Weld seam object detection system based on the fusion of 2D images and 3D point clouds using interpretable neural networks

This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis, enhanced by interpretable neural networks. Unlike traditional methods that rely on either 2D or 3D data alone, our approach leverages the complem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 14; číslo 1; s. 21137 - 13
Hlavní autoři: Wang, Shengbo, Li, Zengxu, Chen, Guodong, Yue, Yaobin
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 10.09.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis, enhanced by interpretable neural networks. Unlike traditional methods that rely on either 2D or 3D data alone, our approach leverages the complementary strengths of both data types to improve detection accuracy in environments adversely affected by welding spatter and smoke. Our system employs an improved Faster R-CNN model with a ResNet50 backbone for 2D image analysis, coupled with an innovative orthogonal plane intersection line extraction algorithm for 3D point cloud processing. By incorporating explainable components such as visualizable feature maps and a transparent region proposal network, we address the “black box” issue common in deep learning models.This architecture enables a more transparent decision-making process, providing technicians with necessary insights to understand and trust the system’s outputs. The Faster-RCNN structure is designed to break down the object detection process into distinct, understandable steps, from initial feature extraction to final bounding box refinement. This fusion of 2D-3D data analysis and interpretability not only improves detection performance but also sets a new standard for transparency and reliability in automated welding systems, facilitating wider adoption in industrial applications.
AbstractList This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis, enhanced by interpretable neural networks. Unlike traditional methods that rely on either 2D or 3D data alone, our approach leverages the complementary strengths of both data types to improve detection accuracy in environments adversely affected by welding spatter and smoke. Our system employs an improved Faster R-CNN model with a ResNet50 backbone for 2D image analysis, coupled with an innovative orthogonal plane intersection line extraction algorithm for 3D point cloud processing. By incorporating explainable components such as visualizable feature maps and a transparent region proposal network, we address the “black box” issue common in deep learning models.This architecture enables a more transparent decision-making process, providing technicians with necessary insights to understand and trust the system’s outputs. The Faster-RCNN structure is designed to break down the object detection process into distinct, understandable steps, from initial feature extraction to final bounding box refinement. This fusion of 2D-3D data analysis and interpretability not only improves detection performance but also sets a new standard for transparency and reliability in automated welding systems, facilitating wider adoption in industrial applications.
Abstract This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis, enhanced by interpretable neural networks. Unlike traditional methods that rely on either 2D or 3D data alone, our approach leverages the complementary strengths of both data types to improve detection accuracy in environments adversely affected by welding spatter and smoke. Our system employs an improved Faster R-CNN model with a ResNet50 backbone for 2D image analysis, coupled with an innovative orthogonal plane intersection line extraction algorithm for 3D point cloud processing. By incorporating explainable components such as visualizable feature maps and a transparent region proposal network, we address the “black box” issue common in deep learning models.This architecture enables a more transparent decision-making process, providing technicians with necessary insights to understand and trust the system’s outputs. The Faster-RCNN structure is designed to break down the object detection process into distinct, understandable steps, from initial feature extraction to final bounding box refinement. This fusion of 2D-3D data analysis and interpretability not only improves detection performance but also sets a new standard for transparency and reliability in automated welding systems, facilitating wider adoption in industrial applications.
This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis, enhanced by interpretable neural networks. Unlike traditional methods that rely on either 2D or 3D data alone, our approach leverages the complementary strengths of both data types to improve detection accuracy in environments adversely affected by welding spatter and smoke. Our system employs an improved Faster R-CNN model with a ResNet50 backbone for 2D image analysis, coupled with an innovative orthogonal plane intersection line extraction algorithm for 3D point cloud processing. By incorporating explainable components such as visualizable feature maps and a transparent region proposal network, we address the "black box" issue common in deep learning models.This architecture enables a more transparent decision-making process, providing technicians with necessary insights to understand and trust the system's outputs. The Faster-RCNN structure is designed to break down the object detection process into distinct, understandable steps, from initial feature extraction to final bounding box refinement. This fusion of 2D-3D data analysis and interpretability not only improves detection performance but also sets a new standard for transparency and reliability in automated welding systems, facilitating wider adoption in industrial applications.This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis, enhanced by interpretable neural networks. Unlike traditional methods that rely on either 2D or 3D data alone, our approach leverages the complementary strengths of both data types to improve detection accuracy in environments adversely affected by welding spatter and smoke. Our system employs an improved Faster R-CNN model with a ResNet50 backbone for 2D image analysis, coupled with an innovative orthogonal plane intersection line extraction algorithm for 3D point cloud processing. By incorporating explainable components such as visualizable feature maps and a transparent region proposal network, we address the "black box" issue common in deep learning models.This architecture enables a more transparent decision-making process, providing technicians with necessary insights to understand and trust the system's outputs. The Faster-RCNN structure is designed to break down the object detection process into distinct, understandable steps, from initial feature extraction to final bounding box refinement. This fusion of 2D-3D data analysis and interpretability not only improves detection performance but also sets a new standard for transparency and reliability in automated welding systems, facilitating wider adoption in industrial applications.
ArticleNumber 21137
Author Yue, Yaobin
Li, Zengxu
Chen, Guodong
Wang, Shengbo
Author_xml – sequence: 1
  givenname: Shengbo
  surname: Wang
  fullname: Wang, Shengbo
  organization: College of Sino-German Science and Technology, Qingdao University of Science and Technology
– sequence: 2
  givenname: Zengxu
  surname: Li
  fullname: Li, Zengxu
  organization: College of Automation and Electronic Engineering, Qingdao University of Science and Technology
– sequence: 3
  givenname: Guodong
  surname: Chen
  fullname: Chen, Guodong
  organization: College of Automation and Electronic Engineering, Qingdao University of Science and Technology
– sequence: 4
  givenname: Yaobin
  surname: Yue
  fullname: Yue, Yaobin
  email: ybyue2020@qust.edu.cn
  organization: College of Automation and Electronic Engineering, Qingdao University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39256451$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CALHHhEvBnHJ8QailUqsQFxNFy7EmaJbEX22FVfn3dTSktB3wZe-aZd8b2PK8OfPBQVS8Jfkswa98lToRqa0x5LYlqVb17Uh1RzEVNGaUHD_aH1UlKG1yWoIoT9aw6ZIqKhgtyVP3-DpNDCcyMQrcBm5GDXMwYPErXKcOMOpPAoXLOV4D6Jd2GQo_oGRpnM0BCxjvEztA2jD4jO4XFJVQwP6DigLiNkE03AfKwRDMVk3ch_kgvqqe9mRKc3Nnj6tv5x6-nn-vLL58uTj9c1pYrmmsisWo6MKrBRnAQgJ0ACdY6a7tOCSUBDBFCtrZlVlrWOCOEMqpXpiG4ZcfVxarrgtnobSxdx2sdzKj3jhAHbWIe7QRaEoItNYbLnnMncOt6SwQVtGelcA9F6_2qtV26GZwFn8uVHok-jvjxSg_hlyaEtZJTURTe3CnE8HOBlPU8JgvTZDyEJWlGMG1l0ype0Nf_oJuwRF_eak8J2UhGC_XqYUv3vfz54wLQFbAxpBShv0cI1rezpNdZ0mWW9H6W9K4ksTUpFdgPEP_W_k_WDanAza0
Cites_doi 10.1109/TII.2023.3241595
10.1109/TETCI.2021.3100641
10.1016/j.jmapro.2020.02.026
10.1109/TIE.2012.2188875
10.1007/s00170-016-8721-2
10.1109/JSTARS.2022.3111110
10.5194/isprs-archives-xlii-3-w8-187-2019
10.1109/TRPMS.2021.3066428
10.1109/JPROC.2021.3060483
10.1109/TPAMI.2016.2577031
10.1109/TIM.2023.3328094
10.5194/isprs-archives-xliii-b3-2020-515-2020
10.1109/TASE.2015.2498929
10.1109/TIM.2009.2028222
10.5194/ISPRS-ANNALS-IV-1-W1-91-2017
10.1109/CASE48305.2020.9216866
10.1109/JSEN.2022.3190560
10.5539/mas.v10n2p83
10.1109/ACCESS.2023.3319076
10.1016/j.rcim.2020.102086
10.1145/358669.358692
10.1016/j.rcim.2013.01.004
10.1007/s00170-014-5925-1
10.22260/isarc2021/0053
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-71989-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest One Academic
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed


MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_7110c2aa47f44d508dfc15252f3e5efe
PMC11387425
39256451
10_1038_s41598_024_71989_w
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c492t-17096bea960a54e5e0d5e7eccdccbb9597eea15578c83c7c36da559a9f9a61083
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001317044700038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:34:02 EST 2025
Tue Nov 04 02:04:55 EST 2025
Thu Oct 02 06:55:08 EDT 2025
Tue Oct 07 07:35:55 EDT 2025
Mon Jul 21 06:03:32 EDT 2025
Sat Nov 29 05:24:10 EST 2025
Fri Feb 21 02:39:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-17096bea960a54e5e0d5e7eccdccbb9597eea15578c83c7c36da559a9f9a61083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/7110c2aa47f44d508dfc15252f3e5efe
PMID 39256451
PQID 3102576732
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_7110c2aa47f44d508dfc15252f3e5efe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11387425
proquest_miscellaneous_3102876894
proquest_journals_3102576732
pubmed_primary_39256451
crossref_primary_10_1038_s41598_024_71989_w
springer_journals_10_1038_s41598_024_71989_w
PublicationCentury 2000
PublicationDate 2024-09-10
PublicationDateYYYYMMDD 2024-09-10
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Yun (CR24) 2023; 23
Ren, He, Girshick, Sun (CR26) 2017; 39
Lin, Shi, Wang, Li, Chen (CR11) 2023; 72
Samek, Montavon, Lapuschkin, Anders, Müller (CR14) 2021; 109
Zhang, Tiňo, Leonardis, Tang (CR12) 2021; 5
Fan, Xiong, Li, Wang (CR13) 2021; 5
Shah, Sulaiman, Shukor, Jamaluddin, Ab Rashid (CR1) 2016; 10
Zhuang (CR29) 2016; 68
Xu, Fang, Chen, Zou, Ye (CR7) 2014; 73
Ren, Yu (CR21) 2019
Xu, Wang, Zhang, Lu (CR19) 2020
Ma (CR10) 2023; 19
Guiotte, Bin, Lefevre, Tang, Corpetti (CR23) 2020
Hackel, Savinov, Ladicky, Wegner, Schindler, Pollefeys (CR22) 2017
Pires, Loureiro, Bolmsjo (CR3) 2006
Song, Chung, Zhang (CR15) 2013; 60
Dinham, Fang (CR2) 2013; 29
Wang, Liu, Zhang (CR17) 2022; 15
Fridenfalk (CR4) 2003
Li, Li, Wang, Xu, Tan (CR9) 2010; 59
Kerle, Nex, Duarte, Vetrivel (CR25) 2019
Liu, Fan, Olsen, Christensen, Kristensen (CR5) 2015; 14
Kim, Lee, Chung (CR27) 2021; 80
CR20
Xue, Wang, Shen, Hu, Zhen, Liu, Wu, Yang (CR6) 2021; 63
Guo, Shi, Yu, Liang, Wang (CR8) 2016; 87
Peng, Chen, Lu, Jin, Luttervelt (CR18) 1998
Fischler, Bolles (CR28) 1981; 24
Li, Zheng (CR16) 2023
S Ren (71989_CR26) 2017; 39
MA Fischler (71989_CR28) 1981; 24
M Fridenfalk (71989_CR4) 2003
B Guo (71989_CR8) 2016; 87
Z Song (71989_CR15) 2013; 60
Y Li (71989_CR9) 2010; 59
Y Wang (71989_CR17) 2022; 15
Z Lin (71989_CR11) 2023; 72
Y Xu (71989_CR7) 2014; 73
Y Ma (71989_CR10) 2023; 19
C Xu (71989_CR19) 2020
71989_CR20
T Hackel (71989_CR22) 2017
J Kim (71989_CR27) 2021; 80
Y Zhang (71989_CR12) 2021; 5
M Dinham (71989_CR2) 2013; 29
J Yun (71989_CR24) 2023; 23
F Guiotte (71989_CR23) 2020
C Zhuang (71989_CR29) 2016; 68
JN Pires (71989_CR3) 2006
K Xue (71989_CR6) 2021; 63
W Samek (71989_CR14) 2021; 109
F-L Fan (71989_CR13) 2021; 5
N Kerle (71989_CR25) 2019
HNM Shah (71989_CR1) 2016; 10
T Li (71989_CR16) 2023
J Liu (71989_CR5) 2015; 14
J Peng (71989_CR18) 1998
Y Ren (71989_CR21) 2019
References_xml – volume: 19
  start-page: 10704
  issue: 11
  year: 2023
  end-page: 10715
  ident: CR10
  article-title: An efficient and robust complex weld seam feature point extraction method for seam tracking and posture adjustment
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2023.3241595
– year: 2006
  ident: CR3
  publication-title: Welding Robots: Technology, System Issues and Application
– volume: 5
  start-page: 726
  issue: 5
  year: 2021
  end-page: 742
  ident: CR12
  article-title: A survey on neural network interpretability
  publication-title: IEEE Trans. Emerg. Topics Comput. Intell.
  doi: 10.1109/TETCI.2021.3100641
– volume: 63
  start-page: 48
  year: 2021
  end-page: 59
  ident: CR6
  article-title: Robotic seam tracking system based on vision sensing and human–machine interaction for multi-pass mag welding
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2020.02.026
– volume: 60
  start-page: 1023
  issue: 3
  year: 2013
  end-page: 1032
  ident: CR15
  article-title: An accurate and robust strip-edge-based structured light means for shiny surface micromeasurement in 3-D
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2188875
– volume: 80
  start-page: 1
  issue: 13
  year: 2021
  end-page: 17
  ident: CR27
  article-title: Multiple weld seam extraction from RGB-depth images for automatic robotic welding via point cloud registration
  publication-title: Multimed. Tools Appl.
– volume: 87
  start-page: 3397
  issue: 9–12
  year: 2016
  end-page: 3410
  ident: CR8
  article-title: Weld deviation detection based on wide dynamic range vision sensor in MAG welding process
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-8721-2
– volume: 15
  start-page: 3225
  year: 2022
  end-page: 3235
  ident: CR17
  article-title: Deep learning-based weld seam detection using convolutional neural networks
  publication-title: IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3111110
– year: 2019
  ident: CR25
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-xlii-3-w8-187-2019
– volume: 5
  start-page: 741
  issue: 6
  year: 2021
  end-page: 760
  ident: CR13
  article-title: On interpretability of artificial neural networks: A survey
  publication-title: IEEE Trans. Radiat. Plasma Med. Sci.
  doi: 10.1109/TRPMS.2021.3066428
– volume: 109
  start-page: 247
  issue: 3
  year: 2021
  end-page: 278
  ident: CR14
  article-title: Explaining deep neural networks and beyond: A review of methods and applications
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3060483
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  end-page: 1149
  ident: CR26
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 72
  start-page: 1
  year: 2023
  end-page: 14
  ident: CR11
  article-title: Intelligent seam tracking of an ultranarrow gap during K-TIG welding: A hybrid CNN and adaptive ROI operation algorithm
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3328094
– year: 2020
  ident: CR23
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-xliii-b3-2020-515-2020
– volume: 14
  start-page: 1096
  issue: 2
  year: 2015
  end-page: 1108
  ident: CR5
  article-title: Boosting active contours for weld pool visual tracking in automatic arc welding
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2015.2498929
– volume: 59
  start-page: 1841
  issue: 7
  year: 2010
  end-page: 1849
  ident: CR9
  article-title: Measurement and defect detection of the weld bead based on online vision inspection
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2009.2028222
– year: 2017
  ident: CR22
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/ISPRS-ANNALS-IV-1-W1-91-2017
– start-page: 786
  year: 2020
  end-page: 791
  ident: CR19
  article-title: A new welding path planning method based on point cloud and deep learning
  publication-title: 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)
  doi: 10.1109/CASE48305.2020.9216866
– volume: 23
  start-page: 18391
  issue: 18
  year: 2023
  end-page: 18398
  ident: CR24
  article-title: Grasping pose detection for loose stacked objects based on convolutional neural network with multiple self-powered sensors information
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3190560
– year: 2003
  ident: CR4
  publication-title: Development of Intelligent Robot Systems Based on Sensor Control
– volume: 10
  start-page: 83
  issue: 2
  year: 2016
  end-page: 89
  ident: CR1
  article-title: A review paper on vision based identification, detection and tracking of weld seams path in welding robot environment
  publication-title: Mod. Appl. Sci.
  doi: 10.5539/mas.v10n2p83
– year: 2023
  ident: CR16
  article-title: Multi-layer and multi-channel dynamic routing planning and initial point positioning of weld seam based on machine vision
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3319076
– year: 2019
  ident: CR21
  article-title: The pose adjustment system of robotic arm adopts binocular vision and machine learning
  publication-title: 2019 International Conference on Computer Network, Communication and Information Systems (CNCI)
– volume: 68
  start-page: 102086
  year: 2016
  ident: CR29
  article-title: Semantic part segmentation method based 3D object pose estimation with RGB-D images for bin-picking
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2020.102086
– start-page: 1279
  year: 1998
  end-page: 1283
  ident: CR18
  article-title: Real-time optimization of robotic arc welding based on machine vision and neural networks
  publication-title: IECON ’98. 24th Annual Conference of the IEEE Industrial Electronics Society
– volume: 24
  start-page: 381
  issue: 6
  year: 1981
  end-page: 395
  ident: CR28
  article-title: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
– volume: 29
  start-page: 288
  year: 2013
  end-page: 301
  ident: CR2
  article-title: Autonomous weld seam identification and localisation using eye-in-hand stereo vision for robotic arc welding
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2013.01.004
– volume: 73
  start-page: 1413
  issue: 9–12
  year: 2014
  end-page: 1425
  ident: CR7
  article-title: Real-time image processing for vision-based weld seam tracking in robotic GMAW
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-014-5925-1
– ident: CR20
– volume: 63
  start-page: 48
  year: 2021
  ident: 71989_CR6
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2020.02.026
– volume: 23
  start-page: 18391
  issue: 18
  year: 2023
  ident: 71989_CR24
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3190560
– volume: 24
  start-page: 381
  issue: 6
  year: 1981
  ident: 71989_CR28
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
– volume: 68
  start-page: 102086
  year: 2016
  ident: 71989_CR29
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2020.102086
– volume: 19
  start-page: 10704
  issue: 11
  year: 2023
  ident: 71989_CR10
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2023.3241595
– year: 2017
  ident: 71989_CR22
  doi: 10.5194/ISPRS-ANNALS-IV-1-W1-91-2017
– volume-title: Welding Robots: Technology, System Issues and Application
  year: 2006
  ident: 71989_CR3
– year: 2023
  ident: 71989_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3319076
– volume: 5
  start-page: 741
  issue: 6
  year: 2021
  ident: 71989_CR13
  publication-title: IEEE Trans. Radiat. Plasma Med. Sci.
  doi: 10.1109/TRPMS.2021.3066428
– volume: 29
  start-page: 288
  year: 2013
  ident: 71989_CR2
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2013.01.004
– volume: 15
  start-page: 3225
  year: 2022
  ident: 71989_CR17
  publication-title: IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3111110
– volume: 109
  start-page: 247
  issue: 3
  year: 2021
  ident: 71989_CR14
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3060483
– start-page: 1279
  volume-title: IECON ’98. 24th Annual Conference of the IEEE Industrial Electronics Society
  year: 1998
  ident: 71989_CR18
– volume: 10
  start-page: 83
  issue: 2
  year: 2016
  ident: 71989_CR1
  publication-title: Mod. Appl. Sci.
  doi: 10.5539/mas.v10n2p83
– volume: 72
  start-page: 1
  year: 2023
  ident: 71989_CR11
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3328094
– ident: 71989_CR20
  doi: 10.22260/isarc2021/0053
– volume: 73
  start-page: 1413
  issue: 9–12
  year: 2014
  ident: 71989_CR7
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-014-5925-1
– volume: 14
  start-page: 1096
  issue: 2
  year: 2015
  ident: 71989_CR5
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2015.2498929
– volume: 60
  start-page: 1023
  issue: 3
  year: 2013
  ident: 71989_CR15
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2188875
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 71989_CR26
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– year: 2020
  ident: 71989_CR23
  doi: 10.5194/isprs-archives-xliii-b3-2020-515-2020
– volume: 59
  start-page: 1841
  issue: 7
  year: 2010
  ident: 71989_CR9
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2009.2028222
– volume: 87
  start-page: 3397
  issue: 9–12
  year: 2016
  ident: 71989_CR8
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-8721-2
– volume: 5
  start-page: 726
  issue: 5
  year: 2021
  ident: 71989_CR12
  publication-title: IEEE Trans. Emerg. Topics Comput. Intell.
  doi: 10.1109/TETCI.2021.3100641
– year: 2019
  ident: 71989_CR25
  doi: 10.5194/isprs-archives-xlii-3-w8-187-2019
– volume: 80
  start-page: 1
  issue: 13
  year: 2021
  ident: 71989_CR27
  publication-title: Multimed. Tools Appl.
– start-page: 786
  volume-title: 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)
  year: 2020
  ident: 71989_CR19
  doi: 10.1109/CASE48305.2020.9216866
– volume-title: 2019 International Conference on Computer Network, Communication and Information Systems (CNCI)
  year: 2019
  ident: 71989_CR21
– volume-title: Development of Intelligent Robot Systems Based on Sensor Control
  year: 2003
  ident: 71989_CR4
SSID ssj0000529419
Score 2.45211
Snippet This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud analysis,...
Abstract This study introduces a novel approach that addresses the limitations of existing methods by integrating 2D image processing with 3D point cloud...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 21137
SubjectTerms 639/166/987
639/705/117
Decision making
Deep learning
Humanities and Social Sciences
Image processing
Industrial applications
Information processing
multidisciplinary
Neural networks
Pattern recognition
Science
Science (multidisciplinary)
Technicians
Welding
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egICNxg6hJnKztEwJKxQFVHHjsLfKzRNomyyZLBb-eGSe71fK6cEtiH-zM6_PMeAbgaelsYcPMp9Io8lYZg09FlZYuVCbLrXexHdCnd-L4WM7n6v3kcOuntMqNToyK2nWWfOQHCEMIGwtevFh-TalrFEVXpxYaF-EStc0mPhdzsfWxUBSrzNV0Vybj8qBHe0V3ygpKQqRsobMdexTL9v8Ja_6eMvlL3DSao6Pr_7uRG3BtAqLs5cg5N-GCb2_BlbE15ffb8OOzXziGcnDKOkO-Gub8ENO2WjZWf2ZkAB3Dd8SQLKzJ7ca6wIpD1pyiluqZbh3jh2zZNe3A7KJbu55Rnv0Ja7apjmbhGdXUxKW0Y0Z6fwc-Hr358PptOvVpSG2piiHNBZ6DjNd4GNJV6SufucoL5A1nrTEKjyzea8QtQlrJrbB85jQeZLQKSiN6k_wu7LVd6-8DC1JqoSotcgRGKsyUD4j4uNPGOqFlnsCzDbXq5ViOo45hdC7rkbY10raOtK3PEnhFBN3OpFLa8UO3OqknycS5eWYLrUsRytIhXnXBUlOoInDcSvAJ7G_oWE_y3dfnREzgyXYYJZPCLbr13Xqcg7ZGqjKBeyP3bFeCqJTK-OB-5A5f7Sx1d6RtvsTq33nOpUBNm8DzDQuer-vv_-LBv7fxEK4WJBXUHCPbh71htfaP4LL9NjT96nEUq59r6C1T
  priority: 102
  providerName: ProQuest
Title Weld seam object detection system based on the fusion of 2D images and 3D point clouds using interpretable neural networks
URI https://link.springer.com/article/10.1038/s41598-024-71989-w
https://www.ncbi.nlm.nih.gov/pubmed/39256451
https://www.proquest.com/docview/3102576732
https://www.proquest.com/docview/3102876894
https://pubmed.ncbi.nlm.nih.gov/PMC11387425
https://doaj.org/article/7110c2aa47f44d508dfc15252f3e5efe
Volume 14
WOSCitedRecordID wos001317044700038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBYkL4k1KWRmJG0RN7GRtHyltBRJdRYjHcor8LJG2SdVkW8GvZ2xnly4PceFiJZscZmfGnm_syTcIPS-MJtpNbcqV8LtVSsEVKdPCuFJlubYmtAP69I7NZnw-F9WVVl--JizSA0fF7TGIT5pIWTBXFAbghHHa9-whjtrSOutX34yJK8lUZPUmosjF-JVMRvleD5HKf01GfPmhrxO63IhEgbD_Tyjz92LJX05MQyA6uoNujwgSv4qS30XXbHsP3Yw9Jb_dR98_24XB4MCnuFN-kwUbO4R6qxZH2mbsI5fBcA_gD7ul3y_DncPkADensLz0WLYG0wN81jXtgPWiW5oe-wL5E9ysaxTVwmJPhgmitLGUvH-APh4dfnj9Jh0bLKS6EGRIcwYJjLISshhZFqDOzJSWgVGN1koJyDWslQA4GNecaqbp1EjIQKRwQgLs4vQh2mq71j5G2HEumSglywHRCDcV1gFUo0YqbZjkeYJerJRdn0UejTqcf1NeR9PUYJo6mKa-TNC-t8f6Tc-BHX4Az6hHz6j_5RkJ2l1Zsx4nZl8DmvUpFqMkQc_Wj2FK-XMS2dpuGd-BIMFFkaBH0fhrSQBOev4d-D98wy02RN180jZfA213nlPOYIlM0MuVB_2U6--62PkfuniCbhHv-r73RbaLtobzpX2KbuiLoenPJ-g6m7Mw8gna3j-cVe8nYT7BeEwqPzIYt6u3x9WXH0cmJs4
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAQX3hRDgUWCE1i113Z294AQEKpGTaMcCpSTWe-jjZTaIU6Iyo_iNzLrR6rwuvXALY5X1ozzzcyX2dkZgGexVlTZrvF5Jly2KsvwE038WNskC0JldDUO6OOADYf86EiMNuBHexbGlVW2PrFy1LpQLke-gzTEcWMW0dfTr76bGuV2V9sRGjUs9s3ZEv-yla_6Pfx9n1O6-_7w3Z7fTBXwVSzo3A8ZsvbMSKTuMolNYgKdGIaaaKWyTCDBNkZilGVc8UgxFXW1RNothRUSuQaP8LmXYDNGsAcd2Bz1D0afV1kdt28Wh6I5nRNEfKfECOlOsVFX9ujqk5ZrEbAaFPAndvt7keYvO7VVANy98b-9uptwvaHa5E1tG7dgw-S34Uo9fPPsDnz_ZCaaoFynpMhcNopoM68K03JS97cmLsRrgtfIkolduMQiKSyhPTI-RT9cEplrEvXItBjnc6ImxUKXxJ0kOCbjVTFnNjHEdQ1FUfK65r68Cx8uRPF70MmL3NwHYjmXTCSShUj9hO0KY5HTRlpmSjPJQw9etOhIp3XDkbQqFIh4WmMpRSylFZbSpQdvHYBWK12z8OqLYnacNr4H14aBolLGzMaxRkaurXJjr6iNUBVrPNhucZM2HqxMz0HjwdPVbfQ9bkNJ5qZY1GswmnIRe7BVo3UlCfJu16gI9eFrOF4Tdf1OPj6p-puHYcQZmpcHL1vIn8v193fx4N9qPIGre4cHg3TQH-4_hGvUWaQbBRJsQ2c-W5hHcFl9m4_L2ePGqAl8uWhj-Ak47Y1-
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFBAX3g9DgUWCE1iJd-3s7gEhShpRtYoixKM3s95HiZTaIU6Iyk_j1zHrR6rwuvXALYlX0Yz9zczn2dkZgKex0VS7vg1FJn22KsvwE03C2Lgk60Xammoc0MdDPhqJoyM53oIf7VkYX1bZ-sTKUZtC-xx5F2mI58ac0a5ryiLGg-Gr2dfQT5DyO63tOI0aIgf2dIWvb-XL_QE-62eUDvfev3kbNhMGQh1Luggjjgw-swppvEpim9ieSSxHrYzWWSaRbFurMOJyoQXTXLO-UUjBlXRSIe8QDP_3Amxzhi89Hdje3RuN360zPH4PLY5kc1Knx0S3xGjpT7RRXwLpa5VWG9GwGhrwJ6b7e8HmL7u2VTAcXvufb-N1uNpQcPK6tpkbsGXzm3CpHsp5egu-f7JTQ1CuE1JkPktFjF1UBWs5qfteEx_6DcHvyJ6JW_qEIykcoQMyOUH_XBKVG8IGZFZM8gXR02JpSuJPGByTybrIM5ta4ruJoih5XYtf3oYP56L4HejkRW7vAXFCKC4TxSOkhNL1pXXIdZlRmTZciSiA5y1S0lndiCStCgiYSGtcpYirtMJVugpg14NpvdI3Ea9-KObHaeOTcG3U01SpmLs4NsjUjdN-HBZ1DFVxNoCdFkNp49nK9AxAATxZX0af5DeaVG6LZb0Go6yQcQB3a-SuJUE-7hsYoT5iA9Mbom5eySdfqr7nUcQExxgTwIsW_mdy_f1e3P-3Go_hMlpAerg_OngAV6g3Tj8hpLcDncV8aR_CRf1tMSnnjxr7JvD5vG3hJ6Kolhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weld+seam+object+detection+system+based+on+the+fusion+of+2D+images+and+3D+point+clouds+using+interpretable+neural+networks&rft.jtitle=Scientific+reports&rft.au=Shengbo+Wang&rft.au=Zengxu+Li&rft.au=Guodong+Chen&rft.au=Yaobin+Yue&rft.date=2024-09-10&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs41598-024-71989-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7110c2aa47f44d508dfc15252f3e5efe
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon