Error mitigation in brainbox quantum autoencoders

Quantum hardware faces noise challenges that disrupt multiqubit entangled states. Quantum autoencoder circuits with a single qubit bottleneck have demonstrated the capability to correct errors in noisy entangled states. By introducing slightly more complex structures in the bottleneck, referred to a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 2257 - 12
Hlavní autori: Pazem, Joséphine, Ansari, Mohammad H.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 17.01.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Quantum hardware faces noise challenges that disrupt multiqubit entangled states. Quantum autoencoder circuits with a single qubit bottleneck have demonstrated the capability to correct errors in noisy entangled states. By introducing slightly more complex structures in the bottleneck, referred to as brainboxes, the denoising process can occure more quickly and efficiently in the presence of stronger noise channels. Selecting the most suitable brainbox for the bottleneck involves a trade-off between the intensity of noise on the hardware and training complexity. Finally, by analysing the Rényi entropy flow throughout the networks, we demonstrate that the localization of entanglement plays a central role in denoising through learning.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-84171-z