Object recognition algorithm for the automatic identification and removal of invasive fish

Invasive fish species are a growing threat worldwide, causing great harm to biodiversity and ecosystems, and leading to large economic losses. As the most introduced group of aquatic animals in the world, fish are also one of the most threatened. For species that are considered invasive, removing th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biosystems engineering Ročník 145; s. 65 - 75
Hlavní autoři: Zhang, Dong, Lee, Dah-Jye, Zhang, Meng, Tippetts, Beau J., Lillywhite, Kirt D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2016
Témata:
ISSN:1537-5110, 1537-5129
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Invasive fish species are a growing threat worldwide, causing great harm to biodiversity and ecosystems, and leading to large economic losses. As the most introduced group of aquatic animals in the world, fish are also one of the most threatened. For species that are considered invasive, removing them is the best way to reduce the long-term cost of eradication or control. This paper proposes an object recognition algorithm to automatically identify fish species. Our previous work on general object recognition, called Evolution-COnstructed (ECO) Features, was modified and adapted to construct features and use AdaBoost to classify different fish species. The proposed algorithm does not depend on human experts to design features for fish species classification, but constructs efficient features automatically. Results from experiments show the proposed method obtained an average of 98.9% classification accuracy with a standard deviation of 0.96% with a dataset composed of 8 fish species and a total of 1049 images. Using this algorithm, a fish monitoring system can be built to remove invasive species and monitor native fish abundance, distribution, and size with minimal collateral impact and fish suffering. [Display omitted] •We discuss the importance of invasive fish species removal.•We propose to use Evolution COnstructed (ECO) Features for fish species recognition.•We discuss the uniqueness and advantages of ECO-Features.•Eight fish species including invasive and non-invasive are included for experiments.
AbstractList Invasive fish species are a growing threat worldwide, causing great harm to biodiversity and ecosystems, and leading to large economic losses. As the most introduced group of aquatic animals in the world, fish are also one of the most threatened. For species that are considered invasive, removing them is the best way to reduce the long-term cost of eradication or control. This paper proposes an object recognition algorithm to automatically identify fish species. Our previous work on general object recognition, called Evolution-COnstructed (ECO) Features, was modified and adapted to construct features and use AdaBoost to classify different fish species. The proposed algorithm does not depend on human experts to design features for fish species classification, but constructs efficient features automatically. Results from experiments show the proposed method obtained an average of 98.9% classification accuracy with a standard deviation of 0.96% with a dataset composed of 8 fish species and a total of 1049 images. Using this algorithm, a fish monitoring system can be built to remove invasive species and monitor native fish abundance, distribution, and size with minimal collateral impact and fish suffering. [Display omitted] •We discuss the importance of invasive fish species removal.•We propose to use Evolution COnstructed (ECO) Features for fish species recognition.•We discuss the uniqueness and advantages of ECO-Features.•Eight fish species including invasive and non-invasive are included for experiments.
Invasive fish species are a growing threat worldwide, causing great harm to biodiversity and ecosystems, and leading to large economic losses. As the most introduced group of aquatic animals in the world, fish are also one of the most threatened. For species that are considered invasive, removing them is the best way to reduce the long-term cost of eradication or control. This paper proposes an object recognition algorithm to automatically identify fish species. Our previous work on general object recognition, called Evolution-COnstructed (ECO) Features, was modified and adapted to construct features and use AdaBoost to classify different fish species. The proposed algorithm does not depend on human experts to design features for fish species classification, but constructs efficient features automatically. Results from experiments show the proposed method obtained an average of 98.9% classification accuracy with a standard deviation of 0.96% with a dataset composed of 8 fish species and a total of 1049 images. Using this algorithm, a fish monitoring system can be built to remove invasive species and monitor native fish abundance, distribution, and size with minimal collateral impact and fish suffering.
Author Zhang, Dong
Lee, Dah-Jye
Zhang, Meng
Lillywhite, Kirt D.
Tippetts, Beau J.
Author_xml – sequence: 1
  givenname: Dong
  surname: Zhang
  fullname: Zhang, Dong
  organization: School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Dah-Jye
  orcidid: 0000-0003-1752-8146
  surname: Lee
  fullname: Lee, Dah-Jye
  email: djlee@byu.edu
  organization: Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
– sequence: 3
  givenname: Meng
  surname: Zhang
  fullname: Zhang, Meng
  organization: Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
– sequence: 4
  givenname: Beau J.
  surname: Tippetts
  fullname: Tippetts, Beau J.
  organization: Smart Vision Works International, LLC., Orem, UT, USA
– sequence: 5
  givenname: Kirt D.
  surname: Lillywhite
  fullname: Lillywhite, Kirt D.
  organization: Smart Vision Works International, LLC., Orem, UT, USA
BookMark eNqNkU1LJDEQhoO44Od_CHjZy_Qm6U46jScR9wMEL3rxEtLpykwN3YmbZAb899vjLIJenFOK8LwvVD1n5DjEAIRccVZxxtWPddVjzK-5wJQhLCsxf1ZMVIzXR-SUy7pdSC664_eZsxNylvOaMS7bRp2S54d-Da7QBC4uAxaMgdpxGROW1UR9TLSsgNpNiZMt6CgOEAp6dHaPhmGOTnFrRxo9xbC1GbdAPebVBfnm7Zjh8v97Tp5-3j3e_l7cP_z6c3tzv3BNJ8qC91JyxxUM2ruGyaF1vHWN8G03CCul0G3fCKVBK3CqF8zVVjWw20uxwfn6nHzf976k-HcDuZgJs4NxtAHiJhuua6WUFpofgDLNZNfq7mu07VgnlajljF7vUZdizgm8eUk42fRqODM7T2ZtPngyO0-GCTN7mtM3n9IOy9t1S7I4Hthxt--A-c5bhGSyQwgOBpzFFjNEPKjnH_EfvRw
CitedBy_id crossref_primary_10_1007_s11160_021_09667_7
crossref_primary_10_3390_w12113013
crossref_primary_10_1016_j_atech_2023_100289
crossref_primary_10_3389_fmars_2018_00322
crossref_primary_10_1007_s11831_020_09486_2
crossref_primary_10_1016_j_wateco_2025_100008
crossref_primary_10_1371_journal_pone_0252824
crossref_primary_10_1016_j_ecoinf_2020_101135
crossref_primary_10_1007_s11042_024_19782_9
crossref_primary_10_1002_ecs2_3795
crossref_primary_10_1109_ACCESS_2022_3227046
crossref_primary_10_3233_JIFS_210262
crossref_primary_10_3390_electronics10172182
crossref_primary_10_3390_fishes7060335
crossref_primary_10_1016_j_rse_2022_113378
Cites_doi 10.1111/j.1095-8649.2010.02566.x
10.1016/j.aquaeng.2004.09.009
10.1111/j.1467-2979.2010.00390.x
10.1016/j.ecolecon.2004.10.002
10.1016/j.fishres.2004.12.009
10.1016/j.biocon.2006.09.013
10.1002/aqc.919
10.1061/(ASCE)CP.1943-5487.0000092
10.1577/1548-8454(2002)064<0079:AOSCDI>2.0.CO;2
10.1016/j.compag.2006.12.007
10.1146/annurev-environ-033009-095548
10.1023/A:1024054909052
10.1016/S0169-5347(00)01914-5
10.1016/j.compag.2012.07.010
10.1111/j.1095-8649.2008.01872.x
10.1016/S0044-8486(96)01384-1
10.1016/j.patcog.2013.06.002
10.1016/j.patcog.2011.05.012
ContentType Journal Article
Copyright 2016 IAgrE
Copyright_xml – notice: 2016 IAgrE
DBID AAYXX
CITATION
7ST
C1K
SOI
7TB
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.biosystemseng.2016.02.013
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts
Environment Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
Economics
EISSN 1537-5129
EndPage 75
ExternalDocumentID 10_1016_j_biosystemseng_2016_02_013
S1537511015303524
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CAG
CBWCG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSA
SST
SSZ
T5K
UHS
UNMZH
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
C1K
SOI
7TB
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-c492t-1b551c16ed8fc405d7c17c42f79d2a55287b4268e86ec6b20c3a64e512960dcf3
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375502400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1537-5110
IngestDate Sun Sep 28 08:59:27 EDT 2025
Thu Oct 02 04:19:34 EDT 2025
Tue Oct 07 09:24:44 EDT 2025
Sat Nov 29 07:00:48 EST 2025
Tue Nov 18 21:34:03 EST 2025
Fri Feb 23 02:24:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Computer vision
Invasive species monitoring
Fish species recognition
ECO-Features
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c492t-1b551c16ed8fc405d7c17c42f79d2a55287b4268e86ec6b20c3a64e512960dcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1752-8146
PQID 1790956235
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_1836668281
proquest_miscellaneous_1808059789
proquest_miscellaneous_1790956235
crossref_primary_10_1016_j_biosystemseng_2016_02_013
crossref_citationtrail_10_1016_j_biosystemseng_2016_02_013
elsevier_sciencedirect_doi_10_1016_j_biosystemseng_2016_02_013
PublicationCentury 2000
PublicationDate May 2016
2016-05-00
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: May 2016
PublicationDecade 2010
PublicationTitle Biosystems engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lillywhite, Tippetts, Lee (bib14) 2012; 45
Pyšek, Richardson (bib22) 2010; 35
United States Department of Agriculture (USDA), Forest Service, U.S.A. (bib27) 2014
Zheng, Zhang (bib30) 2010
Lillywhite, Lee, Tippetts, Archibald (bib13) 2013; 46
Britton, Davies, Brazier, Chare (bib3) 2008; 18
World Bank (bib29) 2015
Beddow, Ross, Marchant (bib2) 1996; 146
Wallat, Luzuriaga, Balaban, Chapman (bib28) 2002; 64
Karplus, Alchanatis, Zion (bib10) 2005; 32
Gozlan, Britton, Cowx, Copp (bib9) 2010; 76
Mitchell (bib17) 1998
Chambah, Semani, Renouf, Courtellemont, Rizzi (bib8) 2004; 5293
Myers, Simberloff, Kuris, Carey (bib18) 2000; 15
Rodriguez, Bermúdez, Rabuñal, Puertas, Dorado, Pena (bib23) 2011; 25
Burnard, Gozlan, Griffiths (bib6) 2008; 73
Knapp, Boiano, Vredenburg (bib11) 2007; 135
Marchesan, Spoto, Verginella, Ferrero (bib16) 2005; 73
Britton, Gozlan, Copp (bib4) 2011; 12
Zion (bib31) 2012; 88
Cadieux, Michaud, Lalonde (bib7) 2000
National Invasive Species Council (NIS), U.S.A. (bib19) 1999; 64
Zion, Alchanatis, Ostrovsky, Barki, Karplus (bib32) 2007; 56
Secord (bib25) 2003; 5
Buck, Upton, Stern, Nicholas (bib5) 2010
Thresher, Bax (bib26) 2006
The Asian Carp Regional Coordinating Committee, (ACRCC) (bib1) 2013
Ling (bib15) 2003; 211
National Park Service (NPS), U.S.A. (bib20) 2015
Lee, Archibald, Schoenberger, Dennis, Shiozawa (bib12) 2008; 122
Pimentel, Zuniga, Morrison (bib21) 2005; 52
Rova, Mori, Dill (bib24) 2007
Ling (10.1016/j.biosystemseng.2016.02.013_bib15) 2003; 211
Zheng (10.1016/j.biosystemseng.2016.02.013_bib30) 2010
Lee (10.1016/j.biosystemseng.2016.02.013_bib12) 2008; 122
Lillywhite (10.1016/j.biosystemseng.2016.02.013_bib13) 2013; 46
World Bank (10.1016/j.biosystemseng.2016.02.013_bib29) 2015
Pyšek (10.1016/j.biosystemseng.2016.02.013_bib22) 2010; 35
Burnard (10.1016/j.biosystemseng.2016.02.013_bib6) 2008; 73
Britton (10.1016/j.biosystemseng.2016.02.013_bib4) 2011; 12
Rodriguez (10.1016/j.biosystemseng.2016.02.013_bib23) 2011; 25
United States Department of Agriculture (USDA), Forest Service, U.S.A. (10.1016/j.biosystemseng.2016.02.013_bib27) 2014
Marchesan (10.1016/j.biosystemseng.2016.02.013_bib16) 2005; 73
Wallat (10.1016/j.biosystemseng.2016.02.013_bib28) 2002; 64
Zion (10.1016/j.biosystemseng.2016.02.013_bib31) 2012; 88
Rova (10.1016/j.biosystemseng.2016.02.013_bib24) 2007
Karplus (10.1016/j.biosystemseng.2016.02.013_bib10) 2005; 32
Cadieux (10.1016/j.biosystemseng.2016.02.013_bib7) 2000
Britton (10.1016/j.biosystemseng.2016.02.013_bib3) 2008; 18
The Asian Carp Regional Coordinating Committee, (ACRCC) (10.1016/j.biosystemseng.2016.02.013_bib1) 2013
Zion (10.1016/j.biosystemseng.2016.02.013_bib32) 2007; 56
National Park Service (NPS), U.S.A. (10.1016/j.biosystemseng.2016.02.013_bib20) 2015
Lillywhite (10.1016/j.biosystemseng.2016.02.013_bib14) 2012; 45
Knapp (10.1016/j.biosystemseng.2016.02.013_bib11) 2007; 135
Mitchell (10.1016/j.biosystemseng.2016.02.013_bib17) 1998
National Invasive Species Council (NIS), U.S.A. (10.1016/j.biosystemseng.2016.02.013_bib19) 1999; 64
Chambah (10.1016/j.biosystemseng.2016.02.013_bib8) 2004; 5293
Gozlan (10.1016/j.biosystemseng.2016.02.013_bib9) 2010; 76
Pimentel (10.1016/j.biosystemseng.2016.02.013_bib21) 2005; 52
Secord (10.1016/j.biosystemseng.2016.02.013_bib25) 2003; 5
Thresher (10.1016/j.biosystemseng.2016.02.013_bib26) 2006
Myers (10.1016/j.biosystemseng.2016.02.013_bib18) 2000; 15
Buck (10.1016/j.biosystemseng.2016.02.013_bib5) 2010
Beddow (10.1016/j.biosystemseng.2016.02.013_bib2) 1996; 146
References_xml – volume: 32
  start-page: 509
  year: 2005
  end-page: 520
  ident: bib10
  article-title: Guidance of groups of guppies (Poecilia reticulata) to allow sorting by computer vision
  publication-title: Aquacultural Engineering
– volume: 76
  start-page: 751
  year: 2010
  end-page: 786
  ident: bib9
  article-title: Current knowledge on non-native freshwater fish introductions
  publication-title: Journal of Fish Biology
– volume: 52
  start-page: 273
  year: 2005
  end-page: 288
  ident: bib21
  article-title: Update on the environmental and economic costs associated with alien-invasive species in the United States
  publication-title: Ecological Economics
– volume: 12
  start-page: 256
  year: 2011
  end-page: 274
  ident: bib4
  article-title: Managing non-native fish in the environment
  publication-title: Fish and Fisheries
– volume: 88
  start-page: 125
  year: 2012
  end-page: 132
  ident: bib31
  article-title: The use of computer vision technologies in aquaculture - a review
  publication-title: Computers and Electronics in Agriculture
– volume: 56
  start-page: 34
  year: 2007
  end-page: 45
  ident: bib32
  article-title: Real-time underwater sorting of edible fish species
  publication-title: Computers and Electronics in Agriculture
– volume: 18
  start-page: 867
  year: 2008
  end-page: 876
  ident: bib3
  article-title: Case studies on eradication the Asiatic cyprinid Pseudorasbora parva from fishing lakes in England to prevent their riverine dispersal
  publication-title: Aquatic Conservation: Marine and Freshwater Ecosystems
– year: 2010
  ident: bib5
  article-title: Asian carp and the Great Lakes Region, 20
– volume: 122
  start-page: 183
  year: 2008
  end-page: 207
  ident: bib12
  article-title: Contour matching for fish species recognition and migration monitoring
  publication-title: Applications of Computational Intelligence in Biology
– volume: 73
  start-page: 1
  year: 2008
  end-page: 16
  ident: bib6
  article-title: The role of pheromones in freshwater fishes
  publication-title: Journal of Fish Biology
– year: 2015
  ident: bib20
  article-title: Asian carp overview
– volume: 211
  start-page: 1
  year: 2003
  end-page: 40
  ident: bib15
  article-title: Rotenone - a review of its toxicity and use for fisheries management
  publication-title: Science for Conservation
– volume: 35
  start-page: 25
  year: 2010
  end-page: 55
  ident: bib22
  article-title: Invasive species, environmental change and management, and health
  publication-title: Annual Review of Environment and Resources
– volume: 46
  start-page: 3300
  year: 2013
  end-page: 3314
  ident: bib13
  article-title: .A feature construction method for general object recognition
  publication-title: Pattern Recognition
– year: 1998
  ident: bib17
  article-title: An introduction to genetic algorithms
– volume: 64
  start-page: 6183
  year: 1999
  end-page: 6186
  ident: bib19
  article-title: Executive order 13112
  publication-title: Presidential Documents
– year: 2014
  ident: bib27
  article-title: Nonnative trout
– year: 2007
  ident: bib24
  article-title: One fish, two fish, butterfish, trumpeter: recognizing fish in underwater video
  publication-title: IAPR Conference on Machine Vision Applications, May 16–18, 2007, Tokyo, Japan
– volume: 73
  start-page: 171
  year: 2005
  end-page: 185
  ident: bib16
  article-title: Behavioural effects of artificial light on fish species of commercial interest
  publication-title: Fisheries Research
– volume: 25
  start-page: 291
  year: 2011
  end-page: 301
  ident: bib23
  article-title: Optical fish trajectory measurement in fishways through computer vision and artificial neural networks
  publication-title: Journal of Computing in Civil Engineering
– volume: 64
  start-page: 79
  year: 2002
  end-page: 84
  ident: bib28
  article-title: Analysis of skin color development in live goldfish using a color machine vision system
  publication-title: North American Journal of Aquaculture
– year: 2015
  ident: bib29
  article-title: Fish species, threatened
– year: 2000
  ident: bib7
  article-title: Intelligent system for automated fish sorting and counting
  publication-title: Proceedings of International Conference on Intelligent Robots and Systems (2, 1279–1284), Oct 31–Nov 05, Takamatsu, Japan
– volume: 45
  start-page: 241
  year: 2012
  end-page: 251
  ident: bib14
  article-title: Self-tuned Evolution-COnstructed features for general object recognition
  publication-title: Pattern Recognition
– volume: 15
  start-page: 316
  year: 2000
  end-page: 320
  ident: bib18
  article-title: Eradication revisited: dealing with exotic species
  publication-title: Trends in Ecology and Evolution
– volume: 5
  start-page: 117
  year: 2003
  end-page: 131
  ident: bib25
  article-title: Biological control of marine invasive species: cautionary tales and land-based lessons
  publication-title: Biological Invasions
– volume: 135
  start-page: 11
  year: 2007
  end-page: 20
  ident: bib11
  article-title: Removal of nonnative fish results in population expansion of a declining amphibian (mountain yellow-legged frog, Rana muscosa)
  publication-title: Biological Conservation
– year: 2013
  ident: bib1
  article-title: FY2013 Asian carp control strategy framework
– volume: 5293
  start-page: 157
  year: 2004
  end-page: 168
  ident: bib8
  article-title: Underwater color constancy: enhancement of automatic live fish recognition
  publication-title: Color Imaging IX: Processing, Hardcopy, and Applications
– start-page: 117
  year: 2006
  end-page: 122
  ident: bib26
  article-title: Comparative analysis of genetic options for controlling invasive populations of the cane toad Bufo marinus
  publication-title: Science of cane toad invasion and control
– volume: 146
  start-page: 189
  year: 1996
  end-page: 203
  ident: bib2
  article-title: Predicting salmon biomass remotely using a digital stereo-imaging technique
  publication-title: Aquaculture
– start-page: 225
  year: 2010
  end-page: 228
  ident: bib30
  article-title: A fish population counting method using fuzzy artificial neural network
  publication-title: 2010 IEEE International Conference on Progress in Informatics and Computing, (PIC 2010) Shanghai, China, 10 – 12 December 2010
– year: 2013
  ident: 10.1016/j.biosystemseng.2016.02.013_bib1
– start-page: 117
  year: 2006
  ident: 10.1016/j.biosystemseng.2016.02.013_bib26
  article-title: Comparative analysis of genetic options for controlling invasive populations of the cane toad Bufo marinus
– volume: 76
  start-page: 751
  issue: 4
  year: 2010
  ident: 10.1016/j.biosystemseng.2016.02.013_bib9
  article-title: Current knowledge on non-native freshwater fish introductions
  publication-title: Journal of Fish Biology
  doi: 10.1111/j.1095-8649.2010.02566.x
– volume: 32
  start-page: 509
  year: 2005
  ident: 10.1016/j.biosystemseng.2016.02.013_bib10
  article-title: Guidance of groups of guppies (Poecilia reticulata) to allow sorting by computer vision
  publication-title: Aquacultural Engineering
  doi: 10.1016/j.aquaeng.2004.09.009
– year: 2015
  ident: 10.1016/j.biosystemseng.2016.02.013_bib20
– volume: 12
  start-page: 256
  issue: 3
  year: 2011
  ident: 10.1016/j.biosystemseng.2016.02.013_bib4
  article-title: Managing non-native fish in the environment
  publication-title: Fish and Fisheries
  doi: 10.1111/j.1467-2979.2010.00390.x
– year: 2007
  ident: 10.1016/j.biosystemseng.2016.02.013_bib24
  article-title: One fish, two fish, butterfish, trumpeter: recognizing fish in underwater video
– year: 2014
  ident: 10.1016/j.biosystemseng.2016.02.013_bib27
– volume: 52
  start-page: 273
  issue: 3 Spec. iss.
  year: 2005
  ident: 10.1016/j.biosystemseng.2016.02.013_bib21
  article-title: Update on the environmental and economic costs associated with alien-invasive species in the United States
  publication-title: Ecological Economics
  doi: 10.1016/j.ecolecon.2004.10.002
– volume: 73
  start-page: 171
  issue: 1–2
  year: 2005
  ident: 10.1016/j.biosystemseng.2016.02.013_bib16
  article-title: Behavioural effects of artificial light on fish species of commercial interest
  publication-title: Fisheries Research
  doi: 10.1016/j.fishres.2004.12.009
– start-page: 225
  year: 2010
  ident: 10.1016/j.biosystemseng.2016.02.013_bib30
  article-title: A fish population counting method using fuzzy artificial neural network
– volume: 135
  start-page: 11
  issue: 1
  year: 2007
  ident: 10.1016/j.biosystemseng.2016.02.013_bib11
  article-title: Removal of nonnative fish results in population expansion of a declining amphibian (mountain yellow-legged frog, Rana muscosa)
  publication-title: Biological Conservation
  doi: 10.1016/j.biocon.2006.09.013
– year: 2010
  ident: 10.1016/j.biosystemseng.2016.02.013_bib5
– volume: 211
  start-page: 1
  year: 2003
  ident: 10.1016/j.biosystemseng.2016.02.013_bib15
  article-title: Rotenone - a review of its toxicity and use for fisheries management
  publication-title: Science for Conservation
– volume: 18
  start-page: 867
  year: 2008
  ident: 10.1016/j.biosystemseng.2016.02.013_bib3
  article-title: Case studies on eradication the Asiatic cyprinid Pseudorasbora parva from fishing lakes in England to prevent their riverine dispersal
  publication-title: Aquatic Conservation: Marine and Freshwater Ecosystems
  doi: 10.1002/aqc.919
– volume: 25
  start-page: 291
  issue: 4
  year: 2011
  ident: 10.1016/j.biosystemseng.2016.02.013_bib23
  article-title: Optical fish trajectory measurement in fishways through computer vision and artificial neural networks
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000092
– volume: 64
  start-page: 79
  year: 2002
  ident: 10.1016/j.biosystemseng.2016.02.013_bib28
  article-title: Analysis of skin color development in live goldfish using a color machine vision system
  publication-title: North American Journal of Aquaculture
  doi: 10.1577/1548-8454(2002)064<0079:AOSCDI>2.0.CO;2
– volume: 56
  start-page: 34
  issue: 1
  year: 2007
  ident: 10.1016/j.biosystemseng.2016.02.013_bib32
  article-title: Real-time underwater sorting of edible fish species
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2006.12.007
– volume: 35
  start-page: 25
  issue: 1
  year: 2010
  ident: 10.1016/j.biosystemseng.2016.02.013_bib22
  article-title: Invasive species, environmental change and management, and health
  publication-title: Annual Review of Environment and Resources
  doi: 10.1146/annurev-environ-033009-095548
– year: 2000
  ident: 10.1016/j.biosystemseng.2016.02.013_bib7
  article-title: Intelligent system for automated fish sorting and counting
– year: 1998
  ident: 10.1016/j.biosystemseng.2016.02.013_bib17
– volume: 5293
  start-page: 157
  year: 2004
  ident: 10.1016/j.biosystemseng.2016.02.013_bib8
  article-title: Underwater color constancy: enhancement of automatic live fish recognition
  publication-title: Color Imaging IX: Processing, Hardcopy, and Applications
– volume: 64
  start-page: 6183
  issue: 25
  year: 1999
  ident: 10.1016/j.biosystemseng.2016.02.013_bib19
  article-title: Executive order 13112
  publication-title: Presidential Documents
– volume: 5
  start-page: 117
  issue: 1–2
  year: 2003
  ident: 10.1016/j.biosystemseng.2016.02.013_bib25
  article-title: Biological control of marine invasive species: cautionary tales and land-based lessons
  publication-title: Biological Invasions
  doi: 10.1023/A:1024054909052
– volume: 15
  start-page: 316
  issue: 8
  year: 2000
  ident: 10.1016/j.biosystemseng.2016.02.013_bib18
  article-title: Eradication revisited: dealing with exotic species
  publication-title: Trends in Ecology and Evolution
  doi: 10.1016/S0169-5347(00)01914-5
– volume: 88
  start-page: 125
  year: 2012
  ident: 10.1016/j.biosystemseng.2016.02.013_bib31
  article-title: The use of computer vision technologies in aquaculture - a review
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2012.07.010
– volume: 122
  start-page: 183
  year: 2008
  ident: 10.1016/j.biosystemseng.2016.02.013_bib12
  article-title: Contour matching for fish species recognition and migration monitoring
  publication-title: Applications of Computational Intelligence in Biology
– volume: 73
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.biosystemseng.2016.02.013_bib6
  article-title: The role of pheromones in freshwater fishes
  publication-title: Journal of Fish Biology
  doi: 10.1111/j.1095-8649.2008.01872.x
– volume: 146
  start-page: 189
  year: 1996
  ident: 10.1016/j.biosystemseng.2016.02.013_bib2
  article-title: Predicting salmon biomass remotely using a digital stereo-imaging technique
  publication-title: Aquaculture
  doi: 10.1016/S0044-8486(96)01384-1
– volume: 46
  start-page: 3300
  issue: 12
  year: 2013
  ident: 10.1016/j.biosystemseng.2016.02.013_bib13
  article-title: .A feature construction method for general object recognition
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2013.06.002
– year: 2015
  ident: 10.1016/j.biosystemseng.2016.02.013_bib29
– volume: 45
  start-page: 241
  issue: 1
  year: 2012
  ident: 10.1016/j.biosystemseng.2016.02.013_bib14
  article-title: Self-tuned Evolution-COnstructed features for general object recognition
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.05.012
SSID ssj0015746
Score 2.2728696
Snippet Invasive fish species are a growing threat worldwide, causing great harm to biodiversity and ecosystems, and leading to large economic losses. As the most...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 65
SubjectTerms Algorithms
Automation
biodiversity
Classification
Computer vision
data collection
ECO-Features
Economics
ecosystems
experts
financial economics
Fish
Fish species recognition
humans
indigenous species
invasive species
Invasive species monitoring
monitoring
Monitors
Object recognition
Standard deviation
statistical analysis
Title Object recognition algorithm for the automatic identification and removal of invasive fish
URI https://dx.doi.org/10.1016/j.biosystemseng.2016.02.013
https://www.proquest.com/docview/1790956235
https://www.proquest.com/docview/1808059789
https://www.proquest.com/docview/1836668281
Volume 145
WOSCitedRecordID wos000375502400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1537-5129
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015746
  issn: 1537-5110
  databaseCode: AIEXJ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKhxAcEL8mxi8ZgbhUnpI0dhIOSIV1gmnqOHRSxcVyHGfN1CWlTavtv-c5dtKWalM5cIkS10kavy8vz_bn7yH00Q_dlArmE9ZVlPhMKBJ5wiGxdLw0TWVMo7RKNhEMBuFoFP1stW7qtTDLSZDn4fV1NP2vpoYyMLZeOvsP5m4uCgWwD0aHLZgdtjsZ_izWQyudhhmk6caTi2KWleOrhlQoFmVhxFqzxPKFDBIqurm6Kpa1msRSVAT3NJuPNyaAs8KIQM87aiVpuDUMfVSsCi3n50iMycmN2qqq-bXNOEI2hWi-rDD2VYmFnbyyoxMuW3EBG4caEAjqnA2P69PO9JBREtA132lyRtivsPlly7-boYbLw7h5SPhvmqDHKuVVs6x1U1V7cMaPz09P-bA_Gn6a_iY64ZiemLfZV-6hPS-gUdhGe70f_dFJMwVFA7M0rX6AB-jDihx46_1vC2_--tBX0cvwCXpsux24Z-DyFLVU_gw96l3MrPSKgqM1acrn6JeBEV6DEW5ghAFGGGCEGxjhTRhhgBG2MMJFimsYYQ2jF-j8uD_89p3YPBxE-pFXEjeGsFq6TCVhKiHATwLpBtL30iBKPEEpdLpjCPRCFTIlWew5sgtvv9KhJHMSmXb3UTsvcvUSYeUKpTUiXSageZMoTt1YiTgJhOjKOHIP0Oe6-bi0IvU6V8qE12zES77R9ly3PXc8Dm1_gPzm5KnRatnttC-1nbgNO004yQF1u13gfW1dDs5Zz7iJXBWLOdfyd5HuYdA76mhlV-jWh9FddbqMsdAL3Vc71HmNHq5exTeoXc4W6i26L5dlNp-9szj_A46g0SQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+recognition+algorithm+for+the+automatic+identification+and+removal+of+invasive+fish&rft.jtitle=Biosystems+engineering&rft.au=Zhang%2C+Dong&rft.au=Lee%2C+Dah-Jye&rft.au=Zhang%2C+Meng&rft.au=Tippetts%2C+Beau+J&rft.date=2016-05-01&rft.issn=1537-5110&rft.volume=145+p.65-75&rft.spage=65&rft.epage=75&rft_id=info:doi/10.1016%2Fj.biosystemseng.2016.02.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-5110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-5110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-5110&client=summon