Novel Chryseobacterium sp. PYR2 degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil
Long term residues of organochlorine pesticides (OCPs) in soils are of great concerning because they seriously threaten food security and human health. This article focuses on isolation of OCP-degrading strains and their performance in bioremediation of contaminated soil under ex situ conditions. A...
Uloženo v:
| Vydáno v: | Journal of environmental management Ročník 161; s. 350 - 357 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
15.09.2015
Academic Press Ltd |
| Témata: | |
| ISSN: | 0301-4797, 1095-8630 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Long term residues of organochlorine pesticides (OCPs) in soils are of great concerning because they seriously threaten food security and human health. This article focuses on isolation of OCP-degrading strains and their performance in bioremediation of contaminated soil under ex situ conditions. A bacterium, Chryseobacterium sp. PYR2, capable of degrading various OCPs and utilizing them as a sole carbon and energy source for growth, was isolated from OCP-contaminated soil. In culture experiments, PYR2 degraded 80–98% of hexachlorocyclohexane (HCH) or 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) isomers (50 mg L−1) in 30 days. A pilot-scale ex situ bioremediation study of highly OCP-contaminated soil augmented with PYR2 was performed. During the 45-day experimental period, DDT concentration was reduced by 80.3% in PYR2-augmented soils (35.37 mg kg−1 to 6.97 mg kg−1) but by only 57.6% in control soils. Seven DDT degradation intermediates (metabolites) were detected and identified in PYR2-augmented soils: five by GC/MS: 1,1-dichloro-2,2-bis (4-chlorophenyl) ethane (DDD), 1,1-dichloro-2,2-bis (4-chlorophenyl) ethylene (DDE), 1-chloro-2,2-bis (4-chlorophenyl) ethylene (DDMU), 1-chloro-2,2-bis (4-chlorophenyl) ethane (DDMS), and dichlorobenzophenone (DBP); and two by LC/MS: 4-chlorobenzoic acid (PCBA) and 4-chlorophenylacetic acid (PCPA). Levels of metabolites were fairly stable in control soils but varied greatly with time in PYR2-augmented soils. Levels of DDD, DDMU, and DDE in PYR2-augmented soils increased from day 0 to day 30 and then decreased by day 45. A DDT biodegradation pathway is proposed based on our identification of DDT metabolites in PYR2-augmented systems. PYR2 will be useful in future studies of OCP biodegradation and in bioremediation of OCP-contaminated soils.
•A multiple OCPs-degrading strain, Chryseobacterium sp. PYR2, was obtained.•Chryseobacterium members had never been described able to degrade OCPs.•Inoculation of PYR2 into contaminated soil greatly enhanced the removal of DDT.•DDT was subsequently degraded to DDD, DDE, DDMU, DDMS, DBP, PCPA and PCBA.•A complete degradation of DDT in contaminated soil was achieved. |
|---|---|
| AbstractList | Long term residues of organochlorine pesticides (OCPs) in soils are of great concerning because they seriously threaten food security and human health. This article focuses on isolation of OCP-degrading strains and their performance in bioremediation of contaminated soil under ex situ conditions. A bacterium, Chryseobacterium sp. PYR2, capable of degrading various OCPs and utilizing them as a sole carbon and energy source for growth, was isolated from OCP-contaminated soil. In culture experiments, PYR2 degraded 80-98% of hexachlorocyclohexane (HCH) or 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) isomers (50 mg L(-1)) in 30 days. A pilot-scale ex situ bioremediation study of highly OCP-contaminated soil augmented with PYR2 was performed. During the 45-day experimental period, DDT concentration was reduced by 80.3% in PYR2-augmented soils (35.37 mg kg(-1) to 6.97 mg kg(-1)) but by only 57.6% in control soils. Seven DDT degradation intermediates (metabolites) were detected and identified in PYR2-augmented soils: five by GC/MS: 1,1-dichloro-2,2-bis (4-chlorophenyl) ethane (DDD), 1,1-dichloro-2,2-bis (4-chlorophenyl) ethylene (DDE), 1-chloro-2,2-bis (4-chlorophenyl) ethylene (DDMU), 1-chloro-2,2-bis (4-chlorophenyl) ethane (DDMS), and dichlorobenzophenone (DBP); and two by LC/MS: 4-chlorobenzoic acid (PCBA) and 4-chlorophenylacetic acid (PCPA). Levels of metabolites were fairly stable in control soils but varied greatly with time in PYR2-augmented soils. Levels of DDD, DDMU, and DDE in PYR2-augmented soils increased from day 0 to day 30 and then decreased by day 45. A DDT biodegradation pathway is proposed based on our identification of DDT metabolites in PYR2-augmented systems. PYR2 will be useful in future studies of OCP biodegradation and in bioremediation of OCP-contaminated soils. Long term residues of organochlorine pesticides (OCPs) in soils are of great concerning because they seriously threaten food security and human health. This article focuses on isolation of OCP-degrading strains and their performance in bioremediation of contaminated soil under ex situ conditions. A bacterium, Chryseobacterium sp. PYR2, capable of degrading various OCPs and utilizing them as a sole carbon and energy source for growth, was isolated from OCP-contaminated soil. In culture experiments, PYR2 degraded 80-98% of hexachlorocyclohexane (HCH) or 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) isomers (50 mg L(-1)) in 30 days. A pilot-scale ex situ bioremediation study of highly OCP-contaminated soil augmented with PYR2 was performed. During the 45-day experimental period, DDT concentration was reduced by 80.3% in PYR2-augmented soils (35.37 mg kg(-1) to 6.97 mg kg(-1)) but by only 57.6% in control soils. Seven DDT degradation intermediates (metabolites) were detected and identified in PYR2-augmented soils: five by GC/MS: 1,1-dichloro-2,2-bis (4-chlorophenyl) ethane (DDD), 1,1-dichloro-2,2-bis (4-chlorophenyl) ethylene (DDE), 1-chloro-2,2-bis (4-chlorophenyl) ethylene (DDMU), 1-chloro-2,2-bis (4-chlorophenyl) ethane (DDMS), and dichlorobenzophenone (DBP); and two by LC/MS: 4-chlorobenzoic acid (PCBA) and 4-chlorophenylacetic acid (PCPA). Levels of metabolites were fairly stable in control soils but varied greatly with time in PYR2-augmented soils. Levels of DDD, DDMU, and DDE in PYR2-augmented soils increased from day 0 to day 30 and then decreased by day 45. A DDT biodegradation pathway is proposed based on our identification of DDT metabolites in PYR2-augmented systems. PYR2 will be useful in future studies of OCP biodegradation and in bioremediation of OCP-contaminated soils. Long term residues of organochlorine pesticides (OCPs) in soils are of great concerning because they seriously threaten food security and human health. This article focuses on isolation of OCP-degrading strains and their performance in bioremediation of contaminated soil under ex situ conditions. A bacterium, Chryseobacterium sp. PYR2, capable of degrading various OCPs and utilizing them as a sole carbon and energy source for growth, was isolated from OCP-contaminated soil. In culture experiments, PYR2 degraded 80–98% of hexachlorocyclohexane (HCH) or 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) isomers (50 mg L−1) in 30 days. A pilot-scale ex situ bioremediation study of highly OCP-contaminated soil augmented with PYR2 was performed. During the 45-day experimental period, DDT concentration was reduced by 80.3% in PYR2-augmented soils (35.37 mg kg−1 to 6.97 mg kg−1) but by only 57.6% in control soils. Seven DDT degradation intermediates (metabolites) were detected and identified in PYR2-augmented soils: five by GC/MS: 1,1-dichloro-2,2-bis (4-chlorophenyl) ethane (DDD), 1,1-dichloro-2,2-bis (4-chlorophenyl) ethylene (DDE), 1-chloro-2,2-bis (4-chlorophenyl) ethylene (DDMU), 1-chloro-2,2-bis (4-chlorophenyl) ethane (DDMS), and dichlorobenzophenone (DBP); and two by LC/MS: 4-chlorobenzoic acid (PCBA) and 4-chlorophenylacetic acid (PCPA). Levels of metabolites were fairly stable in control soils but varied greatly with time in PYR2-augmented soils. Levels of DDD, DDMU, and DDE in PYR2-augmented soils increased from day 0 to day 30 and then decreased by day 45. A DDT biodegradation pathway is proposed based on our identification of DDT metabolites in PYR2-augmented systems. PYR2 will be useful in future studies of OCP biodegradation and in bioremediation of OCP-contaminated soils. •A multiple OCPs-degrading strain, Chryseobacterium sp. PYR2, was obtained.•Chryseobacterium members had never been described able to degrade OCPs.•Inoculation of PYR2 into contaminated soil greatly enhanced the removal of DDT.•DDT was subsequently degraded to DDD, DDE, DDMU, DDMS, DBP, PCPA and PCBA.•A complete degradation of DDT in contaminated soil was achieved. Long term residues of organochlorine pesticides (OCPs) in soils are of great concerning because they seriously threaten food security and human health. This article focuses on isolation of OCP-degrading strains and their performance in bioremediation of contaminated soil under ex situ conditions. A bacterium, Chryseobacterium sp. PYR2, capable of degrading various OCPs and utilizing them as a sole carbon and energy source for growth, was isolated from OCP-contaminated soil. In culture experiments, PYR2 degraded 80–98% of hexachlorocyclohexane (HCH) or 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) isomers (50 mg L−1) in 30 days. A pilot-scale ex situ bioremediation study of highly OCP-contaminated soil augmented with PYR2 was performed. During the 45-day experimental period, DDT concentration was reduced by 80.3% in PYR2-augmented soils (35.37 mg kg−1 to 6.97 mg kg−1) but by only 57.6% in control soils. Seven DDT degradation intermediates (metabolites) were detected and identified in PYR2-augmented soils: five by GC/MS: 1,1-dichloro-2,2-bis (4-chlorophenyl) ethane (DDD), 1,1-dichloro-2,2-bis (4-chlorophenyl) ethylene (DDE), 1-chloro-2,2-bis (4-chlorophenyl) ethylene (DDMU), 1-chloro-2,2-bis (4-chlorophenyl) ethane (DDMS), and dichlorobenzophenone (DBP); and two by LC/MS: 4-chlorobenzoic acid (PCBA) and 4-chlorophenylacetic acid (PCPA). Levels of metabolites were fairly stable in control soils but varied greatly with time in PYR2-augmented soils. Levels of DDD, DDMU, and DDE in PYR2-augmented soils increased from day 0 to day 30 and then decreased by day 45. A DDT biodegradation pathway is proposed based on our identification of DDT metabolites in PYR2-augmented systems. PYR2 will be useful in future studies of OCP biodegradation and in bioremediation of OCP-contaminated soils. |
| Author | Xu, Yang Liu, Ying Qu, Jie Ai, Guo-Min Liu, Zhi-Pei |
| Author_xml | – sequence: 1 givenname: Jie surname: Qu fullname: Qu, Jie organization: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China – sequence: 2 givenname: Yang surname: Xu fullname: Xu, Yang organization: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China – sequence: 3 givenname: Guo-Min surname: Ai fullname: Ai, Guo-Min organization: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China – sequence: 4 givenname: Ying surname: Liu fullname: Liu, Ying organization: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China – sequence: 5 givenname: Zhi-Pei surname: Liu fullname: Liu, Zhi-Pei email: liuzhp@sun.im.ac.cn organization: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26203874$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstu2zAQRYkiReOk_YQWBLpJF1aH1IMSuigKpy8gaIIiXXRFUNTIoiGRDikL8D_1I0s_ssnGWREgz70znLkX5Mw6i4S8ZZAwYMXHVbJCOw3KJhxYnoBIgOcvyIxBlc_LIoUzMoMU2DwTlTgnFyGsACDlTLwi57zgkJYim5F_v9yEPV10fhvQ1UqP6M1moGGd0Lu_vzltcOlVg4FOyhu3CdT5pbJOd73zxiJdYxiNNjvi6nZxFz5QZRuqdGdwindoO2W1sUvqcXCT6vfP2g3rHkc8uqvROEtdS6-v76mxtDPLrt9Gyo5qMFaN2NDgTP-avGxVH_DN8bwkf759vV_8mN_cfv-5-HIz11nFxzmvq7IVjIs0yxSrEBolkGtsEKtat1CLGlgFQudFyhgoEG2lVJpjqTEDDekluTr4rr172MQPysEEjX2vLMYRSFZmRZqCYOI0KrJMgAD-HJTxXBRl8YwGBJRlFV15RN8_QVdu420cz96wzHi5r_3uSG3qARu59mZQfisfgxCBTwdAexeCx1ZqM-73MnpleslA7mInV_IYO7mLnQQhY-yiOn-ifixwSvf5oMO4zcmgl0EbtHFVxqMeZePMCYf_iTX1Vw |
| CODEN | JEVMAW |
| CitedBy_id | crossref_primary_10_1016_j_bjm_2017_03_009 crossref_primary_10_2134_jeq2015_07_0406 crossref_primary_10_1016_j_envpol_2024_123326 crossref_primary_10_1080_09593330_2021_1899291 crossref_primary_10_1016_j_envpol_2023_122114 crossref_primary_10_1016_j_envres_2016_06_039 crossref_primary_10_1007_s12223_020_00848_8 crossref_primary_10_1007_s11270_019_4265_z crossref_primary_10_1080_15320383_2018_1485629 crossref_primary_10_3390_molecules23092313 crossref_primary_10_1016_j_jhazmat_2023_130984 crossref_primary_10_1016_j_chemosphere_2021_131447 crossref_primary_10_1080_10889868_2020_1867050 crossref_primary_10_1016_j_biortech_2017_04_121 crossref_primary_10_1016_j_cej_2022_135793 crossref_primary_10_1080_03601234_2016_1208455 crossref_primary_10_1134_S1064229317100015 crossref_primary_10_1016_j_scitotenv_2020_138416 crossref_primary_10_1007_s11157_025_09741_7 crossref_primary_10_1080_07388551_2017_1423275 crossref_primary_10_3390_catal13040687 crossref_primary_10_1016_j_eti_2021_101777 crossref_primary_10_1007_s41204_023_00313_0 crossref_primary_10_1038_s41598_017_06338_1 crossref_primary_10_3389_fphys_2023_1134936 crossref_primary_10_4491_eer_2020_446 crossref_primary_10_1155_2019_4756579 crossref_primary_10_1016_j_chemosphere_2024_141283 crossref_primary_10_1007_s12088_024_01321_7 crossref_primary_10_1080_26395940_2025_2554173 crossref_primary_10_1080_10643389_2018_1476958 crossref_primary_10_1016_j_ecoenv_2018_04_026 crossref_primary_10_1007_s42398_019_00054_4 crossref_primary_10_1007_s12088_021_00940_8 crossref_primary_10_1007_s12010_016_2214_5 crossref_primary_10_1016_j_scitotenv_2021_151006 crossref_primary_10_3390_metabo12030219 crossref_primary_10_3390_w15152723 crossref_primary_10_1016_j_scitotenv_2017_03_052 crossref_primary_10_1007_s42452_020_04003_3 crossref_primary_10_1016_j_jhazmat_2022_128689 crossref_primary_10_1016_j_jhazmat_2022_129699 crossref_primary_10_1016_j_fuel_2021_120452 crossref_primary_10_1007_s11356_017_8576_6 crossref_primary_10_1038_srep38475 crossref_primary_10_3390_plants13192762 crossref_primary_10_1007_s10123_018_00037_1 crossref_primary_10_1016_j_jhazmat_2024_135963 crossref_primary_10_1080_09593330_2021_1998229 crossref_primary_10_1007_s10653_023_01797_0 crossref_primary_10_1016_j_jenvman_2020_111118 crossref_primary_10_3389_fmicb_2023_1291904 crossref_primary_10_1007_s00253_015_7133_9 |
| Cites_doi | 10.1016/j.scitotenv.2007.04.023 10.1002/rcm.6651 10.1016/S0032-9592(02)00066-3 10.1016/j.chemosphere.2009.09.058 10.1590/S1517-83822010000200025 10.1128/AEM.64.6.2141-2146.1998 10.1111/j.1574-6941.2000.tb00690.x 10.1093/jee/61.3.610 10.1128/AEM.60.1.51-55.1994 10.1128/MMBR.46.1.95-127.1982 10.1007/s10532-010-9443-z 10.1016/S0960-8524(03)00061-0 10.1080/20018891079302 10.1016/j.jhazmat.2012.06.060 10.1016/j.ibiod.2007.12.001 10.1038/375581a0 10.1016/j.ibiod.2011.04.004 10.1016/0045-6535(96)00121-X 10.1016/j.envint.2008.02.010 10.1099/ijs.0.065508-0 10.1016/j.jhazmat.2010.08.034 10.2323/jgam.46.59 10.1093/molbev/msr121 10.1016/j.biortech.2014.06.007 10.1021/es030705b 10.1289/ehp.0900785 10.1016/j.biortech.2009.12.083 10.1016/j.chemosphere.2013.09.007 10.1111/j.1365-2672.2006.03209.x 10.1016/j.ibiod.2010.04.007 10.1016/S0022-2836(05)80360-2 10.1007/s00284-003-4053-1 10.1080/03601234.2011.540534 10.1007/s001289900969 10.1007/s002030050676 10.1021/jf00015a032 10.3390/ijerph7041612 10.1016/S0378-4274(02)00184-4 10.1021/jf9030376 10.1007/s10532-012-9575-4 10.1007/s00244-007-9044-y |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. Copyright Academic Press Ltd. Sep 15, 2015 |
| Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. – notice: Copyright Academic Press Ltd. Sep 15, 2015 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7SN 7ST 7UA 8BJ C1K F1W FQK H97 JBE L.G SOI 7U8 7X8 JXQ 7QL 7TV 7U6 7SU 8FD FR3 KR7 7S9 L.6 |
| DOI | 10.1016/j.jenvman.2015.07.025 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Ecology Abstracts Environment Abstracts Water Resources Abstracts International Bibliography of the Social Sciences (IBSS) Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts International Bibliography of the Social Sciences Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality International Bibliography of the Social Sciences Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts TOXLINE MEDLINE - Academic Toxline Bacteriology Abstracts (Microbiology B) Pollution Abstracts Sustainability Science Abstracts Environmental Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional International Bibliography of the Social Sciences (IBSS) ASFA: Aquatic Sciences and Fisheries Abstracts Ecology Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management TOXLINE MEDLINE - Academic Pollution Abstracts Sustainability Science Abstracts Bacteriology Abstracts (Microbiology B) Civil Engineering Abstracts Engineering Research Database Technology Research Database Environmental Engineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | TOXLINE MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts AGRICOLA Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1095-8630 |
| EndPage | 357 |
| ExternalDocumentID | 3809276791 26203874 10_1016_j_jenvman_2015_07_025 S0301479715301705 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFRF ABFYP ABJNI ABLST ABMAC ABMMH ABYKQ ACDAQ ACGFO ACGFS ACPRK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AVARZ AXJTR BELTK BKOJK BKOMP BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SES SPC SPCBC SSB SSJ SSO SSR SSZ T5K TAE TWZ WH7 XSW Y6R YK3 ZCA ZU3 ~02 ~G- ~KM 29K 3EH 53G 9DU AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIDBO AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF D-I EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SEN SEW UHS UQL VH1 WUQ XPP YV5 ZMT ZY4 ~HD CGR CUY CVF ECM EIF NPM SSH 7QH 7SN 7ST 7UA 8BJ C1K F1W FQK H97 JBE L.G SOI 7U8 7X8 JXQ 7QL 7TV 7U6 7SU 8FD FR3 KR7 7S9 L.6 |
| ID | FETCH-LOGICAL-c492t-2b98f7127344a19e0da7e2cedee9bcf0b7b01907c563110a07f9aa35e8ce40c03 |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000361264100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0301-4797 |
| IngestDate | Sun Sep 28 11:28:33 EDT 2025 Tue Oct 07 10:05:52 EDT 2025 Tue Oct 07 10:08:26 EDT 2025 Sun Sep 28 06:48:24 EDT 2025 Mon Nov 10 01:11:30 EST 2025 Thu Apr 03 06:56:12 EDT 2025 Sat Nov 29 03:55:24 EST 2025 Tue Nov 18 21:55:24 EST 2025 Fri Feb 23 02:29:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Biodegradation Chryseobacterium sp. PYR2 Bioremediation HCH DDT Organochlorine pesticides |
| Language | English |
| License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c492t-2b98f7127344a19e0da7e2cedee9bcf0b7b01907c563110a07f9aa35e8ce40c03 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 26203874 |
| PQID | 1712842827 |
| PQPubID | 33876 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1846330717 proquest_miscellaneous_1744707027 proquest_miscellaneous_1712576860 proquest_miscellaneous_1708897022 proquest_journals_1712842827 pubmed_primary_26203874 crossref_citationtrail_10_1016_j_jenvman_2015_07_025 crossref_primary_10_1016_j_jenvman_2015_07_025 elsevier_sciencedirect_doi_10_1016_j_jenvman_2015_07_025 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-15 |
| PublicationDateYYYYMMDD | 2015-09-15 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | Journal of environmental management |
| PublicationTitleAlternate | J Environ Manage |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd Academic Press Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Academic Press Ltd |
| References | Ai, Zhu, Dong, Sun (bib1) 2013; 27 Kamanavalli, Ninnekar (bib22) 2004; 48 Zhao, Yi (bib48) 2010; 7 Kelce, Stone, Laws, Gray, Kemppainen, Wilson (bib24) 1995; 375 Beni, Elvira, Noemí, Héctor (bib7) 2012; 95 Dale, Copel, Hayes (bib13) 1965; 33 Kannan, Tanabe, Ramesh, Subramanian, Tatsukawa (bib23) 1992; 40 Ai, Zou, Shi, Li, Liang, Song, Gao (bib2) 2010; 58 Kimura (bib25) 1983 Foght, April, Biggar, Aislabie (bib17) 2001; 5 van den Berg (bib40) 2009; 117 Corona-Cruz, Gold-Bouchot, Gutierrez-Rojas, Monroy-Hermosillo, Favela (bib11) 1999; 63 Cutright, Erdem (bib12) 2012; 9 Tamura, Peterson, Peterson, Stecher, Nei, Kumar (bib39) 2011; 28 Nadeau, Sayler, Spain (bib32) 1998; 171 Sarkar, Bhattacharya, Bhattacharya, Chatterjee, Alam, Satpathy, Jonathan (bib36) 2008; 34 Xu, Zheng, Li, Wang, Zhang, Yan (bib43) 2008; 62 Bidlan, Manonmani (bib9) 2002; 38 Fang, Dong, Yan, Tang, Yu (bib16) 2010; 184 Manickam, Misra, Mayilraj (bib28) 2007; 102 You, Sayles, Kupferle, Kim, Bishop (bib46) 1996; 32 Hay, Focht (bib20) 2000; 31 Nadeau, Menn, Breen, Sayler (bib31) 1994; 60 Purnomo, Mori, Kamei, Nishii, Kondo (bib34) 2010; 64 Matsumura, Boush (bib29) 1968; 61 Alonso-Hernandez, Mesa-Albernas, Tolos (bib3) 2014; 94 Huang, Zhao, Luan (bib21) 2007; 385 Lunney, Zeer, Reimer, Moreno, Moreno (bib27) 2003; 38 Sudharshan, Naidu, Mallavarapu, Bolan (bib37) 2012; 23 Paloma (bib33) 2001 Wang, Zhang, Wang, Liang, Chen, Li, Jiang (bib41) 2010; 41 Yim, Seo, Kang, Ahn, Hur (bib45) 2008; 54 Datta, Maiti, Modak, Chakrabartty, Bhattacharyya, Ray (bib14) 2000; 46 Sun, Xu, Jin, Zhong, Liu, Luo, Liu (bib38) 2012; 233–234 Purnomo, Mori, Takagi, Kondo (bib35) 2011; 65 Xiao, Mori, Kamei, Kondo (bib42) 2011; 22 Altschul, Gish, Miller, Myers, Lipman (bib4) 1990; 215 Baczynski, Pleissner, Grotenhuis (bib5) 2010; 78 Benimeli, Amoroso, Chaile, Castro (bib8) 2003; 89 Lal, Saxena (bib26) 1982; 46 Chikunia, Nhachi, Polder, Bergan, Nafstud, Skaare (bib10) 2002; 134 Hay, Focht (bib19) 1998; 64 Zhong, Liu, Liu, Wang, Zhou, Liu (bib49) 2014; 64 Gao, Liu, Jia, Xu, Xie (bib18) 2011; 46 Bajaj, Mayilraj, Mudiam, Patel, Manickam (bib6) 2014; 167 Zhang, Jia, Wang, Qu, Li, Xu, Shi, Yan (bib47) 2010; 101 Paloma (10.1016/j.jenvman.2015.07.025_bib33) 2001 You (10.1016/j.jenvman.2015.07.025_bib46) 1996; 32 Wang (10.1016/j.jenvman.2015.07.025_bib41) 2010; 41 Datta (10.1016/j.jenvman.2015.07.025_bib14) 2000; 46 Kimura (10.1016/j.jenvman.2015.07.025_bib25) 1983 Foght (10.1016/j.jenvman.2015.07.025_bib17) 2001; 5 Purnomo (10.1016/j.jenvman.2015.07.025_bib35) 2011; 65 Dale (10.1016/j.jenvman.2015.07.025_bib13) 1965; 33 Sun (10.1016/j.jenvman.2015.07.025_bib38) 2012; 233–234 Sarkar (10.1016/j.jenvman.2015.07.025_bib36) 2008; 34 Sudharshan (10.1016/j.jenvman.2015.07.025_bib37) 2012; 23 Xiao (10.1016/j.jenvman.2015.07.025_bib42) 2011; 22 Xu (10.1016/j.jenvman.2015.07.025_bib43) 2008; 62 Baczynski (10.1016/j.jenvman.2015.07.025_bib5) 2010; 78 van den Berg (10.1016/j.jenvman.2015.07.025_bib40) 2009; 117 Altschul (10.1016/j.jenvman.2015.07.025_bib4) 1990; 215 Bajaj (10.1016/j.jenvman.2015.07.025_bib6) 2014; 167 Corona-Cruz (10.1016/j.jenvman.2015.07.025_bib11) 1999; 63 Ai (10.1016/j.jenvman.2015.07.025_bib2) 2010; 58 Kelce (10.1016/j.jenvman.2015.07.025_bib24) 1995; 375 Hay (10.1016/j.jenvman.2015.07.025_bib19) 1998; 64 Chikunia (10.1016/j.jenvman.2015.07.025_bib10) 2002; 134 Huang (10.1016/j.jenvman.2015.07.025_bib21) 2007; 385 Zhao (10.1016/j.jenvman.2015.07.025_bib48) 2010; 7 Kamanavalli (10.1016/j.jenvman.2015.07.025_bib22) 2004; 48 Beni (10.1016/j.jenvman.2015.07.025_bib7) 2012; 95 Tamura (10.1016/j.jenvman.2015.07.025_bib39) 2011; 28 Alonso-Hernandez (10.1016/j.jenvman.2015.07.025_bib3) 2014; 94 Benimeli (10.1016/j.jenvman.2015.07.025_bib8) 2003; 89 Lal (10.1016/j.jenvman.2015.07.025_bib26) 1982; 46 Cutright (10.1016/j.jenvman.2015.07.025_bib12) 2012; 9 Bidlan (10.1016/j.jenvman.2015.07.025_bib9) 2002; 38 Nadeau (10.1016/j.jenvman.2015.07.025_bib31) 1994; 60 Matsumura (10.1016/j.jenvman.2015.07.025_bib29) 1968; 61 Purnomo (10.1016/j.jenvman.2015.07.025_bib34) 2010; 64 Ai (10.1016/j.jenvman.2015.07.025_bib1) 2013; 27 Manickam (10.1016/j.jenvman.2015.07.025_bib28) 2007; 102 Nadeau (10.1016/j.jenvman.2015.07.025_bib32) 1998; 171 Yim (10.1016/j.jenvman.2015.07.025_bib45) 2008; 54 Gao (10.1016/j.jenvman.2015.07.025_bib18) 2011; 46 Zhong (10.1016/j.jenvman.2015.07.025_bib49) 2014; 64 Fang (10.1016/j.jenvman.2015.07.025_bib16) 2010; 184 Hay (10.1016/j.jenvman.2015.07.025_bib20) 2000; 31 Lunney (10.1016/j.jenvman.2015.07.025_bib27) 2003; 38 Zhang (10.1016/j.jenvman.2015.07.025_bib47) 2010; 101 Kannan (10.1016/j.jenvman.2015.07.025_bib23) 1992; 40 |
| References_xml | – volume: 60 start-page: 51 year: 1994 end-page: 55 ident: bib31 article-title: Aerobic degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by publication-title: Appl. Environ. Microbiol. – volume: 28 start-page: 2731 year: 2011 end-page: 2739 ident: bib39 article-title: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods publication-title: Mol. Biol. Evol. – volume: 46 start-page: 95 year: 1982 end-page: 127 ident: bib26 article-title: Accumulation, metabolism, and effects of organochlorine insecticides on microorganisms publication-title: Microbiol. Rev. – volume: 46 start-page: 257 year: 2011 end-page: 263 ident: bib18 article-title: Isolation and characterization of an publication-title: J. Environ. Sci. Heal. B – year: 2001 ident: bib33 article-title: The Signification-the Cosmatesque Quincunx: a Double-cross Motif, Cosmatesque Ornament: Flat Polychrome Geometric Patterns in Architecture – volume: 38 start-page: 6147 year: 2003 end-page: 6154 ident: bib27 article-title: Uptake of weathered DDT in vascular plants: potential for phyoremediation publication-title: Environ. Sci. Technol. – volume: 171 start-page: 44 year: 1998 end-page: 49 ident: bib32 article-title: Oxidation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by publication-title: Arch. Microbiol. – volume: 48 start-page: 10 year: 2004 end-page: 13 ident: bib22 article-title: Biodegradation of DDT by a publication-title: Curr. Microbiol. – volume: 40 start-page: 518 year: 1992 end-page: 524 ident: bib23 article-title: Persistent organochlorine residues in foodstuffs from India and their implications on human dietary exposure publication-title: J. Agr. Food Chem. – volume: 22 start-page: 859 year: 2011 end-page: 867 ident: bib42 article-title: A novel metabolic pathway for biodegradation of DDT by the white rot fungi, publication-title: Biodegradation – volume: 23 start-page: 851 year: 2012 end-page: 863 ident: bib37 article-title: DDT remediation in contaminated soils: a review of recent studies publication-title: Biodegradation – volume: 233–234 start-page: 72 year: 2012 end-page: 78 ident: bib38 article-title: Pilot scale publication-title: J. Hazard. Mater. – volume: 95 start-page: 306 year: 2012 end-page: 318 ident: bib7 article-title: Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review publication-title: J. Environ. Manage – volume: 94 start-page: 36 year: 2014 end-page: 41 ident: bib3 article-title: Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in sediments from the Gulf of Batabanó, Cuba publication-title: Chemosphere – volume: 38 start-page: 49 year: 2002 end-page: 56 ident: bib9 article-title: Aerobic degradation of dichlorodiphenyltrichloro- ethane (DDT) by publication-title: Process Biochem. – volume: 78 start-page: 22 year: 2010 end-page: 28 ident: bib5 article-title: Anaerobic biodegradation of organochlorine pesticides in contaminated soil-significance of temperature and availability publication-title: Chemosphere – year: 1983 ident: bib25 article-title: The Neutral Theory of Molecular Evolution – volume: 64 start-page: 2812 year: 2014 end-page: 2818 ident: bib49 article-title: sp. nov., isolated from a saline lake publication-title: Int. J. Syst. Evol. Micr – volume: 215 start-page: 403 year: 1990 end-page: 410 ident: bib4 article-title: Basic local alignment search tool publication-title: J. Mol. Biol. – volume: 385 start-page: 235 year: 2007 end-page: 241 ident: bib21 article-title: Uptake and biodegradation of DDT by 4 ectomycorrhizal fungi publication-title: Sci. Total Environ. – volume: 5 start-page: 225 year: 2001 end-page: 246 ident: bib17 article-title: Bioremediation of DDT-contaminated soils: a review publication-title: Bioremediat. J. – volume: 64 start-page: 2141 year: 1998 end-page: 2146 ident: bib19 article-title: Cometabolism of 1,1-dichloro-2,2-Bis (4-chlorophenyl) ethylene by publication-title: Appl. Environ. Microbiol. – volume: 63 start-page: 219 year: 1999 end-page: 225 ident: bib11 article-title: Anaerobic-aerobic biodegradation of DDT (dichlorodiphenyl trichloroethane) in soils publication-title: Bull. Environ. Contam. Toxicol – volume: 7 start-page: 1612 year: 2010 end-page: 1621 ident: bib48 article-title: Effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase from white rot fungi publication-title: Int. J. Environ. Res. Public Health – volume: 89 start-page: 133 year: 2003 end-page: 138 ident: bib8 article-title: Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides publication-title: Bioresour. Technol. – volume: 65 start-page: 691 year: 2011 end-page: 695 ident: bib35 article-title: Bioremediation of DDT contaminated soil using brown-rot fungi publication-title: Int. Biodeter. Biodegr. – volume: 102 start-page: 1468 year: 2007 end-page: 1478 ident: bib28 article-title: A novel pathway for the biodegradation of γ-hexachlorocyclohexane by a publication-title: J. Appl. Microbiol. – volume: 31 start-page: 249 year: 2000 end-page: 253 ident: bib20 article-title: Transformation of 1,1-dichloro-2,2-(4-chlorophenyl)ethane (DDT) by publication-title: FEMS Microbiol. Ecol. – volume: 62 start-page: 51 year: 2008 end-page: 56 ident: bib43 article-title: Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated publication-title: Inter. Biodeterior. Biodegr. – volume: 27 start-page: 1935 year: 2013 end-page: 1944 ident: bib1 article-title: Simultaneous characterization of methane and carbon dioxide produced by cultured methanogens using gas chromatography/isotope ratio mass spectrometry and gas chromatography/mass spectrometry publication-title: Rapid Commun. Mass Sp. – volume: 58 start-page: 694 year: 2010 end-page: 701 ident: bib2 article-title: HPLC assay for characterizingr-cyano-3-phenoxybenzyl pyrethroids hydrolytic metabolism by publication-title: J. Agr. Food Chem. – volume: 9 start-page: 39 year: 2012 end-page: 45 ident: bib12 article-title: Overview of the bioremediation and the degradation pathways of DDT publication-title: J. Adnan Menderes Univ. Agric. Fac. – volume: 61 start-page: 610 year: 1968 end-page: 612 ident: bib29 article-title: Degradation of insecticides by a soil fungus, publication-title: J. Econ. Entomol. – volume: 375 start-page: 581 year: 1995 end-page: 585 ident: bib24 article-title: Persistent DDT metabolite publication-title: Nature – volume: 54 start-page: 406 year: 2008 end-page: 411 ident: bib45 article-title: Reductive dechlorination of methoxychlor and DDT by human intestinal bacterium publication-title: Arch. Environ. Contam. Toxicol – volume: 167 start-page: 398 year: 2014 end-page: 406 ident: bib6 article-title: Isolation and functional analysis of a glycolipid producing publication-title: Bioresour. Technol. – volume: 184 start-page: 281 year: 2010 end-page: 289 ident: bib16 article-title: Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J publication-title: Hazard. Mater – volume: 134 start-page: 147 year: 2002 end-page: 153 ident: bib10 article-title: Effects of DDT on paracetamol half-life in highly exposed mothers in Zimbabwe publication-title: Toxicol. Lett. – volume: 64 start-page: 397 year: 2010 end-page: 402 ident: bib34 article-title: Application of mushroom waste medium from publication-title: Int. Biodeter. Biodegr. – volume: 101 start-page: 3423 year: 2010 end-page: 3429 ident: bib47 article-title: Biodegradation of beta-cypermethrin by two publication-title: Bioresour. Technol. – volume: 41 start-page: 431 year: 2010 end-page: 438 ident: bib41 article-title: Co-metabolism of DDT by the newly isolated bacterium, publication-title: Braz. J. Microbiol. – volume: 32 start-page: 2269 year: 1996 end-page: 4284 ident: bib46 article-title: Anaerobic DDT biotransformation: enhancement by application of surfactants and low oxidation reduction potential publication-title: Chemosphere – volume: 34 start-page: 1062 year: 2008 end-page: 1071 ident: bib36 article-title: Occurrence, distribution and possible sources of organochlorine pesticide residues in tropical coastal environment of India: an overview publication-title: Environ. Int. – volume: 117 start-page: 1656 year: 2009 end-page: 1663 ident: bib40 article-title: Global status of DDT and its alternatives for use in vector control to prevent disease publication-title: Environ. Health Persp. – volume: 46 start-page: 59 year: 2000 end-page: 67 ident: bib14 article-title: Metabolism of gamma-hexachlorocyclohexane by publication-title: J. Gen. Appl. Microbiol. – volume: 33 start-page: 471 year: 1965 end-page: 477 ident: bib13 article-title: Chlorinated pesticides in the body fat of people of India publication-title: B. World Health Organ – volume: 95 start-page: 306 issue: Suppl. l year: 2012 ident: 10.1016/j.jenvman.2015.07.025_bib7 article-title: Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review publication-title: J. Environ. Manage – volume: 385 start-page: 235 year: 2007 ident: 10.1016/j.jenvman.2015.07.025_bib21 article-title: Uptake and biodegradation of DDT by 4 ectomycorrhizal fungi publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2007.04.023 – volume: 27 start-page: 1935 issue: 17 year: 2013 ident: 10.1016/j.jenvman.2015.07.025_bib1 article-title: Simultaneous characterization of methane and carbon dioxide produced by cultured methanogens using gas chromatography/isotope ratio mass spectrometry and gas chromatography/mass spectrometry publication-title: Rapid Commun. Mass Sp. doi: 10.1002/rcm.6651 – volume: 38 start-page: 49 issue: 1 year: 2002 ident: 10.1016/j.jenvman.2015.07.025_bib9 article-title: Aerobic degradation of dichlorodiphenyltrichloro- ethane (DDT) by Serratia marcescens DT-1P publication-title: Process Biochem. doi: 10.1016/S0032-9592(02)00066-3 – volume: 78 start-page: 22 issue: 1 year: 2010 ident: 10.1016/j.jenvman.2015.07.025_bib5 article-title: Anaerobic biodegradation of organochlorine pesticides in contaminated soil-significance of temperature and availability publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.09.058 – volume: 41 start-page: 431 issue: 2 year: 2010 ident: 10.1016/j.jenvman.2015.07.025_bib41 article-title: Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. WAX publication-title: Braz. J. Microbiol. doi: 10.1590/S1517-83822010000200025 – volume: 64 start-page: 2141 issue: 6 year: 1998 ident: 10.1016/j.jenvman.2015.07.025_bib19 article-title: Cometabolism of 1,1-dichloro-2,2-Bis (4-chlorophenyl) ethylene by Pseudomonas acidovorans M3GY grown on biphenyl publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.64.6.2141-2146.1998 – volume: 31 start-page: 249 issue: 3 year: 2000 ident: 10.1016/j.jenvman.2015.07.025_bib20 article-title: Transformation of 1,1-dichloro-2,2-(4-chlorophenyl)ethane (DDT) by Ralstonia eutropha strain A5 publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2000.tb00690.x – volume: 61 start-page: 610 issue: 3 year: 1968 ident: 10.1016/j.jenvman.2015.07.025_bib29 article-title: Degradation of insecticides by a soil fungus, Trichoderma viride publication-title: J. Econ. Entomol. doi: 10.1093/jee/61.3.610 – volume: 60 start-page: 51 issue: 1 year: 1994 ident: 10.1016/j.jenvman.2015.07.025_bib31 article-title: Aerobic degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by Alcaligenes eutrophus A5 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.60.1.51-55.1994 – volume: 46 start-page: 95 issue: 1 year: 1982 ident: 10.1016/j.jenvman.2015.07.025_bib26 article-title: Accumulation, metabolism, and effects of organochlorine insecticides on microorganisms publication-title: Microbiol. Rev. doi: 10.1128/MMBR.46.1.95-127.1982 – volume: 22 start-page: 859 issue: 5 year: 2011 ident: 10.1016/j.jenvman.2015.07.025_bib42 article-title: A novel metabolic pathway for biodegradation of DDT by the white rot fungi, Phlebia lindtneri and Phlebia brevispora publication-title: Biodegradation doi: 10.1007/s10532-010-9443-z – volume: 89 start-page: 133 year: 2003 ident: 10.1016/j.jenvman.2015.07.025_bib8 article-title: Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(03)00061-0 – volume: 5 start-page: 225 issue: 3 year: 2001 ident: 10.1016/j.jenvman.2015.07.025_bib17 article-title: Bioremediation of DDT-contaminated soils: a review publication-title: Bioremediat. J. doi: 10.1080/20018891079302 – volume: 233–234 start-page: 72 year: 2012 ident: 10.1016/j.jenvman.2015.07.025_bib38 article-title: Pilot scale ex-situ bioremediation of heavily PAHs-contaminated soil by indigenous microorganisms and bioaugmentation by a PAH-degrading and bioemulsifier-producing strain publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.06.060 – volume: 62 start-page: 51 year: 2008 ident: 10.1016/j.jenvman.2015.07.025_bib43 article-title: Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP publication-title: Inter. Biodeterior. Biodegr. doi: 10.1016/j.ibiod.2007.12.001 – volume: 375 start-page: 581 issue: 6532 year: 1995 ident: 10.1016/j.jenvman.2015.07.025_bib24 article-title: Persistent DDT metabolite p,p′-DDE is a potent androgen receptor antagonist publication-title: Nature doi: 10.1038/375581a0 – year: 2001 ident: 10.1016/j.jenvman.2015.07.025_bib33 – volume: 65 start-page: 691 year: 2011 ident: 10.1016/j.jenvman.2015.07.025_bib35 article-title: Bioremediation of DDT contaminated soil using brown-rot fungi publication-title: Int. Biodeter. Biodegr. doi: 10.1016/j.ibiod.2011.04.004 – volume: 32 start-page: 2269 year: 1996 ident: 10.1016/j.jenvman.2015.07.025_bib46 article-title: Anaerobic DDT biotransformation: enhancement by application of surfactants and low oxidation reduction potential publication-title: Chemosphere doi: 10.1016/0045-6535(96)00121-X – volume: 34 start-page: 1062 issue: 7 year: 2008 ident: 10.1016/j.jenvman.2015.07.025_bib36 article-title: Occurrence, distribution and possible sources of organochlorine pesticide residues in tropical coastal environment of India: an overview publication-title: Environ. Int. doi: 10.1016/j.envint.2008.02.010 – volume: 64 start-page: 2812 year: 2014 ident: 10.1016/j.jenvman.2015.07.025_bib49 article-title: Roseibium aquae sp. nov., isolated from a saline lake publication-title: Int. J. Syst. Evol. Micr doi: 10.1099/ijs.0.065508-0 – volume: 184 start-page: 281 year: 2010 ident: 10.1016/j.jenvman.2015.07.025_bib16 article-title: Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J publication-title: Hazard. Mater doi: 10.1016/j.jhazmat.2010.08.034 – volume: 46 start-page: 59 year: 2000 ident: 10.1016/j.jenvman.2015.07.025_bib14 article-title: Metabolism of gamma-hexachlorocyclohexane by Arthrobacter citreus strain BI-100: Identification of metabolites publication-title: J. Gen. Appl. Microbiol. doi: 10.2323/jgam.46.59 – volume: 28 start-page: 2731 year: 2011 ident: 10.1016/j.jenvman.2015.07.025_bib39 article-title: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msr121 – volume: 167 start-page: 398 year: 2014 ident: 10.1016/j.jenvman.2015.07.025_bib6 article-title: Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.06.007 – volume: 33 start-page: 471 year: 1965 ident: 10.1016/j.jenvman.2015.07.025_bib13 article-title: Chlorinated pesticides in the body fat of people of India publication-title: B. World Health Organ – volume: 38 start-page: 6147 year: 2003 ident: 10.1016/j.jenvman.2015.07.025_bib27 article-title: Uptake of weathered DDT in vascular plants: potential for phyoremediation publication-title: Environ. Sci. Technol. doi: 10.1021/es030705b – volume: 117 start-page: 1656 issue: 11 year: 2009 ident: 10.1016/j.jenvman.2015.07.025_bib40 article-title: Global status of DDT and its alternatives for use in vector control to prevent disease publication-title: Environ. Health Persp. doi: 10.1289/ehp.0900785 – volume: 101 start-page: 3423 issue: 10 year: 2010 ident: 10.1016/j.jenvman.2015.07.025_bib47 article-title: Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.12.083 – volume: 94 start-page: 36 year: 2014 ident: 10.1016/j.jenvman.2015.07.025_bib3 article-title: Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in sediments from the Gulf of Batabanó, Cuba publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.09.007 – volume: 102 start-page: 1468 issue: 6 year: 2007 ident: 10.1016/j.jenvman.2015.07.025_bib28 article-title: A novel pathway for the biodegradation of γ-hexachlorocyclohexane by a Xanthomonas sp. strain ICH12 publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2006.03209.x – volume: 64 start-page: 397 year: 2010 ident: 10.1016/j.jenvman.2015.07.025_bib34 article-title: Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil publication-title: Int. Biodeter. Biodegr. doi: 10.1016/j.ibiod.2010.04.007 – year: 1983 ident: 10.1016/j.jenvman.2015.07.025_bib25 – volume: 215 start-page: 403 issue: 3 year: 1990 ident: 10.1016/j.jenvman.2015.07.025_bib4 article-title: Basic local alignment search tool publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(05)80360-2 – volume: 48 start-page: 10 year: 2004 ident: 10.1016/j.jenvman.2015.07.025_bib22 article-title: Biodegradation of DDT by a Pseudomonas sp publication-title: Curr. Microbiol. doi: 10.1007/s00284-003-4053-1 – volume: 46 start-page: 257 issue: 3 year: 2011 ident: 10.1016/j.jenvman.2015.07.025_bib18 article-title: Isolation and characterization of an Alcaligenes sp. strain DG-5 capable of degrading DDTs under aerobic conditions publication-title: J. Environ. Sci. Heal. B doi: 10.1080/03601234.2011.540534 – volume: 63 start-page: 219 issue: 2 year: 1999 ident: 10.1016/j.jenvman.2015.07.025_bib11 article-title: Anaerobic-aerobic biodegradation of DDT (dichlorodiphenyl trichloroethane) in soils publication-title: Bull. Environ. Contam. Toxicol doi: 10.1007/s001289900969 – volume: 171 start-page: 44 year: 1998 ident: 10.1016/j.jenvman.2015.07.025_bib32 article-title: Oxidation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by Alcaligenes eutrophus A5 publication-title: Arch. Microbiol. doi: 10.1007/s002030050676 – volume: 40 start-page: 518 year: 1992 ident: 10.1016/j.jenvman.2015.07.025_bib23 article-title: Persistent organochlorine residues in foodstuffs from India and their implications on human dietary exposure publication-title: J. Agr. Food Chem. doi: 10.1021/jf00015a032 – volume: 7 start-page: 1612 year: 2010 ident: 10.1016/j.jenvman.2015.07.025_bib48 article-title: Effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase from white rot fungi publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph7041612 – volume: 134 start-page: 147 year: 2002 ident: 10.1016/j.jenvman.2015.07.025_bib10 article-title: Effects of DDT on paracetamol half-life in highly exposed mothers in Zimbabwe publication-title: Toxicol. Lett. doi: 10.1016/S0378-4274(02)00184-4 – volume: 58 start-page: 694 issue: 2 year: 2010 ident: 10.1016/j.jenvman.2015.07.025_bib2 article-title: HPLC assay for characterizingr-cyano-3-phenoxybenzyl pyrethroids hydrolytic metabolism by helicoverpa armigera based on the quantitative analysis of 3-phenoxybenzoic acid publication-title: J. Agr. Food Chem. doi: 10.1021/jf9030376 – volume: 9 start-page: 39 year: 2012 ident: 10.1016/j.jenvman.2015.07.025_bib12 article-title: Overview of the bioremediation and the degradation pathways of DDT publication-title: J. Adnan Menderes Univ. Agric. Fac. – volume: 23 start-page: 851 issue: 6 year: 2012 ident: 10.1016/j.jenvman.2015.07.025_bib37 article-title: DDT remediation in contaminated soils: a review of recent studies publication-title: Biodegradation doi: 10.1007/s10532-012-9575-4 – volume: 54 start-page: 406 issue: 3 year: 2008 ident: 10.1016/j.jenvman.2015.07.025_bib45 article-title: Reductive dechlorination of methoxychlor and DDT by human intestinal bacterium Eubacterium limosum under anaerobic conditions publication-title: Arch. Environ. Contam. Toxicol doi: 10.1007/s00244-007-9044-y |
| SSID | ssj0003217 |
| Score | 2.4325335 |
| Snippet | Long term residues of organochlorine pesticides (OCPs) in soils are of great concerning because they seriously threaten food security and human health. This... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 350 |
| SubjectTerms | Acids Augmentation Bacteria Bacteria - metabolism Biodegradation Biodegradation, Environmental Bioremediation carbon Chlorobenzoates - analysis Chlorobenzoates - metabolism Chryseobacterium Chryseobacterium - metabolism Chryseobacterium sp. PYR2 Cultural change DDD DDD (pesticide) DDE DDE (pesticide) DDT DDT (pesticide) DDT - metabolism Degradation energy Energy sources Ethane Ethylene Experiments Food security gas chromatography-mass spectrometry Gram-negative bacteria HCH HCH (pesticide) Healthy food Hexachlorocyclohexane human health Human security Humans Hydrocarbons, Chlorinated - metabolism Isomerism isomers Metabolites Nitrous oxide Obligatory contour principle Organic compounds Organochlorine pesticides Pesticide residues Pesticides Pesticides - analysis Pesticides - metabolism Phenylacetates - analysis Phenylacetates - metabolism polluted soils Residues Soil (material) Soil contamination Soil Pollutants - analysis Soil Pollutants - metabolism Soils |
| Title | Novel Chryseobacterium sp. PYR2 degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil |
| URI | https://dx.doi.org/10.1016/j.jenvman.2015.07.025 https://www.ncbi.nlm.nih.gov/pubmed/26203874 https://www.proquest.com/docview/1712842827 https://www.proquest.com/docview/1708897022 https://www.proquest.com/docview/1712576860 https://www.proquest.com/docview/1744707027 https://www.proquest.com/docview/1846330717 |
| Volume | 161 |
| WOSCitedRecordID | wos000361264100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-8630 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003217 issn: 0301-4797 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF31ggQvCAqFQKkWCSFQ5NSXdXb9WLUpF5W0oFRKnyxns1FcpXaok6j9J76CL2Nmd-0EQi888GJF9jqOM8c7s-MzZwh5wwOB6QTphEEzcpjkvhMxFjoiUZ7iPrgU3zSb4O226Haj45WVn2UtzGzEs0xcXkbj_2pq2AfGxtLZfzB39aWwAz6D0WELZoftnQzfzmdqhKIBV4WCh1WLMU_P68W4UT8-_ebX-ygP0VdFfQbLZCTA6sZOuRxqLp6qj1F3Q6Z9k4892jsuMHOgNV3lMFWoUquyIcp0YJcidZ7PrNyAZqdDDG6vUMWi-_sdzKqgMPLoSnPjE-TfYKhb5JbhsRweL1TgYYHLEkvn61QDMK2A2dU7ThPrihHEmqnwYZo7X9I58yg140qXbTMeXoj0DFPz2VBmloa40BFN-0KnnMaNqLudiAMjZ2t9emBEsJfchclcnDXO4J7gRpDpF2otVz-c-8eSE9A-ig9ODg_jTqvbeTv-7mDnMnzDb9u4rJJ1n4eRWCPru59a3c9VPBDAqm9eO7bz16tdFxVdt-rR0U_nEXlo7UJ3DdwekxWVbZD7ZVV7sUE2W4v2otZlFE_ID41H-iceKeCRIh5piUdq8Uh_xyOd45G-QzS-pwA2WmKRVlikFov6cIlFuoBFmg8oYJGmGTVYpItYpIjFp-TkoNXZ--jYFiGOZJE_cfxeJAbcQ40mlniRcvsJV75UfaWinhy4Pd5DsQQuw2YAgW7i8kGUJEGohFTMlW6wSdayPFPPCQ0l87hQbtPtMYYNaAb9BJWbPFiyJEJ5NcJKE8XS6udjG5dRXBIlz2Jr2RgtG7s8BsvWSKM6bWwEZG47QZT2j20UbKLbGFB726lbJV5iOyMVsccxBPWFz2vkdXUYnAi-GUwyBYaFMch25BDP3zTG08mJpnvTGMY4BBE3XgtWPEGAaaQaeWYwXf0x2B0jEJy9uMMvfUkezCeHLbI2uZiqV-SenE3S4mKbrPKu2LaP4i_GGh65 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Chryseobacterium+sp.+PYR2+degrades+various+organochlorine+pesticides+%28OCPs%29+and+achieves+enhancing+removal+and+complete+degradation+of+DDT+in+highly+contaminated+soil&rft.jtitle=Journal+of+environmental+management&rft.au=Qu%2C+Jie&rft.au=Xu%2C+Yang&rft.au=Ai%2C+Guo-Min&rft.au=Liu%2C+Ying&rft.date=2015-09-15&rft.eissn=1095-8630&rft.volume=161&rft.spage=350&rft.epage=357&rft_id=info:doi/10.1016%2Fj.jenvman.2015.07.025&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon |