Weld seam object detection system based on the fusion of 2D images and 3D point clouds using interpretable neural networks
This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis, enhanced by interpretable neural networks. Unlike traditional methods that rely on either 2D or 3D data alone, our approach leverages the complem...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 14; číslo 1; s. 21137 - 13 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
10.09.2024
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis, enhanced by interpretable neural networks. Unlike traditional methods that rely on either 2D or 3D data alone, our approach leverages the complementary strengths of both data types to improve detection accuracy in environments adversely affected by welding spatter and smoke. Our system employs an improved Faster R-CNN model with a ResNet50 backbone for 2D image analysis, coupled with an innovative orthogonal plane intersection line extraction algorithm for 3D point cloud processing. By incorporating explainable components such as visualizable feature maps and a transparent region proposal network, we address the “black box” issue common in deep learning models.This architecture enables a more transparent decision-making process, providing technicians with necessary insights to understand and trust the system’s outputs. The Faster-RCNN structure is designed to break down the object detection process into distinct, understandable steps, from initial feature extraction to final bounding box refinement. This fusion of 2D-3D data analysis and interpretability not only improves detection performance but also sets a new standard for transparency and reliability in automated welding systems, facilitating wider adoption in industrial applications. |
|---|---|
| AbstractList | This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis, enhanced by interpretable neural networks. Unlike traditional methods that rely on either 2D or 3D data alone, our approach leverages the complementary strengths of both data types to improve detection accuracy in environments adversely affected by welding spatter and smoke. Our system employs an improved Faster R-CNN model with a ResNet50 backbone for 2D image analysis, coupled with an innovative orthogonal plane intersection line extraction algorithm for 3D point cloud processing. By incorporating explainable components such as visualizable feature maps and a transparent region proposal network, we address the "black box" issue common in deep learning models.This architecture enables a more transparent decision-making process, providing technicians with necessary insights to understand and trust the system's outputs. The Faster-RCNN structure is designed to break down the object detection process into distinct, understandable steps, from initial feature extraction to final bounding box refinement. This fusion of 2D-3D data analysis and interpretability not only improves detection performance but also sets a new standard for transparency and reliability in automated welding systems, facilitating wider adoption in industrial applications. Abstract This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis, enhanced by interpretable neural networks. Unlike traditional methods that rely on either 2D or 3D data alone, our approach leverages the complementary strengths of both data types to improve detection accuracy in environments adversely affected by welding spatter and smoke. Our system employs an improved Faster R-CNN model with a ResNet50 backbone for 2D image analysis, coupled with an innovative orthogonal plane intersection line extraction algorithm for 3D point cloud processing. By incorporating explainable components such as visualizable feature maps and a transparent region proposal network, we address the “black box” issue common in deep learning models.This architecture enables a more transparent decision-making process, providing technicians with necessary insights to understand and trust the system’s outputs. The Faster-RCNN structure is designed to break down the object detection process into distinct, understandable steps, from initial feature extraction to final bounding box refinement. This fusion of 2D-3D data analysis and interpretability not only improves detection performance but also sets a new standard for transparency and reliability in automated welding systems, facilitating wider adoption in industrial applications. This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis, enhanced by interpretable neural networks. Unlike traditional methods that rely on either 2D or 3D data alone, our approach leverages the complementary strengths of both data types to improve detection accuracy in environments adversely affected by welding spatter and smoke. Our system employs an improved Faster R-CNN model with a ResNet50 backbone for 2D image analysis, coupled with an innovative orthogonal plane intersection line extraction algorithm for 3D point cloud processing. By incorporating explainable components such as visualizable feature maps and a transparent region proposal network, we address the "black box" issue common in deep learning models.This architecture enables a more transparent decision-making process, providing technicians with necessary insights to understand and trust the system's outputs. The Faster-RCNN structure is designed to break down the object detection process into distinct, understandable steps, from initial feature extraction to final bounding box refinement. This fusion of 2D-3D data analysis and interpretability not only improves detection performance but also sets a new standard for transparency and reliability in automated welding systems, facilitating wider adoption in industrial applications.This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis, enhanced by interpretable neural networks. Unlike traditional methods that rely on either 2D or 3D data alone, our approach leverages the complementary strengths of both data types to improve detection accuracy in environments adversely affected by welding spatter and smoke. Our system employs an improved Faster R-CNN model with a ResNet50 backbone for 2D image analysis, coupled with an innovative orthogonal plane intersection line extraction algorithm for 3D point cloud processing. By incorporating explainable components such as visualizable feature maps and a transparent region proposal network, we address the "black box" issue common in deep learning models.This architecture enables a more transparent decision-making process, providing technicians with necessary insights to understand and trust the system's outputs. The Faster-RCNN structure is designed to break down the object detection process into distinct, understandable steps, from initial feature extraction to final bounding box refinement. This fusion of 2D-3D data analysis and interpretability not only improves detection performance but also sets a new standard for transparency and reliability in automated welding systems, facilitating wider adoption in industrial applications. |
| ArticleNumber | 21137 |
| Author | Yue, Yaobin Li, Zengxu Chen, Guodong Wang, Shengbo |
| Author_xml | – sequence: 1 givenname: Shengbo surname: Wang fullname: Wang, Shengbo organization: College of Sino-German Science and Technology, Qingdao University of Science and Technology – sequence: 2 givenname: Zengxu surname: Li fullname: Li, Zengxu organization: College of Automation and Electronic Engineering, Qingdao University of Science and Technology – sequence: 3 givenname: Guodong surname: Chen fullname: Chen, Guodong organization: College of Automation and Electronic Engineering, Qingdao University of Science and Technology – sequence: 4 givenname: Yaobin surname: Yue fullname: Yue, Yaobin email: ybyue2020@qust.edu.cn organization: College of Automation and Electronic Engineering, Qingdao University of Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39256451$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhiNUREvpH-CALHHhEvBnHJ8QailUqsQFxNFy7EmaJbEX22FVfn3dTSktB3wZe-aZd8b2PK8OfPBQVS8Jfkswa98lToRqa0x5LYlqVb17Uh1RzEVNGaUHD_aH1UlKG1yWoIoT9aw6ZIqKhgtyVP3-DpNDCcyMQrcBm5GDXMwYPErXKcOMOpPAoXLOV4D6Jd2GQo_oGRpnM0BCxjvEztA2jD4jO4XFJVQwP6DigLiNkE03AfKwRDMVk3ch_kgvqqe9mRKc3Nnj6tv5x6-nn-vLL58uTj9c1pYrmmsisWo6MKrBRnAQgJ0ACdY6a7tOCSUBDBFCtrZlVlrWOCOEMqpXpiG4ZcfVxarrgtnobSxdx2sdzKj3jhAHbWIe7QRaEoItNYbLnnMncOt6SwQVtGelcA9F6_2qtV26GZwFn8uVHok-jvjxSg_hlyaEtZJTURTe3CnE8HOBlPU8JgvTZDyEJWlGMG1l0ype0Nf_oJuwRF_eak8J2UhGC_XqYUv3vfz54wLQFbAxpBShv0cI1rezpNdZ0mWW9H6W9K4ksTUpFdgPEP_W_k_WDanAza0 |
| Cites_doi | 10.1109/TII.2023.3241595 10.1109/TETCI.2021.3100641 10.1016/j.jmapro.2020.02.026 10.1109/TIE.2012.2188875 10.1007/s00170-016-8721-2 10.1109/JSTARS.2022.3111110 10.5194/isprs-archives-xlii-3-w8-187-2019 10.1109/TRPMS.2021.3066428 10.1109/JPROC.2021.3060483 10.1109/TPAMI.2016.2577031 10.1109/TIM.2023.3328094 10.5194/isprs-archives-xliii-b3-2020-515-2020 10.1109/TASE.2015.2498929 10.1109/TIM.2009.2028222 10.5194/ISPRS-ANNALS-IV-1-W1-91-2017 10.1109/CASE48305.2020.9216866 10.1109/JSEN.2022.3190560 10.5539/mas.v10n2p83 10.1109/ACCESS.2023.3319076 10.1016/j.rcim.2020.102086 10.1145/358669.358692 10.1016/j.rcim.2013.01.004 10.1007/s00170-014-5925-1 10.22260/isarc2021/0053 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-71989-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_7110c2aa47f44d508dfc15252f3e5efe PMC11387425 39256451 10_1038_s41598_024_71989_w |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c492t-17096bea960a54e5e0d5e7eccdccbb9597eea15578c83c7c36da559a9f9a61083 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001317044700038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:34:02 EST 2025 Tue Nov 04 02:04:55 EST 2025 Thu Oct 02 06:55:08 EDT 2025 Tue Oct 07 07:35:55 EDT 2025 Mon Jul 21 06:03:32 EDT 2025 Sat Nov 29 05:24:10 EST 2025 Fri Feb 21 02:39:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-17096bea960a54e5e0d5e7eccdccbb9597eea15578c83c7c36da559a9f9a61083 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/7110c2aa47f44d508dfc15252f3e5efe |
| PMID | 39256451 |
| PQID | 3102576732 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7110c2aa47f44d508dfc15252f3e5efe pubmedcentral_primary_oai_pubmedcentral_nih_gov_11387425 proquest_miscellaneous_3102876894 proquest_journals_3102576732 pubmed_primary_39256451 crossref_primary_10_1038_s41598_024_71989_w springer_journals_10_1038_s41598_024_71989_w |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-10 |
| PublicationDateYYYYMMDD | 2024-09-10 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Yun (CR24) 2023; 23 Ren, He, Girshick, Sun (CR26) 2017; 39 Lin, Shi, Wang, Li, Chen (CR11) 2023; 72 Samek, Montavon, Lapuschkin, Anders, Müller (CR14) 2021; 109 Zhang, Tiňo, Leonardis, Tang (CR12) 2021; 5 Fan, Xiong, Li, Wang (CR13) 2021; 5 Shah, Sulaiman, Shukor, Jamaluddin, Ab Rashid (CR1) 2016; 10 Zhuang (CR29) 2016; 68 Xu, Fang, Chen, Zou, Ye (CR7) 2014; 73 Ren, Yu (CR21) 2019 Xu, Wang, Zhang, Lu (CR19) 2020 Ma (CR10) 2023; 19 Guiotte, Bin, Lefevre, Tang, Corpetti (CR23) 2020 Hackel, Savinov, Ladicky, Wegner, Schindler, Pollefeys (CR22) 2017 Pires, Loureiro, Bolmsjo (CR3) 2006 Song, Chung, Zhang (CR15) 2013; 60 Dinham, Fang (CR2) 2013; 29 Wang, Liu, Zhang (CR17) 2022; 15 Fridenfalk (CR4) 2003 Li, Li, Wang, Xu, Tan (CR9) 2010; 59 Kerle, Nex, Duarte, Vetrivel (CR25) 2019 Liu, Fan, Olsen, Christensen, Kristensen (CR5) 2015; 14 Kim, Lee, Chung (CR27) 2021; 80 CR20 Xue, Wang, Shen, Hu, Zhen, Liu, Wu, Yang (CR6) 2021; 63 Guo, Shi, Yu, Liang, Wang (CR8) 2016; 87 Peng, Chen, Lu, Jin, Luttervelt (CR18) 1998 Fischler, Bolles (CR28) 1981; 24 Li, Zheng (CR16) 2023 S Ren (71989_CR26) 2017; 39 MA Fischler (71989_CR28) 1981; 24 M Fridenfalk (71989_CR4) 2003 B Guo (71989_CR8) 2016; 87 Z Song (71989_CR15) 2013; 60 Y Li (71989_CR9) 2010; 59 Y Wang (71989_CR17) 2022; 15 Z Lin (71989_CR11) 2023; 72 Y Xu (71989_CR7) 2014; 73 Y Ma (71989_CR10) 2023; 19 C Xu (71989_CR19) 2020 71989_CR20 T Hackel (71989_CR22) 2017 J Kim (71989_CR27) 2021; 80 Y Zhang (71989_CR12) 2021; 5 M Dinham (71989_CR2) 2013; 29 J Yun (71989_CR24) 2023; 23 F Guiotte (71989_CR23) 2020 C Zhuang (71989_CR29) 2016; 68 JN Pires (71989_CR3) 2006 K Xue (71989_CR6) 2021; 63 W Samek (71989_CR14) 2021; 109 F-L Fan (71989_CR13) 2021; 5 N Kerle (71989_CR25) 2019 HNM Shah (71989_CR1) 2016; 10 T Li (71989_CR16) 2023 J Liu (71989_CR5) 2015; 14 J Peng (71989_CR18) 1998 Y Ren (71989_CR21) 2019 |
| References_xml | – volume: 19 start-page: 10704 issue: 11 year: 2023 end-page: 10715 ident: CR10 article-title: An efficient and robust complex weld seam feature point extraction method for seam tracking and posture adjustment publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2023.3241595 – year: 2006 ident: CR3 publication-title: Welding Robots: Technology, System Issues and Application – volume: 5 start-page: 726 issue: 5 year: 2021 end-page: 742 ident: CR12 article-title: A survey on neural network interpretability publication-title: IEEE Trans. Emerg. Topics Comput. Intell. doi: 10.1109/TETCI.2021.3100641 – volume: 63 start-page: 48 year: 2021 end-page: 59 ident: CR6 article-title: Robotic seam tracking system based on vision sensing and human–machine interaction for multi-pass mag welding publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2020.02.026 – volume: 60 start-page: 1023 issue: 3 year: 2013 end-page: 1032 ident: CR15 article-title: An accurate and robust strip-edge-based structured light means for shiny surface micromeasurement in 3-D publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2188875 – volume: 80 start-page: 1 issue: 13 year: 2021 end-page: 17 ident: CR27 article-title: Multiple weld seam extraction from RGB-depth images for automatic robotic welding via point cloud registration publication-title: Multimed. Tools Appl. – volume: 87 start-page: 3397 issue: 9–12 year: 2016 end-page: 3410 ident: CR8 article-title: Weld deviation detection based on wide dynamic range vision sensor in MAG welding process publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-8721-2 – volume: 15 start-page: 3225 year: 2022 end-page: 3235 ident: CR17 article-title: Deep learning-based weld seam detection using convolutional neural networks publication-title: IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3111110 – year: 2019 ident: CR25 publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-xlii-3-w8-187-2019 – volume: 5 start-page: 741 issue: 6 year: 2021 end-page: 760 ident: CR13 article-title: On interpretability of artificial neural networks: A survey publication-title: IEEE Trans. Radiat. Plasma Med. Sci. doi: 10.1109/TRPMS.2021.3066428 – volume: 109 start-page: 247 issue: 3 year: 2021 end-page: 278 ident: CR14 article-title: Explaining deep neural networks and beyond: A review of methods and applications publication-title: Proc. IEEE doi: 10.1109/JPROC.2021.3060483 – volume: 39 start-page: 1137 issue: 6 year: 2017 end-page: 1149 ident: CR26 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 72 start-page: 1 year: 2023 end-page: 14 ident: CR11 article-title: Intelligent seam tracking of an ultranarrow gap during K-TIG welding: A hybrid CNN and adaptive ROI operation algorithm publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3328094 – year: 2020 ident: CR23 publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-xliii-b3-2020-515-2020 – volume: 14 start-page: 1096 issue: 2 year: 2015 end-page: 1108 ident: CR5 article-title: Boosting active contours for weld pool visual tracking in automatic arc welding publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2015.2498929 – volume: 59 start-page: 1841 issue: 7 year: 2010 end-page: 1849 ident: CR9 article-title: Measurement and defect detection of the weld bead based on online vision inspection publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2009.2028222 – year: 2017 ident: CR22 publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/ISPRS-ANNALS-IV-1-W1-91-2017 – start-page: 786 year: 2020 end-page: 791 ident: CR19 article-title: A new welding path planning method based on point cloud and deep learning publication-title: 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE) doi: 10.1109/CASE48305.2020.9216866 – volume: 23 start-page: 18391 issue: 18 year: 2023 end-page: 18398 ident: CR24 article-title: Grasping pose detection for loose stacked objects based on convolutional neural network with multiple self-powered sensors information publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3190560 – year: 2003 ident: CR4 publication-title: Development of Intelligent Robot Systems Based on Sensor Control – volume: 10 start-page: 83 issue: 2 year: 2016 end-page: 89 ident: CR1 article-title: A review paper on vision based identification, detection and tracking of weld seams path in welding robot environment publication-title: Mod. Appl. Sci. doi: 10.5539/mas.v10n2p83 – year: 2023 ident: CR16 article-title: Multi-layer and multi-channel dynamic routing planning and initial point positioning of weld seam based on machine vision publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3319076 – year: 2019 ident: CR21 article-title: The pose adjustment system of robotic arm adopts binocular vision and machine learning publication-title: 2019 International Conference on Computer Network, Communication and Information Systems (CNCI) – volume: 68 start-page: 102086 year: 2016 ident: CR29 article-title: Semantic part segmentation method based 3D object pose estimation with RGB-D images for bin-picking publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2020.102086 – start-page: 1279 year: 1998 end-page: 1283 ident: CR18 article-title: Real-time optimization of robotic arc welding based on machine vision and neural networks publication-title: IECON ’98. 24th Annual Conference of the IEEE Industrial Electronics Society – volume: 24 start-page: 381 issue: 6 year: 1981 end-page: 395 ident: CR28 article-title: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography publication-title: Commun. ACM doi: 10.1145/358669.358692 – volume: 29 start-page: 288 year: 2013 end-page: 301 ident: CR2 article-title: Autonomous weld seam identification and localisation using eye-in-hand stereo vision for robotic arc welding publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2013.01.004 – volume: 73 start-page: 1413 issue: 9–12 year: 2014 end-page: 1425 ident: CR7 article-title: Real-time image processing for vision-based weld seam tracking in robotic GMAW publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-014-5925-1 – ident: CR20 – volume: 63 start-page: 48 year: 2021 ident: 71989_CR6 publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2020.02.026 – volume: 23 start-page: 18391 issue: 18 year: 2023 ident: 71989_CR24 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3190560 – volume: 24 start-page: 381 issue: 6 year: 1981 ident: 71989_CR28 publication-title: Commun. ACM doi: 10.1145/358669.358692 – volume: 68 start-page: 102086 year: 2016 ident: 71989_CR29 publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2020.102086 – volume: 19 start-page: 10704 issue: 11 year: 2023 ident: 71989_CR10 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2023.3241595 – year: 2017 ident: 71989_CR22 doi: 10.5194/ISPRS-ANNALS-IV-1-W1-91-2017 – volume-title: Welding Robots: Technology, System Issues and Application year: 2006 ident: 71989_CR3 – year: 2023 ident: 71989_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3319076 – volume: 5 start-page: 741 issue: 6 year: 2021 ident: 71989_CR13 publication-title: IEEE Trans. Radiat. Plasma Med. Sci. doi: 10.1109/TRPMS.2021.3066428 – volume: 29 start-page: 288 year: 2013 ident: 71989_CR2 publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2013.01.004 – volume: 15 start-page: 3225 year: 2022 ident: 71989_CR17 publication-title: IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3111110 – volume: 109 start-page: 247 issue: 3 year: 2021 ident: 71989_CR14 publication-title: Proc. IEEE doi: 10.1109/JPROC.2021.3060483 – start-page: 1279 volume-title: IECON ’98. 24th Annual Conference of the IEEE Industrial Electronics Society year: 1998 ident: 71989_CR18 – volume: 10 start-page: 83 issue: 2 year: 2016 ident: 71989_CR1 publication-title: Mod. Appl. Sci. doi: 10.5539/mas.v10n2p83 – volume: 72 start-page: 1 year: 2023 ident: 71989_CR11 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3328094 – ident: 71989_CR20 doi: 10.22260/isarc2021/0053 – volume: 73 start-page: 1413 issue: 9–12 year: 2014 ident: 71989_CR7 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-014-5925-1 – volume: 14 start-page: 1096 issue: 2 year: 2015 ident: 71989_CR5 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2015.2498929 – volume: 60 start-page: 1023 issue: 3 year: 2013 ident: 71989_CR15 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2188875 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 71989_CR26 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – year: 2020 ident: 71989_CR23 doi: 10.5194/isprs-archives-xliii-b3-2020-515-2020 – volume: 59 start-page: 1841 issue: 7 year: 2010 ident: 71989_CR9 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2009.2028222 – volume: 87 start-page: 3397 issue: 9–12 year: 2016 ident: 71989_CR8 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-8721-2 – volume: 5 start-page: 726 issue: 5 year: 2021 ident: 71989_CR12 publication-title: IEEE Trans. Emerg. Topics Comput. Intell. doi: 10.1109/TETCI.2021.3100641 – year: 2019 ident: 71989_CR25 doi: 10.5194/isprs-archives-xlii-3-w8-187-2019 – volume: 80 start-page: 1 issue: 13 year: 2021 ident: 71989_CR27 publication-title: Multimed. Tools Appl. – start-page: 786 volume-title: 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE) year: 2020 ident: 71989_CR19 doi: 10.1109/CASE48305.2020.9216866 – volume-title: 2019 International Conference on Computer Network, Communication and Information Systems (CNCI) year: 2019 ident: 71989_CR21 – volume-title: Development of Intelligent Robot Systems Based on Sensor Control year: 2003 ident: 71989_CR4 |
| SSID | ssj0000529419 |
| Score | 2.4520304 |
| Snippet | This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis,... Abstract This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 21137 |
| SubjectTerms | 639/166/987 639/705/117 Decision making Deep learning Humanities and Social Sciences Image processing Industrial applications Information processing multidisciplinary Neural networks Pattern recognition Science Science (multidisciplinary) Technicians Welding |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egICNxg6iJ7V3bJwSUigOqOIDYW-T40UbaJssmSwW_npkkm2p5XTgm8cHOvL55eAbg-dxE5SR3qYghpBJFO7WoA9OArsM88mik7Zu4flDHx3qxMB_HgFs7llVudWKvqH3jKEZ-gDCEsLES_NXqa0pToyi7Oo7QuAxXaGw28blaqCnGQlksmZvxrkwm9EGL9orulHEqQqRqofMde9S37f8T1vy9ZPKXvGlvjo5u_u9BbsGNEYiy1wPn3IZLob4D14bRlN_vwo8vYekZysEZa0qK1TAfur5sq2ZD92dGBtAzfEYMyeKGwm6siYwfsuoMtVTLbO2ZOGSrpqo75pbNxreM6uxPWDWVOpbLwKinJm6lHirS23vw-ejdp7fv03FOQ-qk4V2aK_SDymDRGbIzGWYh87OgkDe8c2Vp0GUJwSJuUdpp4ZQTc2_RkbEmGovoTYv7sFc3dXgITHlvohSeS68luj4mOMQ4mZdliHE-nyXwYkutYjW04yj6NLrQxUDbAmlb9LQtzhN4QwSdVlIr7f5Fsz4pRsnEtXnmuEUOjVJ6xKs-OhoKxaPAo8SQwP6WjsUo321xQcQEnk2fUTIp3WLr0GyGNWhrtJEJPBi4Z9oJolJq45MnoHf4ameru1_q6rTv_p3nQivUtAm83LLgxb7-_i8e_fsYj-E6J6mg4RjZPux16014Alfdt65q1097sfoJs6gtHA priority: 102 providerName: ProQuest |
| Title | Weld seam object detection system based on the fusion of 2D images and 3D point clouds using interpretable neural networks |
| URI | https://link.springer.com/article/10.1038/s41598-024-71989-w https://www.ncbi.nlm.nih.gov/pubmed/39256451 https://www.proquest.com/docview/3102576732 https://www.proquest.com/docview/3102876894 https://pubmed.ncbi.nlm.nih.gov/PMC11387425 https://doaj.org/article/7110c2aa47f44d508dfc15252f3e5efe |
| Volume | 14 |
| WOSCitedRecordID | wos001317044700038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxIXxJtAWRmJG0Td2N7YPlLaCiS6ihCI5RQ5fkCkbVI1WSr49Yzj7NLlIS5cLOWhaDQz9nxjT74BeJYrLwynJmXeuZTj1E41roGpw9Qh99QrrgcS17diPpeLhSoutfoKNWGRHjgqbl9gfDJU4wc85xbhhPUm9OyhnrmZ8y6svlOhLiVTkdWbKp6p8S-ZKZP7HUaq8DcZDeWHoU7oYisSDYT9f0KZvxdL_nJiOgSi41twc0SQ5GWU_DZccc0duB57Sn67C98_uqUl6MCnpK3CJguxrh_qrRoSaZtJiFyW4DWCP-JXYb-MtJ7QQ1Kf4vLSEd1Ywg7JWVs3PTHLdmU7EgrkP5N6U6NYLR0JZJgoShNLybt78OH46P2r1-nYYCE1XNE-zQQmMJXTmMXoGUd1Tu3MCTSqNaaqFOYazmkEHEIayYwwLLcaMxCtvNIIuyS7DztN27iHQIS1ynNmKbeSY86inEFwMrW8ct7n-SyB52tll2eRR6Mczr-ZLKNpSjRNOZimvEjgINhj82bgwB5uoGeUo2eU__KMBPbW1izHidmViGZDiiUYTeDp5jFOqXBOohvXruI7GCSk4gk8iMbfSIJwMvDvZAnILbfYEnX7SVN_GWi7s4xJgUtkAi_WHvRTrr_r4tH_0MVjuEGD64feF9M92OnPV-4JXDNf-7o7n8BVsRDDKCewe3A0L95NhvmE4wktwihw3C3enBSffgCLLSaX |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLahceD8CBYwEJ4ia2N5NfEAIWKquul3toYj2FBw_2kjbZNnssio_it_IOI-tltetB46JrWjsfDPz2R7PALzoCRspTpXPrDE-R9X2JdpA3-DSoWepFVxWSVyH0WgUHx2J8Qb8aO_CuLDK1iZWhloXyu2R7yANcdw4YvTt9Kvvqka509W2hEYNi31zvsQlW_lm0Mf_-5LS3Y-HH_b8pqqAr7igcz-MkLWnRiJ1l11uuibQXRPhSLRSaSqQYBsj0ctGsYqZihTraYm0WworJHKNmOF3r8AmR7AHHdgcDw7Gx6tdHXduxkPR3M4JWLxTood0t9ioC3t08UnLNQ9YFQr4E7v9PUjzl5PaygHu3vzfpu4W3GioNnlX68Zt2DD5HbhWF988vwvfP5uJJijXGSlStxtFtJlXgWk5qfNbE-fiNcFnZMnELtzGIiksoX2SnaEdLonMNWF9Mi2yfE7UpFjokribBCckWwVzphNDXNZQFCWvY-7Le_DpUgZ-Hzp5kZuHQCKtheVMU65jjos7YRSyuEDz1Fjb63U9eNWiI5nWCUeSKlCAxUmNpQSxlFRYSpYevHcAWvV0ycKrF8XsJGlsD_YNA0Ul6qDlXCMj11a5slfUMhyKNR5st7hJGgtWJheg8eD5qhltjztQkrkpFnUf9Kax4B48qNG6kgR5t0tUFHoQr-F4TdT1ljw7rfKbhyGLI1QvD163kL-Q6-9z8ejfw3gGW3uHB8NkOBjtP4br1GmkKwUSbENnPluYJ3BVfZtn5expo9QEvly2MvwEPuiNRw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFBAX3g9DgUWCE1ixdze294AQJY2oWkURAtGbu95HiZTaIU6Iyk_j1zHrVxVetx44Jl5Fs843M9_ufjsD8DwSNlacKp9ZY3yOru1LjIG-waVDZKkVXFZFXA_j8Tg5OhKTLfjR3oVxsso2JlaBWhfK7ZH3kYY4bhwz2reNLGIyHL2Zf_VdByl30tq206ghcmDO1rh8K1_vD_G_fkHpaO_ju_d-02HAV1zQpR_GyOAzI5HGywE3AxPogYlxVlqpLBNIto2RmHHjRCVMxYpFWiIFl8IKibwjYfi7l2A7Zrjo6cH27t548qHb4XFnaDwUzU2dgCX9ErOlu9FGnQTSaZXWG9mwahrwJ6b7u2Dzl1PbKhmObvzPr_EmXG8oOHlb-8wt2DL5bbhSN-U8uwPfP5uZJmjXKSkyt0tFtFlWgrWc1HWviUv9muBnZM_ErtyGIyksoUMyPcX4XBKZa8KGZF5M8yVRs2KlS-JuGJyQaSfyzGaGuGqiaEpea_HLu_DpQiZ-D3p5kZsHQGKtheVMU64Tjos-YRSyu0DzzFgbRQMPXrZISed1IZK0EhCwJK1xlSKu0gpX6dqDXQembqQrIl59USxO0iYm4dgwUFSib1rONTJ1bZVrh0Utw6lY48FOi6G0iWxleg4gD551jzEmuYMmmZtiVY_BLJsI7sH9GrmdJcjHXQGj0INkA9Mbpm4-yadfqrrnYciSGHOMB69a-J_b9fd38fDf03gKV9ED0sP98cEjuEadc7oOIcEO9JaLlXkMl9W35bRcPGn8m8DxRfvCT6RyleE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weld+seam+object+detection+system+based+on+the+fusion+of+2D+images+and+3D+point+clouds+using+interpretable+neural+networks&rft.jtitle=Scientific+reports&rft.au=Shengbo+Wang&rft.au=Zengxu+Li&rft.au=Guodong+Chen&rft.au=Yaobin+Yue&rft.date=2024-09-10&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs41598-024-71989-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7110c2aa47f44d508dfc15252f3e5efe |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |