Generalization to d-dimensions of a fermionic path integral for exact enumeration of polygons on hypercubic lattices

The generating function for polygons on the square lattice has been known for many decades and is closely related to the path integral formulation of a free fermion model. On the cubic and hypercubic lattices the generating function is still unknown and the problem remains open. It has been conjectu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 14; H. 1; S. 22375 - 7
Hauptverfasser: Ostilli, M., Rocha, G. W. C., Bezerra, C. G., Viswanathan, G. M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 27.09.2024
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The generating function for polygons on the square lattice has been known for many decades and is closely related to the path integral formulation of a free fermion model. On the cubic and hypercubic lattices the generating function is still unknown and the problem remains open. It has been conjectured that the three-dimensional (3D) and higher dimensional problems are not solvable—or, to be more precise, that there are no differentiably finite ( D -finite) solutions. In this context, very recently a Berezin integral of an exponentiated Grassmann action was found for the polygon generating function on the cubic lattice, making explicit the connection between 3D polygons and a model of interacting fermions. Here we address the problem of how to generalize the 3D result to higher dimensions. We derive a Grassmann representation in terms of a Berezin integral for the generating function of polygons on d -dimensional hypercubic lattices. On the one hand, this new result admittedly brings us no closer to the problem of finding an explicit analytic expression for the desired generating function for polygons. On the other hand, however, the significant advance reported here precisely quantifies the remarkable mathematical difficulty of finding the explicit generating function. Indeed, the non-quadratic functional form of the Grassmann action that we derive here provides a very clear picture of the formidable mathematical obstruction that would need to be overcome. Specifically, in d dimensions, the Grassmann action contains terms of degree 2 ( d - 1 ) , so the model describes interacting rather than free fermions. It is an open problem whether or not these models of interacting fermions can in principle be free fermionized through some still undiscovered algebraic method, but it is widely believed that this goal is mathematically impossible.
AbstractList The generating function for polygons on the square lattice has been known for many decades and is closely related to the path integral formulation of a free fermion model. On the cubic and hypercubic lattices the generating function is still unknown and the problem remains open. It has been conjectured that the three-dimensional (3D) and higher dimensional problems are not solvable—or, to be more precise, that there are no differentiably finite ( D -finite) solutions. In this context, very recently a Berezin integral of an exponentiated Grassmann action was found for the polygon generating function on the cubic lattice, making explicit the connection between 3D polygons and a model of interacting fermions. Here we address the problem of how to generalize the 3D result to higher dimensions. We derive a Grassmann representation in terms of a Berezin integral for the generating function of polygons on d -dimensional hypercubic lattices. On the one hand, this new result admittedly brings us no closer to the problem of finding an explicit analytic expression for the desired generating function for polygons. On the other hand, however, the significant advance reported here precisely quantifies the remarkable mathematical difficulty of finding the explicit generating function. Indeed, the non-quadratic functional form of the Grassmann action that we derive here provides a very clear picture of the formidable mathematical obstruction that would need to be overcome. Specifically, in d dimensions, the Grassmann action contains terms of degree 2 ( d - 1 ) , so the model describes interacting rather than free fermions. It is an open problem whether or not these models of interacting fermions can in principle be free fermionized through some still undiscovered algebraic method, but it is widely believed that this goal is mathematically impossible.
The generating function for polygons on the square lattice has been known for many decades and is closely related to the path integral formulation of a free fermion model. On the cubic and hypercubic lattices the generating function is still unknown and the problem remains open. It has been conjectured that the three-dimensional (3D) and higher dimensional problems are not solvable-or, to be more precise, that there are no differentiably finite (D-finite) solutions. In this context, very recently a Berezin integral of an exponentiated Grassmann action was found for the polygon generating function on the cubic lattice, making explicit the connection between 3D polygons and a model of interacting fermions. Here we address the problem of how to generalize the 3D result to higher dimensions. We derive a Grassmann representation in terms of a Berezin integral for the generating function of polygons on d-dimensional hypercubic lattices. On the one hand, this new result admittedly brings us no closer to the problem of finding an explicit analytic expression for the desired generating function for polygons. On the other hand, however, the significant advance reported here precisely quantifies the remarkable mathematical difficulty of finding the explicit generating function. Indeed, the non-quadratic functional form of the Grassmann action that we derive here provides a very clear picture of the formidable mathematical obstruction that would need to be overcome. Specifically, in d dimensions, the Grassmann action contains terms of degree 2 ( d - 1 ) , so the model describes interacting rather than free fermions. It is an open problem whether or not these models of interacting fermions can in principle be free fermionized through some still undiscovered algebraic method, but it is widely believed that this goal is mathematically impossible.The generating function for polygons on the square lattice has been known for many decades and is closely related to the path integral formulation of a free fermion model. On the cubic and hypercubic lattices the generating function is still unknown and the problem remains open. It has been conjectured that the three-dimensional (3D) and higher dimensional problems are not solvable-or, to be more precise, that there are no differentiably finite (D-finite) solutions. In this context, very recently a Berezin integral of an exponentiated Grassmann action was found for the polygon generating function on the cubic lattice, making explicit the connection between 3D polygons and a model of interacting fermions. Here we address the problem of how to generalize the 3D result to higher dimensions. We derive a Grassmann representation in terms of a Berezin integral for the generating function of polygons on d-dimensional hypercubic lattices. On the one hand, this new result admittedly brings us no closer to the problem of finding an explicit analytic expression for the desired generating function for polygons. On the other hand, however, the significant advance reported here precisely quantifies the remarkable mathematical difficulty of finding the explicit generating function. Indeed, the non-quadratic functional form of the Grassmann action that we derive here provides a very clear picture of the formidable mathematical obstruction that would need to be overcome. Specifically, in d dimensions, the Grassmann action contains terms of degree 2 ( d - 1 ) , so the model describes interacting rather than free fermions. It is an open problem whether or not these models of interacting fermions can in principle be free fermionized through some still undiscovered algebraic method, but it is widely believed that this goal is mathematically impossible.
The generating function for polygons on the square lattice has been known for many decades and is closely related to the path integral formulation of a free fermion model. On the cubic and hypercubic lattices the generating function is still unknown and the problem remains open. It has been conjectured that the three-dimensional (3D) and higher dimensional problems are not solvable—or, to be more precise, that there are no differentiably finite (D-finite) solutions. In this context, very recently a Berezin integral of an exponentiated Grassmann action was found for the polygon generating function on the cubic lattice, making explicit the connection between 3D polygons and a model of interacting fermions. Here we address the problem of how to generalize the 3D result to higher dimensions. We derive a Grassmann representation in terms of a Berezin integral for the generating function of polygons on d-dimensional hypercubic lattices. On the one hand, this new result admittedly brings us no closer to the problem of finding an explicit analytic expression for the desired generating function for polygons. On the other hand, however, the significant advance reported here precisely quantifies the remarkable mathematical difficulty of finding the explicit generating function. Indeed, the non-quadratic functional form of the Grassmann action that we derive here provides a very clear picture of the formidable mathematical obstruction that would need to be overcome. Specifically, in d dimensions, the Grassmann action contains terms of degree 2(d-1), so the model describes interacting rather than free fermions. It is an open problem whether or not these models of interacting fermions can in principle be free fermionized through some still undiscovered algebraic method, but it is widely believed that this goal is mathematically impossible.
The generating function for polygons on the square lattice has been known for many decades and is closely related to the path integral formulation of a free fermion model. On the cubic and hypercubic lattices the generating function is still unknown and the problem remains open. It has been conjectured that the three-dimensional (3D) and higher dimensional problems are not solvable-or, to be more precise, that there are no differentiably finite (D-finite) solutions. In this context, very recently a Berezin integral of an exponentiated Grassmann action was found for the polygon generating function on the cubic lattice, making explicit the connection between 3D polygons and a model of interacting fermions. Here we address the problem of how to generalize the 3D result to higher dimensions. We derive a Grassmann representation in terms of a Berezin integral for the generating function of polygons on d-dimensional hypercubic lattices. On the one hand, this new result admittedly brings us no closer to the problem of finding an explicit analytic expression for the desired generating function for polygons. On the other hand, however, the significant advance reported here precisely quantifies the remarkable mathematical difficulty of finding the explicit generating function. Indeed, the non-quadratic functional form of the Grassmann action that we derive here provides a very clear picture of the formidable mathematical obstruction that would need to be overcome. Specifically, in d dimensions, the Grassmann action contains terms of degree , so the model describes interacting rather than free fermions. It is an open problem whether or not these models of interacting fermions can in principle be free fermionized through some still undiscovered algebraic method, but it is widely believed that this goal is mathematically impossible.
Abstract The generating function for polygons on the square lattice has been known for many decades and is closely related to the path integral formulation of a free fermion model. On the cubic and hypercubic lattices the generating function is still unknown and the problem remains open. It has been conjectured that the three-dimensional (3D) and higher dimensional problems are not solvable—or, to be more precise, that there are no differentiably finite (D-finite) solutions. In this context, very recently a Berezin integral of an exponentiated Grassmann action was found for the polygon generating function on the cubic lattice, making explicit the connection between 3D polygons and a model of interacting fermions. Here we address the problem of how to generalize the 3D result to higher dimensions. We derive a Grassmann representation in terms of a Berezin integral for the generating function of polygons on d-dimensional hypercubic lattices. On the one hand, this new result admittedly brings us no closer to the problem of finding an explicit analytic expression for the desired generating function for polygons. On the other hand, however, the significant advance reported here precisely quantifies the remarkable mathematical difficulty of finding the explicit generating function. Indeed, the non-quadratic functional form of the Grassmann action that we derive here provides a very clear picture of the formidable mathematical obstruction that would need to be overcome. Specifically, in d dimensions, the Grassmann action contains terms of degree $$2(d-1)$$ 2 ( d - 1 ) , so the model describes interacting rather than free fermions. It is an open problem whether or not these models of interacting fermions can in principle be free fermionized through some still undiscovered algebraic method, but it is widely believed that this goal is mathematically impossible.
The generating function for polygons on the square lattice has been known for many decades and is closely related to the path integral formulation of a free fermion model. On the cubic and hypercubic lattices the generating function is still unknown and the problem remains open. It has been conjectured that the three-dimensional (3D) and higher dimensional problems are not solvable—or, to be more precise, that there are no differentiably finite (D-finite) solutions. In this context, very recently a Berezin integral of an exponentiated Grassmann action was found for the polygon generating function on the cubic lattice, making explicit the connection between 3D polygons and a model of interacting fermions. Here we address the problem of how to generalize the 3D result to higher dimensions. We derive a Grassmann representation in terms of a Berezin integral for the generating function of polygons on d-dimensional hypercubic lattices. On the one hand, this new result admittedly brings us no closer to the problem of finding an explicit analytic expression for the desired generating function for polygons. On the other hand, however, the significant advance reported here precisely quantifies the remarkable mathematical difficulty of finding the explicit generating function. Indeed, the non-quadratic functional form of the Grassmann action that we derive here provides a very clear picture of the formidable mathematical obstruction that would need to be overcome. Specifically, in d dimensions, the Grassmann action contains terms of degree $$2(d-1)$$ 2(d-1), so the model describes interacting rather than free fermions. It is an open problem whether or not these models of interacting fermions can in principle be free fermionized through some still undiscovered algebraic method, but it is widely believed that this goal is mathematically impossible.
ArticleNumber 22375
Author Bezerra, C. G.
Ostilli, M.
Viswanathan, G. M.
Rocha, G. W. C.
Author_xml – sequence: 1
  givenname: M.
  surname: Ostilli
  fullname: Ostilli, M.
  email: massimo.ostilli@ufba.br
  organization: Institute of Physics, Federal University of Bahia
– sequence: 2
  givenname: G. W. C.
  surname: Rocha
  fullname: Rocha, G. W. C.
  email: gabrielwendell@fisica.ufrn.br
  organization: Physics Department, Federal University of Rio Grande do Norte
– sequence: 3
  givenname: C. G.
  surname: Bezerra
  fullname: Bezerra, C. G.
  email: cbezerra@fisica.ufrn.br
  organization: Physics Department, Federal University of Rio Grande do Norte
– sequence: 4
  givenname: G. M.
  surname: Viswanathan
  fullname: Viswanathan, G. M.
  email: gandhi@fisica.ufrn.br
  organization: Physics Department, Federal University of Rio Grande do Norte, National Institute of Science and Technology of Complex Systems, Federal University of Rio Grande do Norte
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39333205$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9vFCEUx4mpsXXtP-DBkHjxMsrPYTgZ09japIkXPRMG3uzOZgZWYEzXv166W2vrQS7w4Pv98Hi8l-gkxAAIvabkPSW8-5AFlbprCBONoh3RDX2GzhgRsmGcsZNH61N0nvOW1CGZFlS_QKdcc84ZkWeoXEGAZKfxly1jDLhE7Bs_zhByDTOOA7Z4gDTXaHR4Z8sGj6HAunrwEBOGW-sKhrDMFXNAVMsuTvv1wR7wZr-D5Ja-uidbyuggv0LPBztlOL-fV-j75edvF1-am69X1xefbhonNCsNU8p7aXsx9JZwqTreg3WWCK8ZA6etBk-HQSqlOtkz77yFVmreaS471_d8ha6PXB_t1uzSONu0N9GO5rAR09rYVDOawPRO0ZZL0bayFcxCL4jgWnsA5XRnu8r6eGTtln4G7yCUWoIn0KcnYdyYdfxpKBW8VZxVwrt7Qoo_FsjFzGN2ME02QFyy4ZQSxeu1pErf_iPdxiWFWquDqpaC1keu0JvHKT3k8ud3q4AdBS7FnBMMDxJKzF0XmWMXmdpF5tBFhlYTP5pyFYc1pL93_8f1G_QFy5M
Cites_doi 10.1103/PhysRevLett.81.2356
10.1103/PhysRevLett.125.260601
10.1016/j.nuclphysb.2018.06.007
10.1016/j.aop.2004.01.004
10.1063/1.524406
10.1103/PhysRev.76.1232
10.1103/RevModPhys.36.856
10.1142/S0217751X9900213X
10.1038/srep33523
10.1063/5.0095189
10.21468/SciPostPhys.5.3.030
10.1088/1742-5468/ac0f71
10.1103/PhysRevLett.58.2466
10.1016/B978-0-12-385340-0.50009-7
10.1016/0550-3213(87)90328-2
10.1063/1.524405
10.1007/BF01017042
10.1103/PhysRevB.106.195127
10.1103/PhysRevLett.86.1881
10.1142/S0217751X16450445
10.1007/978-1-4020-9927-4
10.1088/1367-2630/18/11/113025
10.1103/PhysRev.65.117
10.1103/PhysRevB.108.014423
10.1063/1.524404
10.1016/0550-3213(82)90174-2
10.1070/RM1969v024n03ABEH001346
10.1126/science.288.5471.1561a
10.1016/0370-2693(79)90747-0
ContentType Journal Article
Copyright The Author(s) 2024. corrected publication 2024
2024. The Author(s).
The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024. corrected publication 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-71809-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 7
ExternalDocumentID oai_doaj_org_article_bc716354665642aeb404399dee7c98a8
PMC11436732
39333205
10_1038_s41598_024_71809_1
Genre Journal Article
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 302414/2022-3
  funderid: http://dx.doi.org/10.13039/501100003593
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 302414/2022-3
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
AJTQC
NPM
3V.
7XB
88A
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c492t-277dd5ab4fba035783beaca04d922ec9a9ed1ff577785b2dcdae659389358cbb3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001354536300066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 18:55:13 EDT 2025
Tue Nov 04 02:05:26 EST 2025
Sun Nov 09 12:00:53 EST 2025
Tue Oct 07 07:44:43 EDT 2025
Thu Apr 03 06:59:00 EDT 2025
Sat Nov 29 05:24:16 EST 2025
Mon Jul 21 06:08:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-277dd5ab4fba035783beaca04d922ec9a9ed1ff577785b2dcdae659389358cbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/bc716354665642aeb404399dee7c98a8
PMID 39333205
PQID 3110578189
PQPubID 2041939
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_bc716354665642aeb404399dee7c98a8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11436732
proquest_miscellaneous_3110730430
proquest_journals_3110578189
pubmed_primary_39333205
crossref_primary_10_1038_s41598_024_71809_1
springer_journals_10_1038_s41598_024_71809_1
PublicationCentury 2000
PublicationDate 2024-09-27
PublicationDateYYYYMMDD 2024-09-27
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References ItzyksonCIsing fermions (II). Three dimensionsNucl. Phys. B19822104771982NuPhB.210..477I68689510.1016/0550-3213(82)90174-2
SamuelSThe use of anticommuting variable integrals in statistical mechanics. II. The computation of correlation functionsJ. Math. Phys.198021281528191980JMP....21.2815S59760110.1063/1.524405
FeynmanRPStatistical Mechanics: A Set of Lectures1998CRC Press
Chen, Y. A. & Tata, S. Higher cup products on hypercubic lattices: Application to lattice models of topological phases. J. Math. Phys.64(9) (2023).
SamuelSThe use of anticommuting variable integrals in statistical mechanics. I. The computation of partition functionsJ. Math. Phys.198021280628141980JMP....21.2806S59760010.1063/1.524404
ViswanathanGMFermionic path integral for exact enumeration of polygons on the simple cubic latticePhys. Rev. B202310810144232023PhRvB.108a4423V1:CAS:528:DC%2BB3sXhslSktLfK10.1103/PhysRevB.108.014423
GaiottoDKapustinASpin TQFTs and fermionic phases of matterInt. J. Mod. Phys. A20163128n2916450442016IJMPA..3145044G1:CAS:528:DC%2BC28Xhs1ylur%2FO10.1142/S0217751X16450445
PlechkoVNSimple solution of two-dimensional Ising model on a torus in terms of Grassmann integralsTheor. Math. Phys.19856474881510310.1007/BF01017042
SchultzTDMattisDCLiebEHTwo-dimensional Ising model as a soluble problem of many fermionsRev. Mod. Phys.1964368561964RvMP...36..856S18027410.1103/RevModPhys.36.856
MoessnerRSondhiSLResonating valence bond phase in the triangular lattice quantum dimer modelPhys. Rev. Lett.20018618812001PhRvL..86.1881M1:CAS:528:DC%2BD3MXhsVWlur0%3D10.1103/PhysRevLett.86.188111290272
PolletLKiselevMNProkof’evNVSvistunovBVGrassmannization of classical modelsNew J. Phys.2016181130252016NJPh...18k3025P10.1088/1367-2630/18/11/113025
PolyakovAMString representations and hidden symmetries for gauge fieldsPhys. Lett. B1979822471979PhLB...82..247P10.1016/0370-2693(79)90747-0
ShankarRExact critical-behavior of a random-bond two dimensional Ising-modelPhys. Rev. Lett.19875824661987PhRvL..58.2466S8904761:STN:280:DC%2BC2sfot1Whuw%3D%3D10.1103/PhysRevLett.58.246610034756
SmeraldAMilaFSpin-liquid behaviour and the interplay between Pokrovsky–Talapov and Ising criticality in the distorted, triangular-lattice, dipolar Ising antiferromagnetSciPost Phys.20185302018ScPP....5...30S10.21468/SciPostPhys.5.3.030
SiudemGFronczakAFronczakPExact low temperature series expansion for the partition function of the zero-field Ising model on the infinite square latticeSci. Rep.20166335232016NatSR...633523S1:CAS:528:DC%2BC28Xhs1KmurzO10.1038/srep33523277214355056370
PolyakovAMGauge Fields and Strings1987Harwood Academic Publishers
GattringerCRJaimungalSSemenoffGWLoops, surfaces and Grassmann representation in two- and three dimensional Ising modelsInt. J. Mod. Phys. A199914454945741999IJMPA..14.4549G172565010.1142/S0217751X9900213X
BerezinFAThe plane Ising modelRuss. Math. Surv.1969243125200510.1070/RM1969v024n03ABEH001346
Balasubramanian, S., Galitski, V. & Vishwanath, A. Classical vertex model dualities in a family of two-dimensional frustrated quantum antiferromagnets, Phys. Rev. B106 (2022).
ArdonneFFendleyPFradkinETopological order and conformal quantum critical pointsAnn. Phys.20043104932004AnPhy.310..493A20447441:CAS:528:DC%2BD2cXitVOhurg%3D10.1016/j.aop.2004.01.004
KaufmanBCrystal statistics. II. Partition function evaluated by spinor analysisPhys. Rev.19497612321949PhRv...76.1232K10.1103/PhysRev.76.1232
SamuelSThe use of anticommuting variable integrals in statistical mechanics. III. Unsolved modelsJ. Math. Phys.198021282028331980JMP....21.2820S59760210.1063/1.524406
OnsagerLCrystal statistics. I. A two-dimensional model with an order-disorder transitionPhys. Rev.1944651171944PhRv...65..117O103151:CAS:528:DyaH2cXhtlaqtg%3D%3D10.1103/PhysRev.65.117
MilaFLow-energy sector of the S=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = 1/2$$\end{document} Kagome antiferromagnetPhys. Rev. Lett.19988123561998PhRvL..81.2356M1:CAS:528:DyaK1cXmtValsrs%3D10.1103/PhysRevLett.81.2356
MatsumotoNKawabataKAshidaYFurukawaSUedaMContinuous phase transition without gap closing in non-Hermitian quantum many-body systemsPhys. Rev. Lett.20201252606012020PhRvL.125z0601M41979341:CAS:528:DC%2BB3MXivVOksb4%3D10.1103/PhysRevLett.125.26060133449745
Dotsenko, V.l.S. 3D Ising model as a free fermion string theory: An approach to the thermal critical index calculation, Nucl. Phys. B285, 45 (1987).
Berezin, F. A. The Method of Second Quantization (Academic Press, 1966).
DittrichBGoellerCLivineERRielloAQuasi-local holographic dualities in non-perturbative 3d quantum gravity I—Convergence of multiple approaches and examples of Ponzano–Regge statistical dualsNucl. Phys. B20199388072019NuPhB.938..807D1:CAS:528:DC%2BC1cXhtFelsLnN10.1016/j.nuclphysb.2018.06.007
ViswanathanGMThe double hypergeometric series for the partition function of the 2D anisotropic Ising modelJ. Stat. Mech.20212021073104436712210.1088/1742-5468/ac0f71
ItzyksonCDrouffeJMStatistical Field Theory1991Cambridge University Press
GuttmannAJPolygons, Polyominoes and Polycubes2009Springer10.1007/978-1-4020-9927-4
CipraBStatistical physicists phase out a dreamScience20002881561156217611361:CAS:528:DC%2BD3cXjvVGlurs%3D10.1126/science.288.5471.1561a
Dotsenko, V.l.S. & Polyakov, A.M. Fermion representations for the 2D and 3D Ising models. In Conformal Field Theory and Solvable Lattice Models (eds. Jimbo, M., Miwa, T., Tsuchiya, A.) (Academic Press, 1988).
R Moessner (71809_CR17) 2001; 86
C Itzykson (71809_CR11) 1982; 210
L Onsager (71809_CR2) 1944; 65
R Shankar (71809_CR13) 1987; 58
G Siudem (71809_CR30) 2016; 6
71809_CR32
71809_CR33
N Matsumoto (71809_CR22) 2020; 125
CR Gattringer (71809_CR26) 1999; 14
D Gaiotto (71809_CR28) 2016; 31
VN Plechko (71809_CR12) 1985; 64
AM Polyakov (71809_CR31) 1979; 82
GM Viswanathan (71809_CR24) 2023; 108
AM Polyakov (71809_CR14) 1987
L Pollet (71809_CR19) 2016; 18
S Samuel (71809_CR8) 1980; 21
B Kaufman (71809_CR4) 1949; 76
TD Schultz (71809_CR5) 1964; 36
F Mila (71809_CR16) 1998; 81
71809_CR29
71809_CR23
AJ Guttmann (71809_CR1) 2009
F Ardonne (71809_CR18) 2004; 310
B Cipra (71809_CR25) 2000; 288
RP Feynman (71809_CR27) 1998
C Itzykson (71809_CR15) 1991
B Dittrich (71809_CR21) 2019; 938
71809_CR7
GM Viswanathan (71809_CR3) 2021; 2021
S Samuel (71809_CR10) 1980; 21
A Smerald (71809_CR20) 2018; 5
FA Berezin (71809_CR6) 1969; 24
S Samuel (71809_CR9) 1980; 21
39506026 - Sci Rep. 2024 Nov 6;14(1):26945. doi: 10.1038/s41598-024-77745-4
References_xml – reference: GaiottoDKapustinASpin TQFTs and fermionic phases of matterInt. J. Mod. Phys. A20163128n2916450442016IJMPA..3145044G1:CAS:528:DC%2BC28Xhs1ylur%2FO10.1142/S0217751X16450445
– reference: Chen, Y. A. & Tata, S. Higher cup products on hypercubic lattices: Application to lattice models of topological phases. J. Math. Phys.64(9) (2023).
– reference: SamuelSThe use of anticommuting variable integrals in statistical mechanics. II. The computation of correlation functionsJ. Math. Phys.198021281528191980JMP....21.2815S59760110.1063/1.524405
– reference: ViswanathanGMFermionic path integral for exact enumeration of polygons on the simple cubic latticePhys. Rev. B202310810144232023PhRvB.108a4423V1:CAS:528:DC%2BB3sXhslSktLfK10.1103/PhysRevB.108.014423
– reference: FeynmanRPStatistical Mechanics: A Set of Lectures1998CRC Press
– reference: Berezin, F. A. The Method of Second Quantization (Academic Press, 1966).
– reference: MilaFLow-energy sector of the S=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = 1/2$$\end{document} Kagome antiferromagnetPhys. Rev. Lett.19988123561998PhRvL..81.2356M1:CAS:528:DyaK1cXmtValsrs%3D10.1103/PhysRevLett.81.2356
– reference: ItzyksonCDrouffeJMStatistical Field Theory1991Cambridge University Press
– reference: GattringerCRJaimungalSSemenoffGWLoops, surfaces and Grassmann representation in two- and three dimensional Ising modelsInt. J. Mod. Phys. A199914454945741999IJMPA..14.4549G172565010.1142/S0217751X9900213X
– reference: ShankarRExact critical-behavior of a random-bond two dimensional Ising-modelPhys. Rev. Lett.19875824661987PhRvL..58.2466S8904761:STN:280:DC%2BC2sfot1Whuw%3D%3D10.1103/PhysRevLett.58.246610034756
– reference: SamuelSThe use of anticommuting variable integrals in statistical mechanics. I. The computation of partition functionsJ. Math. Phys.198021280628141980JMP....21.2806S59760010.1063/1.524404
– reference: ItzyksonCIsing fermions (II). Three dimensionsNucl. Phys. B19822104771982NuPhB.210..477I68689510.1016/0550-3213(82)90174-2
– reference: SchultzTDMattisDCLiebEHTwo-dimensional Ising model as a soluble problem of many fermionsRev. Mod. Phys.1964368561964RvMP...36..856S18027410.1103/RevModPhys.36.856
– reference: PolyakovAMString representations and hidden symmetries for gauge fieldsPhys. Lett. B1979822471979PhLB...82..247P10.1016/0370-2693(79)90747-0
– reference: Dotsenko, V.l.S. 3D Ising model as a free fermion string theory: An approach to the thermal critical index calculation, Nucl. Phys. B285, 45 (1987).
– reference: GuttmannAJPolygons, Polyominoes and Polycubes2009Springer10.1007/978-1-4020-9927-4
– reference: MoessnerRSondhiSLResonating valence bond phase in the triangular lattice quantum dimer modelPhys. Rev. Lett.20018618812001PhRvL..86.1881M1:CAS:528:DC%2BD3MXhsVWlur0%3D10.1103/PhysRevLett.86.188111290272
– reference: PlechkoVNSimple solution of two-dimensional Ising model on a torus in terms of Grassmann integralsTheor. Math. Phys.19856474881510310.1007/BF01017042
– reference: PolyakovAMGauge Fields and Strings1987Harwood Academic Publishers
– reference: DittrichBGoellerCLivineERRielloAQuasi-local holographic dualities in non-perturbative 3d quantum gravity I—Convergence of multiple approaches and examples of Ponzano–Regge statistical dualsNucl. Phys. B20199388072019NuPhB.938..807D1:CAS:528:DC%2BC1cXhtFelsLnN10.1016/j.nuclphysb.2018.06.007
– reference: ViswanathanGMThe double hypergeometric series for the partition function of the 2D anisotropic Ising modelJ. Stat. Mech.20212021073104436712210.1088/1742-5468/ac0f71
– reference: PolletLKiselevMNProkof’evNVSvistunovBVGrassmannization of classical modelsNew J. Phys.2016181130252016NJPh...18k3025P10.1088/1367-2630/18/11/113025
– reference: SiudemGFronczakAFronczakPExact low temperature series expansion for the partition function of the zero-field Ising model on the infinite square latticeSci. Rep.20166335232016NatSR...633523S1:CAS:528:DC%2BC28Xhs1KmurzO10.1038/srep33523277214355056370
– reference: BerezinFAThe plane Ising modelRuss. Math. Surv.1969243125200510.1070/RM1969v024n03ABEH001346
– reference: CipraBStatistical physicists phase out a dreamScience20002881561156217611361:CAS:528:DC%2BD3cXjvVGlurs%3D10.1126/science.288.5471.1561a
– reference: SmeraldAMilaFSpin-liquid behaviour and the interplay between Pokrovsky–Talapov and Ising criticality in the distorted, triangular-lattice, dipolar Ising antiferromagnetSciPost Phys.20185302018ScPP....5...30S10.21468/SciPostPhys.5.3.030
– reference: SamuelSThe use of anticommuting variable integrals in statistical mechanics. III. Unsolved modelsJ. Math. Phys.198021282028331980JMP....21.2820S59760210.1063/1.524406
– reference: MatsumotoNKawabataKAshidaYFurukawaSUedaMContinuous phase transition without gap closing in non-Hermitian quantum many-body systemsPhys. Rev. Lett.20201252606012020PhRvL.125z0601M41979341:CAS:528:DC%2BB3MXivVOksb4%3D10.1103/PhysRevLett.125.26060133449745
– reference: ArdonneFFendleyPFradkinETopological order and conformal quantum critical pointsAnn. Phys.20043104932004AnPhy.310..493A20447441:CAS:528:DC%2BD2cXitVOhurg%3D10.1016/j.aop.2004.01.004
– reference: Dotsenko, V.l.S. & Polyakov, A.M. Fermion representations for the 2D and 3D Ising models. In Conformal Field Theory and Solvable Lattice Models (eds. Jimbo, M., Miwa, T., Tsuchiya, A.) (Academic Press, 1988).
– reference: Balasubramanian, S., Galitski, V. & Vishwanath, A. Classical vertex model dualities in a family of two-dimensional frustrated quantum antiferromagnets, Phys. Rev. B106 (2022).
– reference: KaufmanBCrystal statistics. II. Partition function evaluated by spinor analysisPhys. Rev.19497612321949PhRv...76.1232K10.1103/PhysRev.76.1232
– reference: OnsagerLCrystal statistics. I. A two-dimensional model with an order-disorder transitionPhys. Rev.1944651171944PhRv...65..117O103151:CAS:528:DyaH2cXhtlaqtg%3D%3D10.1103/PhysRev.65.117
– volume: 81
  start-page: 2356
  year: 1998
  ident: 71809_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2356
– volume: 125
  start-page: 260601
  year: 2020
  ident: 71809_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.260601
– volume-title: Statistical Field Theory
  year: 1991
  ident: 71809_CR15
– volume: 938
  start-page: 807
  year: 2019
  ident: 71809_CR21
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2018.06.007
– ident: 71809_CR7
– volume: 310
  start-page: 493
  year: 2004
  ident: 71809_CR18
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2004.01.004
– volume: 21
  start-page: 2820
  year: 1980
  ident: 71809_CR10
  publication-title: J. Math. Phys.
  doi: 10.1063/1.524406
– volume: 76
  start-page: 1232
  year: 1949
  ident: 71809_CR4
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.76.1232
– volume: 36
  start-page: 856
  year: 1964
  ident: 71809_CR5
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.36.856
– volume: 14
  start-page: 4549
  year: 1999
  ident: 71809_CR26
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X9900213X
– volume: 6
  start-page: 33523
  year: 2016
  ident: 71809_CR30
  publication-title: Sci. Rep.
  doi: 10.1038/srep33523
– ident: 71809_CR29
  doi: 10.1063/5.0095189
– volume: 5
  start-page: 30
  year: 2018
  ident: 71809_CR20
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.5.3.030
– volume: 2021
  start-page: 073104
  year: 2021
  ident: 71809_CR3
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/ac0f71
– volume: 58
  start-page: 2466
  year: 1987
  ident: 71809_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.2466
– ident: 71809_CR33
  doi: 10.1016/B978-0-12-385340-0.50009-7
– ident: 71809_CR32
  doi: 10.1016/0550-3213(87)90328-2
– volume-title: Gauge Fields and Strings
  year: 1987
  ident: 71809_CR14
– volume: 21
  start-page: 2815
  year: 1980
  ident: 71809_CR9
  publication-title: J. Math. Phys.
  doi: 10.1063/1.524405
– volume: 64
  start-page: 748
  year: 1985
  ident: 71809_CR12
  publication-title: Theor. Math. Phys.
  doi: 10.1007/BF01017042
– ident: 71809_CR23
  doi: 10.1103/PhysRevB.106.195127
– volume: 86
  start-page: 1881
  year: 2001
  ident: 71809_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.1881
– volume: 31
  start-page: 1645044
  issue: 28n29
  year: 2016
  ident: 71809_CR28
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X16450445
– volume-title: Polygons, Polyominoes and Polycubes
  year: 2009
  ident: 71809_CR1
  doi: 10.1007/978-1-4020-9927-4
– volume: 18
  start-page: 113025
  year: 2016
  ident: 71809_CR19
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/11/113025
– volume: 65
  start-page: 117
  year: 1944
  ident: 71809_CR2
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.65.117
– volume: 108
  start-page: 014423
  issue: 1
  year: 2023
  ident: 71809_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.108.014423
– volume: 21
  start-page: 2806
  year: 1980
  ident: 71809_CR8
  publication-title: J. Math. Phys.
  doi: 10.1063/1.524404
– volume-title: Statistical Mechanics: A Set of Lectures
  year: 1998
  ident: 71809_CR27
– volume: 210
  start-page: 477
  year: 1982
  ident: 71809_CR11
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(82)90174-2
– volume: 24
  start-page: 1
  issue: 3
  year: 1969
  ident: 71809_CR6
  publication-title: Russ. Math. Surv.
  doi: 10.1070/RM1969v024n03ABEH001346
– volume: 288
  start-page: 1561
  year: 2000
  ident: 71809_CR25
  publication-title: Science
  doi: 10.1126/science.288.5471.1561a
– volume: 82
  start-page: 247
  year: 1979
  ident: 71809_CR31
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(79)90747-0
– reference: 39506026 - Sci Rep. 2024 Nov 6;14(1):26945. doi: 10.1038/s41598-024-77745-4
SSID ssj0000529419
Score 2.4369185
Snippet The generating function for polygons on the square lattice has been known for many decades and is closely related to the path integral formulation of a free...
Abstract The generating function for polygons on the square lattice has been known for many decades and is closely related to the path integral formulation of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 22375
SubjectTerms 639/766/530/2795
639/766/530/2804
Enumeration
Humanities and Social Sciences
Mathematical models
multidisciplinary
Polygons
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70KgICNxg6iJncT2CQGi4oCqHkDqzfKzrbRKlk0W0X-Px_FutbwuXBNbcjJPe8bfB_DKxbAqTdMhbiuCare81LKTZYvJtzGhESFdFP7Mj4_F6ak8yQduY26r3PjE5KjdYPGM_JDVyEgbw4t8u_xWImsUVlczhcZ1uIEoCSy17p1sz1iwitXUMt-VqZg4HGO8wjtlFJsQBTIB7MSjBNv_p1zz95bJX-qmKRwd3f3fD7kHd3IiSt7NmnMfrvn-AdyaqSkvH8KU8ajzNU0yDcSVDqkA8HhtJEMgmgTspEFsXYLExiRDTyxITISJ_6HtRLDR3s9KhlOWw-LyLE3vyXncAa_s2sTZCz1hD974CL4effzy4VOZGRpK20g6lZRz51ptmmB0hbg5zERHrqvGSUq9lVp6V4fQcs5Fa6izTvuulZgktcIaw_Zhrx96_wRIqKWtgmQmICM7F7IOItTMMGZqGd1SAa83clLLGYhDpQI6E2qWqopSVUmqqi7gPYpyOxJBtNODYXWmsk0qY-NmkbVNF3PahmpvEGlISuc9t1JoUcDBRoIqW_aorsRXwMvt62iTWGjRvR_W85joORtWFfB41pvtSphkjNGqLUDsaNTOUnff9BfnCfc7Wg_rOKMFvNko39W6_v4vnv77M57BbYr2gJU2fgB702rtn8NN-326GFcvkkH9BKLUKYk
  priority: 102
  providerName: ProQuest
Title Generalization to d-dimensions of a fermionic path integral for exact enumeration of polygons on hypercubic lattices
URI https://link.springer.com/article/10.1038/s41598-024-71809-1
https://www.ncbi.nlm.nih.gov/pubmed/39333205
https://www.proquest.com/docview/3110578189
https://www.proquest.com/docview/3110730430
https://pubmed.ncbi.nlm.nih.gov/PMC11436732
https://doaj.org/article/bc716354665642aeb404399dee7c98a8
Volume 14
WOSCitedRecordID wos001354536300066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0TsEX8dvquUTwTcu1Sdskj57coeAtRRTWp5I0yd3B0h7brnj_vZmku976gS--zEOTwJCZJL80M78BeGX8sSp1USFvK5JqlzxVspJpieBba1cIFxKFP_L5XCwWsr5W6gtjwiI9cJy4Q916RM_KovLAo6DKaqSDkdJYy1spVEjz9ajn2mUqsnpTWeRyypLJmDgc_EmF2WQUww8F1gDYOYkCYf-fUObvwZK_vJiGg-jkHtydECR5GzW_Dzds9wBux5qSVw9hnIikp_xKMvbEpAY5_PG_2EB6RxRxGAKDpLgEKxKTiTNiSTyCJfa7akeCEfI2egcOueyXV2dheEfO_dV11a61H71UIwbPDY_gy8nx53fv06m0QtoWko4p5dyYUunCaZUh4Q3TfgdWWWEkpbaVSlqTO1dyzkWpqWmNslUpEd2UotWaPYa9ru_sUyAul23mJNMOS6lzIXMnXM40YzqXfj9J4PVmmpvLyKDRhJdvJppolMYbpQlGafIEjtAS257Ifh0-eJ9oJp9o_uUTCRxs7NhMS3JoWI4ljT0-kQm83Db7xYQvJKqz_Tr28VtewbIEnkSzbzVhkjFGszIBseMQO6rutnQX54Gw27s9qzijCbzZ-M5Pvf4-F8_-x1w8hzsUnR4f0vgB7I2rtX0Bt9pv48WwmsFNvuBBihnsHx3P60-zsJK8PKU1Su7lfv3htP76Az6JIec
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkaCE0RN7GRjHxDiVXXV7aqHIpWTazt2W2mVLJsssH-K34gnj62W160Hrpt45STfzNieme8DeJ77sCp0MkTeViTVTrNQiaEIU1x8a-0S7ppG4XE2mfCjI3GwAT_6Xhgsq-x9YuOo89LgGfk2i1GR1ocX8Wb2JUTVKMyu9hIaLSz27PKb37JVr0cf_Pd9QenOx8P3u2GnKhCaRNA6pFmW56nSidMqQq4Xpr3zUVGSC0qtEUrYPHYuzbKMp5rmJld2mAoM7Ck3WjP_v5dgM_Fg5wPYPBjtH3xenepg3iyJRdedEzG-XfkIiV1sFMseOWoPrEXARijgT6vb34s0f8nUNgFw58b_9upuwvVuqU3etrZxCzZscRuutOKbyztQd4zbXSMqqUuShzmKHeABYkVKRxRxWCuE7MEEpZtJR64xJX6pT-x3ZWqCrQS2NSMcMiuny5NmeEFO_R5_bhbaj56qGqsMq7vw6UIe-R4MirKwD4C4WJjICaYdas5nXMSOu5hpxnQsvOMN4GWPCzlrqUZkUyLAuGxRJD2KZIMiGQfwDqGzuhNpwpsfyvmJ7LyO1MZvh1maDP2qPaHKauRSEiK3NjOCKx7AVo8Y2fmuSp7DJYBnq8ve62AqSRW2XLT3-NiQsCiA-y1OVzNhgjFGozQAvobgtamuXynOThtmc-8f2DBjNIBXPdjP5_X3d_Hw34_xFK7uHu6P5Xg02XsE1yjaIuYVsy0Y1POFfQyXzdf6rJo_6cyZwPFFm8FPltuKrQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASPBCaJN7GRtHxACyoqq1aoHkHoLtmO3lVbJsskC-9f4dXicZKvldeuB6yZeOck3M7Zn5vsAnpU-rEqdjZG3FUm1cx4rOZZxjotvrV0mXGgUPuDTqTg6kodb8GPohcGyysEnBkdd1gbPyEcsRUVaH17kyPVlEYe7k9fzLzEqSGGmdZDT6CCyb1ff_PatebW367_1c0on7z---xD3CgOxySRtY8p5WeZKZ06rBHlfmPaOSCVZKSm1Rippy9S5nHMuck1LUyo7ziUG-VwYrZn_3wtwkSNpeSgbPFyf72AGLUtl36eTMDFqfKzEfjaKBZACVQg2YmGQDPjTOvf3cs1fcrYhFE6u_88v8QZc6xfg5E1nMTdhy1a34HInybm6DW3Pw923p5K2JmVcogQCHis2pHZEEYcVRMgpTFDQmfSUGzPiNwDEflemJdhgYDvjwiHzerY6DsMrcuJ3_guz1H70TLVYe9jcgU_n8sh3YbuqK3sfiEulSZxk2qESPRcydcKlTDOmU-ndcQQvBowU846ApAiFA0wUHaIKj6giIKpII3iLMFrfieTh4Yd6cVz0vqjQxm-SWZ6N_Vo-o8pqZFiSsrSWGymUiGBnQE_Re7SmOINOBE_Xl70vwgSTqmy97O7xESNjSQT3OsyuZ8IkY4wmeQRiA80bU928Up2eBL5z7zXYmDMawcsB-Gfz-vu7ePDvx3gCVzz2i4O96f5DuErRLDHZyHdgu10s7SO4ZL62p83icbBrAp_P2wZ-Auiqkew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalization+to+d-dimensions+of+a+fermionic+path+integral+for+exact+enumeration+of+polygons+on+hypercubic+lattices&rft.jtitle=Scientific+reports&rft.au=M.+Ostilli&rft.au=G.+W.+C.+Rocha&rft.au=C.+G.+Bezerra&rft.au=G.+M.+Viswanathan&rft.date=2024-09-27&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1038%2Fs41598-024-71809-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bc716354665642aeb404399dee7c98a8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon