Network partitioning algorithms as cooperative games

The paper is devoted to game-theoretic methods for community detection in networks. The traditional methods for detecting community structure are based on selecting dense subgraphs inside the network. Here we propose to use the methods of cooperative game theory that highlight not only the link dens...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational social networks Ročník 5; číslo 1; s. 11 - 28
Hlavní autoři: Avrachenkov, Konstantin E., Kondratev, Aleksei Y., Mazalov, Vladimir V., Rubanov, Dmytro G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2018
Springer Nature B.V
Springer
Témata:
ISSN:2197-4314, 2197-4314
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The paper is devoted to game-theoretic methods for community detection in networks. The traditional methods for detecting community structure are based on selecting dense subgraphs inside the network. Here we propose to use the methods of cooperative game theory that highlight not only the link density but also the mechanisms of cluster formation. Specifically, we suggest two approaches from cooperative game theory: the first approach is based on the Myerson value, whereas the second approach is based on hedonic games. Both approaches allow to detect clusters with various resolutions. However, the tuning of the resolution parameter in the hedonic games approach is particularly intuitive. Furthermore, the modularity-based approach and its generalizations as well as ratio cut and normalized cut methods can be viewed as particular cases of the hedonic games. Finally, for approaches based on potential hedonic games we suggest a very efficient computational scheme using Gibbs sampling.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2197-4314
2197-4314
DOI:10.1186/s40649-018-0059-5