.2021.100658_b107 article-title: Observing binary inspiral in gravitational radiation: One interferometer publication-title: Phys Rev D doi: 10.1103/PhysRevD.47.2198 – volume: 860 start-page: L2 year: 2018 ident: 10.1016/j.softx.2021.100658_b57 article-title: Measuring the viewing angle of GW170817 with electromagnetic and gravitational waves publication-title: Astrophys J doi: 10.3847/2041-8213/aac6c1 – volume: 95 year: 2017 ident: 10.1016/j.softx.2021.100658_b152 article-title: Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data publication-title: Phys Rev D – volume: 1916 start-page: 688 year: 1916 ident: 10.1016/j.softx.2021.100658_b2 article-title: Approximative integration of the field equations of gravitation publication-title: Sitzungsber Preuss Akad Wiss Berlin (Math Phys) – volume: 95 year: 2017 ident: 10.1016/j.softx.2021.100658_b157 article-title: Information-theoretic approach to the gravitational-wave burst detection problem publication-title: Phys Rev D doi: 10.1103/PhysRevD.95.104046 – volume: 32 year: 2015 ident: 10.1016/j.softx.2021.100658_b177 article-title: Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches publication-title: Classical Quantum Gravity – volume: 31 year: 2014 ident: 10.1016/j.softx.2021.100658_b73 article-title: Experimental results for nulling the effective thermal expansion coefficient of fused silica fibres under a static stress publication-title: Classical Quantum Gravity doi: 10.1088/0264-9381/31/6/065010 – volume: 55 start-page: 50 year: 2019 ident: 10.1016/j.softx.2021.100658_b55 article-title: Multimessenger parameter estimation of GW170817 publication-title: Eur Phys J A doi: 10.1140/epja/i2019-12716-4 – volume: 101 year: 2020 ident: 10.1016/j.softx.2021.100658_b26 article-title: New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo publication-title: Phys Rev D doi: 10.1103/PhysRevD.101.083030 – year: 2018 ident: 10.1016/j.softx.2021.100658_b19 – year: 2017 ident: 10.1016/j.softx.2021.100658_b126 |
| SSID | ssj0001528524 |
| Score | 2.653657 |
| Snippet | Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely.... |
| SourceID | doaj liege crossref elsevier |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 100658 |
| SubjectTerms | Computer science Data representation and management Engineering, computing & technology Gravitational Waves GWOSC Ingénierie, informatique & technologie Sciences informatiques Scientific databases |
| Title | Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo |
| URI | https://dx.doi.org/10.1016/j.softx.2021.100658 https://orbi.uliege.be/handle/2268/261465 https://doaj.org/article/92924b59a2484f50aa86578bb40d51f3 |
| Volume | 13 |
| WOSCitedRecordID | wos000656825700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2352-7110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2352-7110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001528524 issn: 2352-7110 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ9NALpQ_EFlr50CNRE8eO7SMgKJVa4ACIm2U7NgpaZdE-ECd-OzNOsloucOESRZETj8aTfPM58yDkVyyilyp3mQgFzwChXaZV0JnkTnEnPeN1nppNyLMzdXOjL1ZafWFMWFceuFPcb4Bvxp3QlnHFo8itVRVYmXM8r0URU53PXOoVMtXlBzMlUkdbBh5GJgHkhpJDKbhrBt-4R2CHrMAwgQobvq_AUqre_wKdNsb4C3sFeU62yGbvMtKDTtTPZC20X8inoR0D7d_Or-Qag0MohnxSTBqh4NrR2IB3R21b0xky35pOHG7DAl7R6aKd0UmkB30UAP339895Grq8ct1MbyffyNXJ8eXRada3Tcg812yecVkFH0OsaqHqkivt88IxbwOQhwB6kVYrnXsupNaesciFqIuSl1aXulShLrfJejtpww6h0vPcYZK1APKKearCVgFIT7DaIbSPCBu0ZnxfUxxbW4zNEDx2Z5KqDaradKoekf3lTfddSY3Xhx_iciyHYj3sdAGsxPRWYt6ykhGphsU0vWvRuQzwqOYNYdPSw2yuMQ8sTZ_OF2OY3hsXDHiwygAT5ZX4_h7C7pKPKEG30bNH1ufTRfhBPviHeTOb_kyGDsf_T8fPqVf9LA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Open+data+from+the+first+and+second+observing+runs+of+Advanced+LIGO+and+Advanced+Virgo&rft.jtitle=SoftwareX&rft.au=Abbott%2C+R.&rft.au=Baltus%2C+Gr%C3%A9gory&rft.au=Collette%2C+Christophe&rft.au=Cudell%2C+Jean-Ren%C3%A9&rft.date=2021&rft.pub=Elsevier&rft.issn=2352-7110&rft.eissn=2352-7110&rft.volume=13&rft.spage=100658&rft_id=info:doi/10.1016%2Fj.softx.2021.100658&rft.externalDBID=n%2Fa&rft.externalDocID=oai_orbi_ulg_ac_be_2268_261465 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7110&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7110&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7110&client=summon |