Great apes track hidden objects after changes in the objects' position and in subject's orientation
Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platfo...
Saved in:
| Published in: | American journal of primatology Vol. 72; no. 4; pp. 349 - 359 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2010
|
| Subjects: | |
| ISSN: | 0275-2565, 1098-2345, 1098-2345 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180° while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding. Am. J. Primatol. 72:349–359, 2010. © 2010 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | Eight chimpanzees (
Pan troglodytes
), five bonobos (
Pan paniscus
), five gorillas (
Gorilla gorilla
), and seven orangutans (
Pongo pygmaeus
) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180° while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding. Am. J. Primatol. 72:349–359, 2010. © 2010 Wiley‐Liss, Inc. Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180 degrees while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding.Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180 degrees while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding. Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180 degrees while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding. Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180º while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding. Copyright John Wiley & Sons. Reproduced with permission. An electronic version of this article is available online at http://www.interscience.wiley.com Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180? while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding. Am. J. Primatol. 72:349-359, 2010. Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180° while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding. Am. J. Primatol. 72:349–359, 2010. © 2010 Wiley‐Liss, Inc. |
| Author | Barth, Jochen Albiach-Serrano, Anna Call, Josep |
| Author_xml | – sequence: 1 givenname: Anna surname: Albiach-Serrano fullname: Albiach-Serrano, Anna email: anna.albiach@eva.mpg.de organization: Department of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany – sequence: 2 givenname: Josep surname: Call fullname: Call, Josep organization: Department of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany – sequence: 3 givenname: Jochen surname: Barth fullname: Barth, Jochen organization: Department of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20052693$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1PGzEQhq2KqgTaQ_9A5VvEYcEf6489IgShVdRyoIKb5djjxmGzu7Udtfz7bgjhUKnlNIfneWekeY_QQdd3gNBHSk4pIezMroZTRlRD3qAJJY2uGK_FAZoQpkTFhBSH6CjnFSGU1lK8Q4eMEMFkwyfIzRLYgu0AGZdk3QNeRu-hw_1iBa5kbEOBhN3Sdj9GJXa4LGEPp3jocyyx77Dt_BbmzROZZtynCF2xW_gevQ22zfDheR6j71eXtxfX1fzb7PPF-bxydcNIFZxogvWBMa21F14q5xfAPNRixMFzTUFJYNxJZhmVVAVvPdB6AS6wuuHHaLrbO6T-5wZyMeuYHbSt7aDfZKOp5Epqyl811XhSaaXr103OBa2poKP56dncLNbgzZDi2qZHs__1KJzsBJf6nBOEF4USs-3RjD2apx5H9-wv18XdM8eSYvu_xK_YwuO_V5vzLzf7RLVLxFzg90vCpgcjFVfC3H2dGT2_ub3X19JI_gdOn70z |
| CitedBy_id | crossref_primary_10_1016_j_applanim_2011_10_010 crossref_primary_10_1134_S002209301205009X crossref_primary_10_1007_s10071_013_0614_2 crossref_primary_10_1002_ajpa_23833 crossref_primary_10_1098_rspb_2025_0640 crossref_primary_10_1016_j_jecp_2019_104715 crossref_primary_10_1007_s10071_011_0397_2 crossref_primary_10_1016_j_anbehav_2013_02_022 crossref_primary_10_1007_s10329_014_0439_x crossref_primary_10_1007_s10071_013_0690_3 crossref_primary_10_1177_17456916231180589 crossref_primary_10_1080_13506285_2021_2013374 crossref_primary_10_1016_j_anbehav_2011_05_012 |
| Cites_doi | 10.1037/0735-7036.118.4.421 10.1007/s10071-008-0197-5 10.1126/science.1146282 10.1037/0735-7036.122.4.403 10.1007/s10329-005-0150-z 10.1007/s100710100078 10.1016/0010-0277(86)90012-0 10.1037/0735-7036.110.4.386 10.1016/0022-0965(80)90017-X 10.1037/0735-7036.114.2.148 10.1007/s10071-008-0192-x 10.1037/0735-7036.112.2.137 10.1037/0097-7403.32.3.239 10.1037/0735-7036.115.2.159 10.1007/s10071-003-0162-2 10.1037/0735-7036.111.1.63 10.1037/a0012594 10.1016/0003-3472(95)80167-7 10.1016/j.anbehav.2005.01.014 10.1037/0012-1649.20.1.21 10.1073/pnas.0607999103 10.3758/BF03200074 10.3758/BF03198962 10.1007/s10071-006-0060-5 10.1007/s100710000062 10.1037/0012-1649.14.4.346 10.1037/0735-7036.100.4.335 10.1007/s10071-006-0063-2 10.46867/C47W2D 10.3758/BF03205244 10.1016/j.cub.2008.08.020 10.1007/BF02382536 10.1037/0097-7403.25.2.168 10.1037/0735-7036.120.4.389 10.1007/s10329-003-0048-6 10.1037/0735-7036.119.1.14 10.1037/h0075798 10.1037/0735-7036.100.4.340 10.1037/0735-7036.106.4.404 10.1037/0735-7036.118.1.103 |
| ContentType | Journal Article |
| Copyright | 2010 Wiley‐Liss, Inc. 2010 Wiley-Liss, Inc. |
| Copyright_xml | – notice: 2010 Wiley‐Liss, Inc. – notice: 2010 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QG 8BJ FQK JBE |
| DOI | 10.1002/ajp.20790 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Animal Behavior Abstracts International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Animal Behavior Abstracts International Bibliography of the Social Sciences (IBSS) |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE International Bibliography of the Social Sciences (IBSS) Animal Behavior Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anthropology Zoology Psychology |
| EISSN | 1098-2345 |
| EndPage | 359 |
| ExternalDocumentID | 20052693 10_1002_ajp_20790 AJP20790 ark_67375_WNG_8LPTX8H6_6 |
| Genre | article Journal Article Comparative Study |
| GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 36B 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DVXWH EBS ECGQY EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M66 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XV2 ZCG ZZTAW ~02 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI RWV VQA WRC WTM AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7X8 7QG 8BJ FQK JBE |
| ID | FETCH-LOGICAL-c4920-fc59fadf22888d5d67cdbe2de45920fd381e76e23c62a21617fdade14becf2493 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000276124300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0275-2565 1098-2345 |
| IngestDate | Thu Jul 10 18:02:20 EDT 2025 Sun Nov 09 09:44:43 EST 2025 Sun Nov 09 10:04:39 EST 2025 Mon Jul 21 06:01:43 EDT 2025 Tue Nov 18 22:15:28 EST 2025 Sat Nov 29 04:10:16 EST 2025 Wed Jan 22 16:22:32 EST 2025 Tue Nov 11 03:32:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2010 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4920-fc59fadf22888d5d67cdbe2de45920fd381e76e23c62a21617fdade14becf2493 |
| Notes | ArticleID:AJP20790 istex:7D558A0EE8B241DE6856333C6A26943791B671D0 ark:/67375/WNG-8LPTX8H6-6 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PMID | 20052693 |
| PQID | 733514151 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_816376813 proquest_miscellaneous_745978784 proquest_miscellaneous_733514151 pubmed_primary_20052693 crossref_primary_10_1002_ajp_20790 crossref_citationtrail_10_1002_ajp_20790 wiley_primary_10_1002_ajp_20790_AJP20790 istex_primary_ark_67375_WNG_8LPTX8H6_6 |
| PublicationCentury | 2000 |
| PublicationDate | April 2010 |
| PublicationDateYYYYMMDD | 2010-04-01 |
| PublicationDate_xml | – month: 04 year: 2010 text: April 2010 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | American journal of primatology |
| PublicationTitleAlternate | Am. J. Primatol |
| PublicationYear | 2010 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Pepperberg IM, Willner MR, Gravitz LB. 1997. Development of Piagetian object permanence in a Grey parrot (Psittacus erithacus). Journal of Comparative Psychology 111:63-75. Lasky RE, Romano N, Wenters J. 1980. Spatial localization in children after changes in position. Journal of Experimental Child Psychology 29:225-248. de Blois ST, Novak MA, Bond M. 1999. Can memory requirements account for species' differences in invisible displacement tasks? Journal of Experimental Psychology-Animal Behavior Processes 25:168-176. Tinklepaugh OL. 1928. An experimental study of representative factors in monkeys. Journal of Comparative Psychology 8:197-235. Call J. 2001. Object permanence in orangutans (Pongo pygmaeus), chimpanzees (Pan troglodytes), and children (Homo sapiens). Journal of Comparative Psychology 115:159-171. Fedor A, Skollar G, Szerencsy N, Ujhelyi M. 2008. Object permanence tests on Gibbons (Hylobatidae). Journal of Comparative Psychology 122:403-417. Dumas C. 1992. Object permanence in cats (Felis catus): an ecological approach to the study of invisible displacements. Journal of Comparative Psychology 106:403-410. Regolin L, Rugani R, Pagni P, Vallortigara G. 2005. Delayed search for social and nonsocial goals by young domestic chicks, Gallus gallus domesticus. Animal Behavior 70:855-864. Fiset S, LeBlanc V. 2007. Invisible displacement understanding in domestic dogs (Canis familiaris): the role of visual cues in search behavior. Animal Cognition 10:211-224. Pepperberg IM, Funk MS. 1990. Object permanence in four species of psittacine birds: an African grey parrot (Psittacus erithacus), an Illiger mini macaw (Ara maracana), a parakeet (Melopsittacus undulatus), and a cockatiel (Nymphicus hollandicus). Animal Learning and Behavior 18:97-108. Pollok B, Prior H, Güntürkün O. 2000. Development of object permanence in food-storing magpies (Pica pica). Journal of Comparative Psychology 114:148-157. Barth J, Call J. 2006. Tracking the displacement of objects: a series of studies with great apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, and Pongo pygmaeus) and young children (Homo sapiens). Journal of Experimental Psychology-Animal Behavior Processes 32:239-252. Call J, Carpenter M. 2001. Do apes and children know what they have seen? Animal Cognition 4:207-220. Beran M, Minahan M. 2000. Monitoring spatial transpositions by bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). International Journal of Comparative Psychology 13:1-15. Haun DBM, Rapold CJ, Call J, Janzen G, Levinson SC. 2006. Cognitive cladistics and cultural override in Hominid spatial cognition. Proceedings of the National Academy of Sciences 46:17568-17573. Herrmann E, Call J, Hernandez-Lloreda MV, Hare B, Tomasello M. 2007. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317:1360-1366. Pepperberg IM, Kozak FA. 1986. Object permanence in the African grey parrot (Psittacus erithacus). Animal Learning and Behavior 14:322-330. Amici F, Aureli F, Call J. 2008. Fission-fusion dynamics, behavioral flexibility, and inhibitory control in primates. Current Biology 18:1415-1419. Dore FY. 1986. Object permanence in adult cats (Felis catus). Journal of Comparative Psychology 100:340-347. Neiworth JJ, Steinmark E, Basile BM, Wonders R, Steely F, DeHart C. 2003. A test of object permanence in a New World monkey species, cotton top tamarins (Saguinus oedipus). Animal Cognition 6:27-37. Okamoto-Barth S, Call J. 2008. Tracking and inferring spatial rotation by children and great apes. Developmental Psychology 5:1396-1408. Bremner JG. 1978. Egocentric versus allocentric spatial coding in nine-month-old infants: factors influencing the choice of code. Developmental Psychology 14:346-355. Beran MJ, Beran MM, Menzel CR. 2005a. Spatial memory and monitoring of hidden items through spatial displacements by chimpanzees (Pan troglodytes). Journal of Comparative Psychology 119:14-22. Sophian C. 1986. Early developments in children's spatial monitoring. Cognition 22:61-88. Zucca P, Milos N, Vallortigara G. 2007. Piagetian object permanence and its development in Eurasian jay's (Garrulus glandarius). Animal Cognition 10:243-258. de Blois ST, Novak MA, Bond M. 1998. Object permanence in orangutans (Pongo pygmaeus) and squirrel monkeys (Saimiri sciureus). Journal of Comparative Psychology 112:137-152. Beran MJ, Beran MM, Menzel CR. 2005b. Chimpanzees (Pan troglodytes) use markers to monitor the movement of a hidden item. Primates 46:255-259. Deppe AM, Wright PC, Szelistowski WA. 2009. Object permanence in lemurs. Animal Cognition 12:381-388. Natale F, Antinucci F, Spinozzi G, Potì P. 1986. Stage 6 object concept in nonhuman primate cognition: a comparison between gorilla (Gorilla gorilla gorilla) and Japanese macaque (Macaca fuscata). Journal of Comparative Psychology 100:335-339. Collier-Baker E, Davis J, Suddendorf T. 2004. Do dogs (Canis familiaris) understand invisible displacement? Journal of Comparative Psychology 118:421-433. Doré FY, Fiset S, Goulet S, Dumas MC, Gagnon S. 1996. Search behavior in cats and dogs: interspecific differences in working memory and spatial cognition. Animal Learning and Behavior 24:142-149. Call J. 2003. Spatial rotations and transpositions in orangutans (Pongo pygmaeus) and chimpanzees (Pan troglodytes). Primates 44:347-357. Hoffman ML, Beran MJ. 2006. Chimpanzees (Pan troglodytes) remember the location of a hidden food item after altering their orientation to a spatial array. Journal of Comparative Psychology 120:389-393. Regolin L, Vallortigara G, Zanforlin M. 1995. Object and spatial representations in detour problems by chicks. Animal Behavior 49:195-199. Mendes N, Huber L. 2004. Object permanence in common marmosets (Callithrix jacchus). Journal of Comparative Psychology 118:103-112. Potì P. 2000. Aspects of spatial cognition in capuchins (Cebus apella): frames of reference and scale of space. Animal Cognition 3:69-77. Schino G, Spinozzi G, Berlinguer L. 1990. Object concept and mental representation in Cebus apella and Macaca fascicularis. Primates 31:537-544. Filion CM, Washburn DA, Gulledge JP. 1996. Can monkeys (Macaca mulatta) represent invisible displacement? Journal of Comparative Psychology 110:386-395. Krachun C, Call J. 2009. Chimpanzees know what can be seen from where. Animal Cognition 12:317-331. Sophian C. 1984. Spatial transpositions and the early development of search. Developmental Psychology 20:21-28. 1990; 31 1984; 20 1980; 29 2000; 114 2006; 32 1990; 18 2000; 3 2008; 18 1986; 14 1997; 111 1999; 25 1992; 106 2005a; 119 2008; 5 1928; 8 1978; 14 2008; 122 2007; 10 1998; 112 2009; 12 2007; 317 2006; 46 1995; 49 2000; 13 2001; 4 1986; 100 1986; 22 2003; 6 1986 2006; 120 2005b; 46 1996; 110 2005; 70 1996; 24 2004; 118 2001; 115 2003; 44 Visalberghi E (e_1_2_1_41_1) 1986 e_1_2_1_42_1 e_1_2_1_20_1 e_1_2_1_40_1 e_1_2_1_23_1 e_1_2_1_24_1 e_1_2_1_21_1 e_1_2_1_22_1 e_1_2_1_27_1 e_1_2_1_28_1 e_1_2_1_25_1 e_1_2_1_26_1 e_1_2_1_29_1 Beran M (e_1_2_1_4_1) 2000; 13 e_1_2_1_7_1 e_1_2_1_31_1 e_1_2_1_8_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 Am J Primatol. 2012 Oct;74(10):967 |
| References_xml | – reference: Pepperberg IM, Funk MS. 1990. Object permanence in four species of psittacine birds: an African grey parrot (Psittacus erithacus), an Illiger mini macaw (Ara maracana), a parakeet (Melopsittacus undulatus), and a cockatiel (Nymphicus hollandicus). Animal Learning and Behavior 18:97-108. – reference: Call J, Carpenter M. 2001. Do apes and children know what they have seen? Animal Cognition 4:207-220. – reference: Sophian C. 1986. Early developments in children's spatial monitoring. Cognition 22:61-88. – reference: Neiworth JJ, Steinmark E, Basile BM, Wonders R, Steely F, DeHart C. 2003. A test of object permanence in a New World monkey species, cotton top tamarins (Saguinus oedipus). Animal Cognition 6:27-37. – reference: Bremner JG. 1978. Egocentric versus allocentric spatial coding in nine-month-old infants: factors influencing the choice of code. Developmental Psychology 14:346-355. – reference: Amici F, Aureli F, Call J. 2008. Fission-fusion dynamics, behavioral flexibility, and inhibitory control in primates. Current Biology 18:1415-1419. – reference: Fiset S, LeBlanc V. 2007. Invisible displacement understanding in domestic dogs (Canis familiaris): the role of visual cues in search behavior. Animal Cognition 10:211-224. – reference: Call J. 2001. Object permanence in orangutans (Pongo pygmaeus), chimpanzees (Pan troglodytes), and children (Homo sapiens). Journal of Comparative Psychology 115:159-171. – reference: Filion CM, Washburn DA, Gulledge JP. 1996. Can monkeys (Macaca mulatta) represent invisible displacement? Journal of Comparative Psychology 110:386-395. – reference: Beran MJ, Beran MM, Menzel CR. 2005b. Chimpanzees (Pan troglodytes) use markers to monitor the movement of a hidden item. Primates 46:255-259. – reference: Pollok B, Prior H, Güntürkün O. 2000. Development of object permanence in food-storing magpies (Pica pica). Journal of Comparative Psychology 114:148-157. – reference: Krachun C, Call J. 2009. Chimpanzees know what can be seen from where. Animal Cognition 12:317-331. – reference: Beran MJ, Beran MM, Menzel CR. 2005a. Spatial memory and monitoring of hidden items through spatial displacements by chimpanzees (Pan troglodytes). Journal of Comparative Psychology 119:14-22. – reference: Pepperberg IM, Kozak FA. 1986. Object permanence in the African grey parrot (Psittacus erithacus). Animal Learning and Behavior 14:322-330. – reference: Call J. 2003. Spatial rotations and transpositions in orangutans (Pongo pygmaeus) and chimpanzees (Pan troglodytes). Primates 44:347-357. – reference: Dumas C. 1992. Object permanence in cats (Felis catus): an ecological approach to the study of invisible displacements. Journal of Comparative Psychology 106:403-410. – reference: Dore FY. 1986. Object permanence in adult cats (Felis catus). Journal of Comparative Psychology 100:340-347. – reference: Barth J, Call J. 2006. Tracking the displacement of objects: a series of studies with great apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, and Pongo pygmaeus) and young children (Homo sapiens). Journal of Experimental Psychology-Animal Behavior Processes 32:239-252. – reference: Mendes N, Huber L. 2004. Object permanence in common marmosets (Callithrix jacchus). Journal of Comparative Psychology 118:103-112. – reference: Deppe AM, Wright PC, Szelistowski WA. 2009. Object permanence in lemurs. Animal Cognition 12:381-388. – reference: Collier-Baker E, Davis J, Suddendorf T. 2004. Do dogs (Canis familiaris) understand invisible displacement? Journal of Comparative Psychology 118:421-433. – reference: Schino G, Spinozzi G, Berlinguer L. 1990. Object concept and mental representation in Cebus apella and Macaca fascicularis. Primates 31:537-544. – reference: Natale F, Antinucci F, Spinozzi G, Potì P. 1986. Stage 6 object concept in nonhuman primate cognition: a comparison between gorilla (Gorilla gorilla gorilla) and Japanese macaque (Macaca fuscata). Journal of Comparative Psychology 100:335-339. – reference: Sophian C. 1984. Spatial transpositions and the early development of search. Developmental Psychology 20:21-28. – reference: Beran M, Minahan M. 2000. Monitoring spatial transpositions by bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). International Journal of Comparative Psychology 13:1-15. – reference: Hoffman ML, Beran MJ. 2006. Chimpanzees (Pan troglodytes) remember the location of a hidden food item after altering their orientation to a spatial array. Journal of Comparative Psychology 120:389-393. – reference: Regolin L, Vallortigara G, Zanforlin M. 1995. Object and spatial representations in detour problems by chicks. Animal Behavior 49:195-199. – reference: Lasky RE, Romano N, Wenters J. 1980. Spatial localization in children after changes in position. Journal of Experimental Child Psychology 29:225-248. – reference: de Blois ST, Novak MA, Bond M. 1999. Can memory requirements account for species' differences in invisible displacement tasks? Journal of Experimental Psychology-Animal Behavior Processes 25:168-176. – reference: Fedor A, Skollar G, Szerencsy N, Ujhelyi M. 2008. Object permanence tests on Gibbons (Hylobatidae). Journal of Comparative Psychology 122:403-417. – reference: Okamoto-Barth S, Call J. 2008. Tracking and inferring spatial rotation by children and great apes. Developmental Psychology 5:1396-1408. – reference: de Blois ST, Novak MA, Bond M. 1998. Object permanence in orangutans (Pongo pygmaeus) and squirrel monkeys (Saimiri sciureus). Journal of Comparative Psychology 112:137-152. – reference: Herrmann E, Call J, Hernandez-Lloreda MV, Hare B, Tomasello M. 2007. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317:1360-1366. – reference: Potì P. 2000. Aspects of spatial cognition in capuchins (Cebus apella): frames of reference and scale of space. Animal Cognition 3:69-77. – reference: Doré FY, Fiset S, Goulet S, Dumas MC, Gagnon S. 1996. Search behavior in cats and dogs: interspecific differences in working memory and spatial cognition. Animal Learning and Behavior 24:142-149. – reference: Zucca P, Milos N, Vallortigara G. 2007. Piagetian object permanence and its development in Eurasian jay's (Garrulus glandarius). Animal Cognition 10:243-258. – reference: Regolin L, Rugani R, Pagni P, Vallortigara G. 2005. Delayed search for social and nonsocial goals by young domestic chicks, Gallus gallus domesticus. Animal Behavior 70:855-864. – reference: Haun DBM, Rapold CJ, Call J, Janzen G, Levinson SC. 2006. Cognitive cladistics and cultural override in Hominid spatial cognition. Proceedings of the National Academy of Sciences 46:17568-17573. – reference: Pepperberg IM, Willner MR, Gravitz LB. 1997. Development of Piagetian object permanence in a Grey parrot (Psittacus erithacus). Journal of Comparative Psychology 111:63-75. – reference: Tinklepaugh OL. 1928. An experimental study of representative factors in monkeys. Journal of Comparative Psychology 8:197-235. – volume: 118 start-page: 103 year: 2004 end-page: 112 article-title: Object permanence in common marmosets ( ) publication-title: Journal of Comparative Psychology – volume: 114 start-page: 148 year: 2000 end-page: 157 article-title: Development of object permanence in food‐storing magpies ( ) publication-title: Journal of Comparative Psychology – volume: 118 start-page: 421 year: 2004 end-page: 433 article-title: Do dogs ( ) understand invisible displacement? publication-title: Journal of Comparative Psychology – volume: 3 start-page: 69 year: 2000 end-page: 77 article-title: Aspects of spatial cognition in capuchins ( ): frames of reference and scale of space publication-title: Animal Cognition – volume: 46 start-page: 255 year: 2005b end-page: 259 article-title: Chimpanzees ( ) use markers to monitor the movement of a hidden item publication-title: Primates – volume: 120 start-page: 389 year: 2006 end-page: 393 article-title: Chimpanzees ( ) remember the location of a hidden food item after altering their orientation to a spatial array publication-title: Journal of Comparative Psychology – volume: 12 start-page: 317 year: 2009 end-page: 331 article-title: Chimpanzees know what can be seen from where publication-title: Animal Cognition – volume: 122: start-page: 403 year: 2008 end-page: 417 article-title: Object permanence tests on Gibbons ( ) publication-title: Journal of Comparative Psychology – volume: 46 start-page: 17568 year: 2006 end-page: 17573 article-title: Cognitive cladistics and cultural override in Hominid spatial cognition publication-title: Proceedings of the National Academy of Sciences – volume: 111 start-page: 63 year: 1997 end-page: 75 article-title: Development of Piagetian object permanence in a Grey parrot ( ) publication-title: Journal of Comparative Psychology – volume: 317 start-page: 1360 year: 2007 end-page: 1366 article-title: Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis publication-title: Science – volume: 115 start-page: 159 year: 2001 end-page: 171 article-title: Object permanence in orangutans ( ), chimpanzees ( ), and children ( ) publication-title: Journal of Comparative Psychology – volume: 49 start-page: 195 year: 1995 end-page: 199 article-title: Object and spatial representations in detour problems by chicks publication-title: Animal Behavior – volume: 6 start-page: 27 year: 2003 end-page: 37 article-title: A test of object permanence in a New World monkey species, cotton top tamarins ( ) publication-title: Animal Cognition – volume: 18 start-page: 97 year: 1990 end-page: 108 article-title: Object permanence in four species of psittacine birds: an African grey parrot ( ), an Illiger mini macaw ( ), a parakeet ( ), and a cockatiel ( ) publication-title: Animal Learning and Behavior – volume: 100 start-page: 335 year: 1986 end-page: 339 article-title: Stage 6 object concept in nonhuman primate cognition: a comparison between gorilla ( ) and Japanese macaque ( ) publication-title: Journal of Comparative Psychology – volume: 106 start-page: 403 year: 1992 end-page: 410 article-title: Object permanence in cats ( ): an ecological approach to the study of invisible displacements publication-title: Journal of Comparative Psychology – volume: 110 start-page: 386 year: 1996 end-page: 395 article-title: Can monkeys ( ) represent invisible displacement? publication-title: Journal of Comparative Psychology – volume: 32 start-page: 239 year: 2006 end-page: 252 article-title: Tracking the displacement of objects: a series of studies with great apes ( , and ) and young children ( ) publication-title: Journal of Experimental Psychology‐Animal Behavior Processes – volume: 44 start-page: 347 year: 2003 end-page: 357 article-title: Spatial rotations and transpositions in orangutans ( ) and chimpanzees ( ) publication-title: Primates – volume: 20 start-page: 21 year: 1984 end-page: 28 article-title: Spatial transpositions and the early development of search publication-title: Developmental Psychology – volume: 29 start-page: 225 year: 1980 end-page: 248 article-title: Spatial localization in children after changes in position publication-title: Journal of Experimental Child Psychology – volume: 112 start-page: 137 year: 1998 end-page: 152 article-title: Object permanence in orangutans ( ) and squirrel monkeys ( ) publication-title: Journal of Comparative Psychology – volume: 8 start-page: 197 year: 1928 end-page: 235 article-title: An experimental study of representative factors in monkeys publication-title: Journal of Comparative Psychology – volume: 13 start-page: 1 year: 2000 end-page: 15 article-title: Monitoring spatial transpositions by bonobos ( ) and chimpanzees ( ) publication-title: International Journal of Comparative Psychology – volume: 24 start-page: 142 year: 1996 end-page: 149 article-title: Search behavior in cats and dogs: interspecific differences in working memory and spatial cognition publication-title: Animal Learning and Behavior – volume: 4 start-page: 207 year: 2001 end-page: 220 article-title: Do apes and children know what they have seen? publication-title: Animal Cognition – volume: 70 start-page: 855 year: 2005 end-page: 864 article-title: Delayed search for social and nonsocial goals by young domestic chicks, publication-title: Animal Behavior – volume: 31 start-page: 537 year: 1990 end-page: 544 article-title: Object concept and mental representation in and publication-title: Primates – volume: 25 start-page: 168 year: 1999 end-page: 176 article-title: Can memory requirements account for species' differences in invisible displacement tasks? publication-title: Journal of Experimental Psychology‐Animal Behavior Processes – volume: 10 start-page: 211 year: 2007 end-page: 224 article-title: Invisible displacement understanding in domestic dogs ( ): the role of visual cues in search behavior publication-title: Animal Cognition – volume: 22 start-page: 61 year: 1986 end-page: 88 article-title: Early developments in children's spatial monitoring publication-title: Cognition – volume: 100 start-page: 340 year: 1986 end-page: 347 article-title: Object permanence in adult cats ( ) publication-title: Journal of Comparative Psychology – volume: 5 start-page: 1396 year: 2008 end-page: 1408 article-title: Tracking and inferring spatial rotation by children and great apes publication-title: Developmental Psychology – volume: 18 start-page: 1415 year: 2008 end-page: 1419 article-title: Fission‐fusion dynamics, behavioral flexibility, and inhibitory control in primates publication-title: Current Biology – volume: 10 start-page: 243 year: 2007 end-page: 258 article-title: Piagetian object permanence and its development in Eurasian jay's ( ) publication-title: Animal Cognition – volume: 14 start-page: 346 year: 1978 end-page: 355 article-title: Egocentric versus allocentric spatial coding in nine‐month‐old infants: factors influencing the choice of code publication-title: Developmental Psychology – volume: 14 start-page: 322 year: 1986 end-page: 330 article-title: Object permanence in the African grey parrot ( ) publication-title: Animal Learning and Behavior – start-page: 445 year: 1986 end-page: 452 – volume: 12 start-page: 381 year: 2009 end-page: 388 article-title: Object permanence in lemurs publication-title: Animal Cognition – volume: 119 start-page: 14 year: 2005a end-page: 22 article-title: Spatial memory and monitoring of hidden items through spatial displacements by chimpanzees ( ) publication-title: Journal of Comparative Psychology – ident: e_1_2_1_11_1 doi: 10.1037/0735-7036.118.4.421 – ident: e_1_2_1_14_1 doi: 10.1007/s10071-008-0197-5 – ident: e_1_2_1_22_1 doi: 10.1126/science.1146282 – ident: e_1_2_1_18_1 doi: 10.1037/0735-7036.122.4.403 – ident: e_1_2_1_6_1 doi: 10.1007/s10329-005-0150-z – ident: e_1_2_1_10_1 doi: 10.1007/s100710100078 – ident: e_1_2_1_39_1 doi: 10.1016/0010-0277(86)90012-0 – ident: e_1_2_1_19_1 doi: 10.1037/0735-7036.110.4.386 – ident: e_1_2_1_25_1 doi: 10.1016/0022-0965(80)90017-X – start-page: 445 volume-title: Current perspectives in primate social dynamics year: 1986 ident: e_1_2_1_41_1 – ident: e_1_2_1_33_1 doi: 10.1037/0735-7036.114.2.148 – ident: e_1_2_1_24_1 doi: 10.1007/s10071-008-0192-x – ident: e_1_2_1_12_1 doi: 10.1037/0735-7036.112.2.137 – ident: e_1_2_1_3_1 doi: 10.1037/0097-7403.32.3.239 – ident: e_1_2_1_8_1 doi: 10.1037/0735-7036.115.2.159 – ident: e_1_2_1_28_1 doi: 10.1007/s10071-003-0162-2 – ident: e_1_2_1_32_1 doi: 10.1037/0735-7036.111.1.63 – ident: e_1_2_1_29_1 doi: 10.1037/a0012594 – ident: e_1_2_1_35_1 doi: 10.1016/0003-3472(95)80167-7 – ident: e_1_2_1_36_1 doi: 10.1016/j.anbehav.2005.01.014 – ident: e_1_2_1_38_1 doi: 10.1037/0012-1649.20.1.21 – ident: e_1_2_1_21_1 doi: 10.1073/pnas.0607999103 – ident: e_1_2_1_31_1 doi: 10.3758/BF03200074 – ident: e_1_2_1_16_1 doi: 10.3758/BF03198962 – ident: e_1_2_1_20_1 doi: 10.1007/s10071-006-0060-5 – ident: e_1_2_1_34_1 doi: 10.1007/s100710000062 – ident: e_1_2_1_7_1 doi: 10.1037/0012-1649.14.4.346 – ident: e_1_2_1_27_1 doi: 10.1037/0735-7036.100.4.335 – ident: e_1_2_1_42_1 doi: 10.1007/s10071-006-0063-2 – volume: 13 start-page: 1 year: 2000 ident: e_1_2_1_4_1 article-title: Monitoring spatial transpositions by bonobos (Pan paniscus) and chimpanzees (Pan troglodytes) publication-title: International Journal of Comparative Psychology doi: 10.46867/C47W2D – ident: e_1_2_1_30_1 doi: 10.3758/BF03205244 – ident: e_1_2_1_2_1 doi: 10.1016/j.cub.2008.08.020 – ident: e_1_2_1_37_1 doi: 10.1007/BF02382536 – ident: e_1_2_1_13_1 doi: 10.1037/0097-7403.25.2.168 – ident: e_1_2_1_23_1 doi: 10.1037/0735-7036.120.4.389 – ident: e_1_2_1_9_1 doi: 10.1007/s10329-003-0048-6 – ident: e_1_2_1_5_1 doi: 10.1037/0735-7036.119.1.14 – ident: e_1_2_1_40_1 doi: 10.1037/h0075798 – ident: e_1_2_1_15_1 doi: 10.1037/0735-7036.100.4.340 – ident: e_1_2_1_17_1 doi: 10.1037/0735-7036.106.4.404 – ident: e_1_2_1_26_1 doi: 10.1037/0735-7036.118.1.103 – reference: - Am J Primatol. 2012 Oct;74(10):967 |
| SSID | ssj0011465 |
| Score | 1.9889153 |
| Snippet | Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with... Eight chimpanzees ( Pan troglodytes ), five bonobos ( Pan paniscus ), five gorillas ( Gorilla gorilla ), and seven orangutans ( Pongo pygmaeus ) were presented... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 349 |
| SubjectTerms | allocentric spatial coding Animals Appetitive Behavior - physiology Chimpanzees Cognition Female Food Gorilla gorilla - psychology Gorilla gorilla gorilla Gorillas Male object permanence Orang-utans Orientation Pan paniscus Pan paniscus - psychology Pan troglodytes Pan troglodytes - psychology Pongo pygmaeus Pongo pygmaeus - psychology Predatory Behavior - physiology Primate behaviour rotations Spatial Behavior - physiology spatial memory Species Specificity Visual acuity |
| Title | Great apes track hidden objects after changes in the objects' position and in subject's orientation |
| URI | https://api.istex.fr/ark:/67375/WNG-8LPTX8H6-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajp.20790 https://www.ncbi.nlm.nih.gov/pubmed/20052693 https://www.proquest.com/docview/733514151 https://www.proquest.com/docview/745978784 https://www.proquest.com/docview/816376813 |
| Volume | 72 |
| WOSCitedRecordID | wos000276124300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1098-2345 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011465 issn: 0275-2565 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB_qnUIRfNSq56MEEdsvS_eS3WQXPxX1LFKOQ1o8_BKyeeBZ2S27d6L_vZPsQwutCH7LMrNLNpkkv0kmvwF4yZ3RLC5EVNBMR2gUOsoQJ0fCTosiZqnLEheSTYj5PFsu88UWvO7vwrT8EMOGmx8ZYb72A1wVzeFv0lD11dNNihz99TFFu01GMH77cXZ2Mhwi4CQQIhipSCNc2dOeWCimh8PLl5ajsW_ZH1dhzcvQNaw9s7v_Vet7cKeDnOSotZH7sGXLHbj9R4aEnzuwPUyE-HDrcxVKD0CHHQSiLmxD1rXS5-SLpxwpSVX4_ZuGhBTjpL093JBVSRBP9sJ90keEEVUaL2w2QbLfkKpedZeeyl04m707fXMcdWkZIp3k6Gw6neZOGUcpes8mNVxoU1hqbJKi2BnEAFZwS5nmVFHvPzmjjJ0maC4OvT32EEZlVdrHQCizjMWa48d4EtsYNQxTBUPQ4eIidhM46HtH6o6z3KfO-CZbtmUqsT1laM8JvBhUL1qijquUXoUuHjRUfe4j20QqP83fy-xkcbrMjrnkEyC9DUgcb_4QRZW22jRSMH_3AXHSX1SwIXAezJLrVTKEwejoTdkEHrUWNlQpUGHxHCUHwZCu_xt59GERCk_-XfUpbLfxDz726BmM1vXGPoeb-vt61dR7cEMss71uHP0CU74feA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEB-OXcVD8HG-1mcQ8e5LuW7Spi345VDXVddlkT1c_BLSPHA9aY92V_S_d5I-9OBOBL-lzLSkyST5TTL5DcAzbrViYZ4EOU1VgEahghRxcpCYcZ6HLLZpZH2yiWQ-T1erbLEDL7q7MA0_RL_h5kaGn6_dAHcb0oe_WUPlV8c3mWTosA8jNKN4AMNXHyfHs_4UAWcBH8JIkzjApT3umIVCeti_fGY9Grqm_XEe2DyLXf3iM7n-f9W-Adda0EmOGiu5CTum2IOrf-RI-LkHu_1UiA-XP5e-dAuU30Mg8tTUZFNJdUK-ONKRgpS528GpiU8yTpr7wzVZFwQRZSfcJ11MGJGFdsJ66yX7NSmrdXvtqbgNx5PXy5fToE3MEKgoQ3fTqjizUltK0X_WseaJ0rmh2kQxiq1GFGASbihTnErqPCirpTbjCA3Gor_H7sCgKAtzDwhlhrFQcfwYj0ITooZmMmcIO2yYh3YEB133CNWylrvkGd9Ew7dMBban8O05gqe96mlD1XGe0nPfx72GrE5cbFsSi0_zNyKdLZardMoFHwHpjEDgiHPHKLIw5bYWCXO3HxAp_UUFGwJnwjS6WCVFIIyu3piN4G5jYn2VPBkWz1By4C3p4r8RR-8WvnD_31WfwJXp8sNMzN7O3z-A3SYawkUiPYTBptqaR3BJfd-s6-pxO5x-AbccIoA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB9KT0sRfNSq5zOI2H5ZupfsZnfBL8V6Vj2OQ1o8-iVk88Czsnvs3on-906yDy20IvRblswu2WQm-U0y-Q3AK261YmGeBDlNVYBKoYIUcXKQmFGehyy2aWR9solkOk3n82y2AW-6uzANP0S_4eYsw8_XzsDNUtuDP6yh8pvjm0wydNgHUZxxNMvB0efx6aQ_RcBZwIcw0iQOcGmPO2ahkB70L19Yjwaua39eBjYvYle_-IzvXK_Zd-F2CzrJYaMl92DDFDtw668cCb92YLufCvHh5lnpS_dB-T0EIpemJqtKqnPy1ZGOFKTM3Q5OTXyScdLcH67JoiCIKLvKPdLFhBFZaFdZr33NXk3KatFeeyp24XT87uTtcdAmZghUlKG7aVWcWaktpeg_61jzROncUG1wGGhoNaIAk3BDmeJUUudBWS21GUWoMBb9PfYANouyMI-AUGYYCxXHj_EoNCFKaCZzhrDDhnloh7DfDY9QLWu5S57xXTR8y1Rgfwrfn0N42YsuG6qOy4Re-zHuJWR17mLbklh8mb4X6WR2Mk-PueBDIJ0SCLQ4d4wiC1Oua5Ewd_sBkdI_RLAjcCZMo6tFUgTC6OqN2BAeNirWN8mTYfEMa_a9Jl39N-Lw48wXHv-_6AvYmh2NxeTD9NMT2G6CIVwg0lPYXFVr8wxuqB-rRV09b63pNxAdIfs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Great+apes+track+hidden+objects+after+changes+in+the+objects%27+position+and+in+subject%27s+orientation&rft.jtitle=American+journal+of+primatology&rft.au=Albiach%E2%80%90Serrano%2C+Anna&rft.au=Call%2C+Josep&rft.au=Barth%2C+Jochen&rft.date=2010-04-01&rft.issn=0275-2565&rft.eissn=1098-2345&rft.volume=72&rft.issue=4&rft.spage=349&rft.epage=359&rft_id=info:doi/10.1002%2Fajp.20790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ajp_20790 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0275-2565&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0275-2565&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0275-2565&client=summon |