Great apes track hidden objects after changes in the objects' position and in subject's orientation

Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platfo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:American journal of primatology Ročník 72; číslo 4; s. 349 - 359
Hlavní autoři: Albiach-Serrano, Anna, Call, Josep, Barth, Jochen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2010
Témata:
ISSN:0275-2565, 1098-2345, 1098-2345
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180° while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding. Am. J. Primatol. 72:349–359, 2010. © 2010 Wiley‐Liss, Inc.
AbstractList Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180 degrees while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding.Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180 degrees while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding.
Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180º while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding. Copyright John Wiley & Sons. Reproduced with permission. An electronic version of this article is available online at http://www.interscience.wiley.com
Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180 degrees while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding.
Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180? while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding. Am. J. Primatol. 72:349-359, 2010.
Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180° while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding. Am. J. Primatol. 72:349–359, 2010. © 2010 Wiley‐Liss, Inc.
Eight chimpanzees ( Pan troglodytes ), five bonobos ( Pan paniscus ), five gorillas ( Gorilla gorilla ), and seven orangutans ( Pongo pygmaeus ) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180° while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding. Am. J. Primatol. 72:349–359, 2010. © 2010 Wiley‐Liss, Inc.
Author Barth, Jochen
Albiach-Serrano, Anna
Call, Josep
Author_xml – sequence: 1
  givenname: Anna
  surname: Albiach-Serrano
  fullname: Albiach-Serrano, Anna
  email: anna.albiach@eva.mpg.de
  organization: Department of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
– sequence: 2
  givenname: Josep
  surname: Call
  fullname: Call, Josep
  organization: Department of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
– sequence: 3
  givenname: Jochen
  surname: Barth
  fullname: Barth, Jochen
  organization: Department of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20052693$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PGzEQhq2KqgTaQ_9A5VvEYcEf6489IgShVdRyoIKb5djjxmGzu7Udtfz7bgjhUKnlNIfneWekeY_QQdd3gNBHSk4pIezMroZTRlRD3qAJJY2uGK_FAZoQpkTFhBSH6CjnFSGU1lK8Q4eMEMFkwyfIzRLYgu0AGZdk3QNeRu-hw_1iBa5kbEOBhN3Sdj9GJXa4LGEPp3jocyyx77Dt_BbmzROZZtynCF2xW_gevQ22zfDheR6j71eXtxfX1fzb7PPF-bxydcNIFZxogvWBMa21F14q5xfAPNRixMFzTUFJYNxJZhmVVAVvPdB6AS6wuuHHaLrbO6T-5wZyMeuYHbSt7aDfZKOp5Epqyl811XhSaaXr103OBa2poKP56dncLNbgzZDi2qZHs__1KJzsBJf6nBOEF4USs-3RjD2apx5H9-wv18XdM8eSYvu_xK_YwuO_V5vzLzf7RLVLxFzg90vCpgcjFVfC3H2dGT2_ub3X19JI_gdOn70z
CitedBy_id crossref_primary_10_1016_j_applanim_2011_10_010
crossref_primary_10_1134_S002209301205009X
crossref_primary_10_1007_s10071_013_0614_2
crossref_primary_10_1002_ajpa_23833
crossref_primary_10_1098_rspb_2025_0640
crossref_primary_10_1016_j_jecp_2019_104715
crossref_primary_10_1007_s10071_011_0397_2
crossref_primary_10_1016_j_anbehav_2013_02_022
crossref_primary_10_1007_s10329_014_0439_x
crossref_primary_10_1007_s10071_013_0690_3
crossref_primary_10_1177_17456916231180589
crossref_primary_10_1080_13506285_2021_2013374
crossref_primary_10_1016_j_anbehav_2011_05_012
Cites_doi 10.1037/0735-7036.118.4.421
10.1007/s10071-008-0197-5
10.1126/science.1146282
10.1037/0735-7036.122.4.403
10.1007/s10329-005-0150-z
10.1007/s100710100078
10.1016/0010-0277(86)90012-0
10.1037/0735-7036.110.4.386
10.1016/0022-0965(80)90017-X
10.1037/0735-7036.114.2.148
10.1007/s10071-008-0192-x
10.1037/0735-7036.112.2.137
10.1037/0097-7403.32.3.239
10.1037/0735-7036.115.2.159
10.1007/s10071-003-0162-2
10.1037/0735-7036.111.1.63
10.1037/a0012594
10.1016/0003-3472(95)80167-7
10.1016/j.anbehav.2005.01.014
10.1037/0012-1649.20.1.21
10.1073/pnas.0607999103
10.3758/BF03200074
10.3758/BF03198962
10.1007/s10071-006-0060-5
10.1007/s100710000062
10.1037/0012-1649.14.4.346
10.1037/0735-7036.100.4.335
10.1007/s10071-006-0063-2
10.46867/C47W2D
10.3758/BF03205244
10.1016/j.cub.2008.08.020
10.1007/BF02382536
10.1037/0097-7403.25.2.168
10.1037/0735-7036.120.4.389
10.1007/s10329-003-0048-6
10.1037/0735-7036.119.1.14
10.1037/h0075798
10.1037/0735-7036.100.4.340
10.1037/0735-7036.106.4.404
10.1037/0735-7036.118.1.103
ContentType Journal Article
Copyright 2010 Wiley‐Liss, Inc.
2010 Wiley-Liss, Inc.
Copyright_xml – notice: 2010 Wiley‐Liss, Inc.
– notice: 2010 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QG
8BJ
FQK
JBE
DOI 10.1002/ajp.20790
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Animal Behavior Abstracts
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Animal Behavior Abstracts
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList MEDLINE - Academic
International Bibliography of the Social Sciences (IBSS)
MEDLINE
Animal Behavior Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anthropology
Zoology
Psychology
EISSN 1098-2345
EndPage 359
ExternalDocumentID 20052693
10_1002_ajp_20790
AJP20790
ark_67375_WNG_8LPTX8H6_6
Genre article
Journal Article
Comparative Study
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
36B
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DVXWH
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M66
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZCG
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
RWV
VQA
WRC
WTM
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QG
8BJ
FQK
JBE
ID FETCH-LOGICAL-c4920-fc59fadf22888d5d67cdbe2de45920fd381e76e23c62a21617fdade14becf2493
IEDL.DBID DRFUL
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000276124300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0275-2565
1098-2345
IngestDate Thu Jul 10 18:02:20 EDT 2025
Sun Nov 09 09:44:43 EST 2025
Sun Nov 09 10:04:39 EST 2025
Mon Jul 21 06:01:43 EDT 2025
Tue Nov 18 22:15:28 EST 2025
Sat Nov 29 04:10:16 EST 2025
Wed Jan 22 16:22:32 EST 2025
Tue Nov 11 03:32:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2010 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4920-fc59fadf22888d5d67cdbe2de45920fd381e76e23c62a21617fdade14becf2493
Notes ArticleID:AJP20790
istex:7D558A0EE8B241DE6856333C6A26943791B671D0
ark:/67375/WNG-8LPTX8H6-6
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 20052693
PQID 733514151
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_816376813
proquest_miscellaneous_745978784
proquest_miscellaneous_733514151
pubmed_primary_20052693
crossref_primary_10_1002_ajp_20790
crossref_citationtrail_10_1002_ajp_20790
wiley_primary_10_1002_ajp_20790_AJP20790
istex_primary_ark_67375_WNG_8LPTX8H6_6
PublicationCentury 2000
PublicationDate April 2010
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: April 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle American journal of primatology
PublicationTitleAlternate Am. J. Primatol
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Pepperberg IM, Willner MR, Gravitz LB. 1997. Development of Piagetian object permanence in a Grey parrot (Psittacus erithacus). Journal of Comparative Psychology 111:63-75.
Lasky RE, Romano N, Wenters J. 1980. Spatial localization in children after changes in position. Journal of Experimental Child Psychology 29:225-248.
de Blois ST, Novak MA, Bond M. 1999. Can memory requirements account for species' differences in invisible displacement tasks? Journal of Experimental Psychology-Animal Behavior Processes 25:168-176.
Tinklepaugh OL. 1928. An experimental study of representative factors in monkeys. Journal of Comparative Psychology 8:197-235.
Call J. 2001. Object permanence in orangutans (Pongo pygmaeus), chimpanzees (Pan troglodytes), and children (Homo sapiens). Journal of Comparative Psychology 115:159-171.
Fedor A, Skollar G, Szerencsy N, Ujhelyi M. 2008. Object permanence tests on Gibbons (Hylobatidae). Journal of Comparative Psychology 122:403-417.
Dumas C. 1992. Object permanence in cats (Felis catus): an ecological approach to the study of invisible displacements. Journal of Comparative Psychology 106:403-410.
Regolin L, Rugani R, Pagni P, Vallortigara G. 2005. Delayed search for social and nonsocial goals by young domestic chicks, Gallus gallus domesticus. Animal Behavior 70:855-864.
Fiset S, LeBlanc V. 2007. Invisible displacement understanding in domestic dogs (Canis familiaris): the role of visual cues in search behavior. Animal Cognition 10:211-224.
Pepperberg IM, Funk MS. 1990. Object permanence in four species of psittacine birds: an African grey parrot (Psittacus erithacus), an Illiger mini macaw (Ara maracana), a parakeet (Melopsittacus undulatus), and a cockatiel (Nymphicus hollandicus). Animal Learning and Behavior 18:97-108.
Pollok B, Prior H, Güntürkün O. 2000. Development of object permanence in food-storing magpies (Pica pica). Journal of Comparative Psychology 114:148-157.
Barth J, Call J. 2006. Tracking the displacement of objects: a series of studies with great apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, and Pongo pygmaeus) and young children (Homo sapiens). Journal of Experimental Psychology-Animal Behavior Processes 32:239-252.
Call J, Carpenter M. 2001. Do apes and children know what they have seen? Animal Cognition 4:207-220.
Beran M, Minahan M. 2000. Monitoring spatial transpositions by bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). International Journal of Comparative Psychology 13:1-15.
Haun DBM, Rapold CJ, Call J, Janzen G, Levinson SC. 2006. Cognitive cladistics and cultural override in Hominid spatial cognition. Proceedings of the National Academy of Sciences 46:17568-17573.
Herrmann E, Call J, Hernandez-Lloreda MV, Hare B, Tomasello M. 2007. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317:1360-1366.
Pepperberg IM, Kozak FA. 1986. Object permanence in the African grey parrot (Psittacus erithacus). Animal Learning and Behavior 14:322-330.
Amici F, Aureli F, Call J. 2008. Fission-fusion dynamics, behavioral flexibility, and inhibitory control in primates. Current Biology 18:1415-1419.
Dore FY. 1986. Object permanence in adult cats (Felis catus). Journal of Comparative Psychology 100:340-347.
Neiworth JJ, Steinmark E, Basile BM, Wonders R, Steely F, DeHart C. 2003. A test of object permanence in a New World monkey species, cotton top tamarins (Saguinus oedipus). Animal Cognition 6:27-37.
Okamoto-Barth S, Call J. 2008. Tracking and inferring spatial rotation by children and great apes. Developmental Psychology 5:1396-1408.
Bremner JG. 1978. Egocentric versus allocentric spatial coding in nine-month-old infants: factors influencing the choice of code. Developmental Psychology 14:346-355.
Beran MJ, Beran MM, Menzel CR. 2005a. Spatial memory and monitoring of hidden items through spatial displacements by chimpanzees (Pan troglodytes). Journal of Comparative Psychology 119:14-22.
Sophian C. 1986. Early developments in children's spatial monitoring. Cognition 22:61-88.
Zucca P, Milos N, Vallortigara G. 2007. Piagetian object permanence and its development in Eurasian jay's (Garrulus glandarius). Animal Cognition 10:243-258.
de Blois ST, Novak MA, Bond M. 1998. Object permanence in orangutans (Pongo pygmaeus) and squirrel monkeys (Saimiri sciureus). Journal of Comparative Psychology 112:137-152.
Beran MJ, Beran MM, Menzel CR. 2005b. Chimpanzees (Pan troglodytes) use markers to monitor the movement of a hidden item. Primates 46:255-259.
Deppe AM, Wright PC, Szelistowski WA. 2009. Object permanence in lemurs. Animal Cognition 12:381-388.
Natale F, Antinucci F, Spinozzi G, Potì P. 1986. Stage 6 object concept in nonhuman primate cognition: a comparison between gorilla (Gorilla gorilla gorilla) and Japanese macaque (Macaca fuscata). Journal of Comparative Psychology 100:335-339.
Collier-Baker E, Davis J, Suddendorf T. 2004. Do dogs (Canis familiaris) understand invisible displacement? Journal of Comparative Psychology 118:421-433.
Doré FY, Fiset S, Goulet S, Dumas MC, Gagnon S. 1996. Search behavior in cats and dogs: interspecific differences in working memory and spatial cognition. Animal Learning and Behavior 24:142-149.
Call J. 2003. Spatial rotations and transpositions in orangutans (Pongo pygmaeus) and chimpanzees (Pan troglodytes). Primates 44:347-357.
Hoffman ML, Beran MJ. 2006. Chimpanzees (Pan troglodytes) remember the location of a hidden food item after altering their orientation to a spatial array. Journal of Comparative Psychology 120:389-393.
Regolin L, Vallortigara G, Zanforlin M. 1995. Object and spatial representations in detour problems by chicks. Animal Behavior 49:195-199.
Mendes N, Huber L. 2004. Object permanence in common marmosets (Callithrix jacchus). Journal of Comparative Psychology 118:103-112.
Potì P. 2000. Aspects of spatial cognition in capuchins (Cebus apella): frames of reference and scale of space. Animal Cognition 3:69-77.
Schino G, Spinozzi G, Berlinguer L. 1990. Object concept and mental representation in Cebus apella and Macaca fascicularis. Primates 31:537-544.
Filion CM, Washburn DA, Gulledge JP. 1996. Can monkeys (Macaca mulatta) represent invisible displacement? Journal of Comparative Psychology 110:386-395.
Krachun C, Call J. 2009. Chimpanzees know what can be seen from where. Animal Cognition 12:317-331.
Sophian C. 1984. Spatial transpositions and the early development of search. Developmental Psychology 20:21-28.
1990; 31
1984; 20
1980; 29
2000; 114
2006; 32
1990; 18
2000; 3
2008; 18
1986; 14
1997; 111
1999; 25
1992; 106
2005a; 119
2008; 5
1928; 8
1978; 14
2008; 122
2007; 10
1998; 112
2009; 12
2007; 317
2006; 46
1995; 49
2000; 13
2001; 4
1986; 100
1986; 22
2003; 6
1986
2006; 120
2005b; 46
1996; 110
2005; 70
1996; 24
2004; 118
2001; 115
2003; 44
Visalberghi E (e_1_2_1_41_1) 1986
e_1_2_1_42_1
e_1_2_1_20_1
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
e_1_2_1_29_1
Beran M (e_1_2_1_4_1) 2000; 13
e_1_2_1_7_1
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
Am J Primatol. 2012 Oct;74(10):967
References_xml – reference: Pepperberg IM, Funk MS. 1990. Object permanence in four species of psittacine birds: an African grey parrot (Psittacus erithacus), an Illiger mini macaw (Ara maracana), a parakeet (Melopsittacus undulatus), and a cockatiel (Nymphicus hollandicus). Animal Learning and Behavior 18:97-108.
– reference: Call J, Carpenter M. 2001. Do apes and children know what they have seen? Animal Cognition 4:207-220.
– reference: Sophian C. 1986. Early developments in children's spatial monitoring. Cognition 22:61-88.
– reference: Neiworth JJ, Steinmark E, Basile BM, Wonders R, Steely F, DeHart C. 2003. A test of object permanence in a New World monkey species, cotton top tamarins (Saguinus oedipus). Animal Cognition 6:27-37.
– reference: Bremner JG. 1978. Egocentric versus allocentric spatial coding in nine-month-old infants: factors influencing the choice of code. Developmental Psychology 14:346-355.
– reference: Amici F, Aureli F, Call J. 2008. Fission-fusion dynamics, behavioral flexibility, and inhibitory control in primates. Current Biology 18:1415-1419.
– reference: Fiset S, LeBlanc V. 2007. Invisible displacement understanding in domestic dogs (Canis familiaris): the role of visual cues in search behavior. Animal Cognition 10:211-224.
– reference: Call J. 2001. Object permanence in orangutans (Pongo pygmaeus), chimpanzees (Pan troglodytes), and children (Homo sapiens). Journal of Comparative Psychology 115:159-171.
– reference: Filion CM, Washburn DA, Gulledge JP. 1996. Can monkeys (Macaca mulatta) represent invisible displacement? Journal of Comparative Psychology 110:386-395.
– reference: Beran MJ, Beran MM, Menzel CR. 2005b. Chimpanzees (Pan troglodytes) use markers to monitor the movement of a hidden item. Primates 46:255-259.
– reference: Pollok B, Prior H, Güntürkün O. 2000. Development of object permanence in food-storing magpies (Pica pica). Journal of Comparative Psychology 114:148-157.
– reference: Krachun C, Call J. 2009. Chimpanzees know what can be seen from where. Animal Cognition 12:317-331.
– reference: Beran MJ, Beran MM, Menzel CR. 2005a. Spatial memory and monitoring of hidden items through spatial displacements by chimpanzees (Pan troglodytes). Journal of Comparative Psychology 119:14-22.
– reference: Pepperberg IM, Kozak FA. 1986. Object permanence in the African grey parrot (Psittacus erithacus). Animal Learning and Behavior 14:322-330.
– reference: Call J. 2003. Spatial rotations and transpositions in orangutans (Pongo pygmaeus) and chimpanzees (Pan troglodytes). Primates 44:347-357.
– reference: Dumas C. 1992. Object permanence in cats (Felis catus): an ecological approach to the study of invisible displacements. Journal of Comparative Psychology 106:403-410.
– reference: Dore FY. 1986. Object permanence in adult cats (Felis catus). Journal of Comparative Psychology 100:340-347.
– reference: Barth J, Call J. 2006. Tracking the displacement of objects: a series of studies with great apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, and Pongo pygmaeus) and young children (Homo sapiens). Journal of Experimental Psychology-Animal Behavior Processes 32:239-252.
– reference: Mendes N, Huber L. 2004. Object permanence in common marmosets (Callithrix jacchus). Journal of Comparative Psychology 118:103-112.
– reference: Deppe AM, Wright PC, Szelistowski WA. 2009. Object permanence in lemurs. Animal Cognition 12:381-388.
– reference: Collier-Baker E, Davis J, Suddendorf T. 2004. Do dogs (Canis familiaris) understand invisible displacement? Journal of Comparative Psychology 118:421-433.
– reference: Schino G, Spinozzi G, Berlinguer L. 1990. Object concept and mental representation in Cebus apella and Macaca fascicularis. Primates 31:537-544.
– reference: Natale F, Antinucci F, Spinozzi G, Potì P. 1986. Stage 6 object concept in nonhuman primate cognition: a comparison between gorilla (Gorilla gorilla gorilla) and Japanese macaque (Macaca fuscata). Journal of Comparative Psychology 100:335-339.
– reference: Sophian C. 1984. Spatial transpositions and the early development of search. Developmental Psychology 20:21-28.
– reference: Beran M, Minahan M. 2000. Monitoring spatial transpositions by bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). International Journal of Comparative Psychology 13:1-15.
– reference: Hoffman ML, Beran MJ. 2006. Chimpanzees (Pan troglodytes) remember the location of a hidden food item after altering their orientation to a spatial array. Journal of Comparative Psychology 120:389-393.
– reference: Regolin L, Vallortigara G, Zanforlin M. 1995. Object and spatial representations in detour problems by chicks. Animal Behavior 49:195-199.
– reference: Lasky RE, Romano N, Wenters J. 1980. Spatial localization in children after changes in position. Journal of Experimental Child Psychology 29:225-248.
– reference: de Blois ST, Novak MA, Bond M. 1999. Can memory requirements account for species' differences in invisible displacement tasks? Journal of Experimental Psychology-Animal Behavior Processes 25:168-176.
– reference: Fedor A, Skollar G, Szerencsy N, Ujhelyi M. 2008. Object permanence tests on Gibbons (Hylobatidae). Journal of Comparative Psychology 122:403-417.
– reference: Okamoto-Barth S, Call J. 2008. Tracking and inferring spatial rotation by children and great apes. Developmental Psychology 5:1396-1408.
– reference: de Blois ST, Novak MA, Bond M. 1998. Object permanence in orangutans (Pongo pygmaeus) and squirrel monkeys (Saimiri sciureus). Journal of Comparative Psychology 112:137-152.
– reference: Herrmann E, Call J, Hernandez-Lloreda MV, Hare B, Tomasello M. 2007. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317:1360-1366.
– reference: Potì P. 2000. Aspects of spatial cognition in capuchins (Cebus apella): frames of reference and scale of space. Animal Cognition 3:69-77.
– reference: Doré FY, Fiset S, Goulet S, Dumas MC, Gagnon S. 1996. Search behavior in cats and dogs: interspecific differences in working memory and spatial cognition. Animal Learning and Behavior 24:142-149.
– reference: Zucca P, Milos N, Vallortigara G. 2007. Piagetian object permanence and its development in Eurasian jay's (Garrulus glandarius). Animal Cognition 10:243-258.
– reference: Regolin L, Rugani R, Pagni P, Vallortigara G. 2005. Delayed search for social and nonsocial goals by young domestic chicks, Gallus gallus domesticus. Animal Behavior 70:855-864.
– reference: Haun DBM, Rapold CJ, Call J, Janzen G, Levinson SC. 2006. Cognitive cladistics and cultural override in Hominid spatial cognition. Proceedings of the National Academy of Sciences 46:17568-17573.
– reference: Pepperberg IM, Willner MR, Gravitz LB. 1997. Development of Piagetian object permanence in a Grey parrot (Psittacus erithacus). Journal of Comparative Psychology 111:63-75.
– reference: Tinklepaugh OL. 1928. An experimental study of representative factors in monkeys. Journal of Comparative Psychology 8:197-235.
– volume: 118
  start-page: 103
  year: 2004
  end-page: 112
  article-title: Object permanence in common marmosets ( )
  publication-title: Journal of Comparative Psychology
– volume: 114
  start-page: 148
  year: 2000
  end-page: 157
  article-title: Development of object permanence in food‐storing magpies ( )
  publication-title: Journal of Comparative Psychology
– volume: 118
  start-page: 421
  year: 2004
  end-page: 433
  article-title: Do dogs ( ) understand invisible displacement?
  publication-title: Journal of Comparative Psychology
– volume: 3
  start-page: 69
  year: 2000
  end-page: 77
  article-title: Aspects of spatial cognition in capuchins ( ): frames of reference and scale of space
  publication-title: Animal Cognition
– volume: 46
  start-page: 255
  year: 2005b
  end-page: 259
  article-title: Chimpanzees ( ) use markers to monitor the movement of a hidden item
  publication-title: Primates
– volume: 120
  start-page: 389
  year: 2006
  end-page: 393
  article-title: Chimpanzees ( ) remember the location of a hidden food item after altering their orientation to a spatial array
  publication-title: Journal of Comparative Psychology
– volume: 12
  start-page: 317
  year: 2009
  end-page: 331
  article-title: Chimpanzees know what can be seen from where
  publication-title: Animal Cognition
– volume: 122:
  start-page: 403
  year: 2008
  end-page: 417
  article-title: Object permanence tests on Gibbons ( )
  publication-title: Journal of Comparative Psychology
– volume: 46
  start-page: 17568
  year: 2006
  end-page: 17573
  article-title: Cognitive cladistics and cultural override in Hominid spatial cognition
  publication-title: Proceedings of the National Academy of Sciences
– volume: 111
  start-page: 63
  year: 1997
  end-page: 75
  article-title: Development of Piagetian object permanence in a Grey parrot ( )
  publication-title: Journal of Comparative Psychology
– volume: 317
  start-page: 1360
  year: 2007
  end-page: 1366
  article-title: Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis
  publication-title: Science
– volume: 115
  start-page: 159
  year: 2001
  end-page: 171
  article-title: Object permanence in orangutans ( ), chimpanzees ( ), and children ( )
  publication-title: Journal of Comparative Psychology
– volume: 49
  start-page: 195
  year: 1995
  end-page: 199
  article-title: Object and spatial representations in detour problems by chicks
  publication-title: Animal Behavior
– volume: 6
  start-page: 27
  year: 2003
  end-page: 37
  article-title: A test of object permanence in a New World monkey species, cotton top tamarins ( )
  publication-title: Animal Cognition
– volume: 18
  start-page: 97
  year: 1990
  end-page: 108
  article-title: Object permanence in four species of psittacine birds: an African grey parrot ( ), an Illiger mini macaw ( ), a parakeet ( ), and a cockatiel ( )
  publication-title: Animal Learning and Behavior
– volume: 100
  start-page: 335
  year: 1986
  end-page: 339
  article-title: Stage 6 object concept in nonhuman primate cognition: a comparison between gorilla ( ) and Japanese macaque ( )
  publication-title: Journal of Comparative Psychology
– volume: 106
  start-page: 403
  year: 1992
  end-page: 410
  article-title: Object permanence in cats ( ): an ecological approach to the study of invisible displacements
  publication-title: Journal of Comparative Psychology
– volume: 110
  start-page: 386
  year: 1996
  end-page: 395
  article-title: Can monkeys ( ) represent invisible displacement?
  publication-title: Journal of Comparative Psychology
– volume: 32
  start-page: 239
  year: 2006
  end-page: 252
  article-title: Tracking the displacement of objects: a series of studies with great apes ( , and ) and young children ( )
  publication-title: Journal of Experimental Psychology‐Animal Behavior Processes
– volume: 44
  start-page: 347
  year: 2003
  end-page: 357
  article-title: Spatial rotations and transpositions in orangutans ( ) and chimpanzees ( )
  publication-title: Primates
– volume: 20
  start-page: 21
  year: 1984
  end-page: 28
  article-title: Spatial transpositions and the early development of search
  publication-title: Developmental Psychology
– volume: 29
  start-page: 225
  year: 1980
  end-page: 248
  article-title: Spatial localization in children after changes in position
  publication-title: Journal of Experimental Child Psychology
– volume: 112
  start-page: 137
  year: 1998
  end-page: 152
  article-title: Object permanence in orangutans ( ) and squirrel monkeys ( )
  publication-title: Journal of Comparative Psychology
– volume: 8
  start-page: 197
  year: 1928
  end-page: 235
  article-title: An experimental study of representative factors in monkeys
  publication-title: Journal of Comparative Psychology
– volume: 13
  start-page: 1
  year: 2000
  end-page: 15
  article-title: Monitoring spatial transpositions by bonobos ( ) and chimpanzees ( )
  publication-title: International Journal of Comparative Psychology
– volume: 24
  start-page: 142
  year: 1996
  end-page: 149
  article-title: Search behavior in cats and dogs: interspecific differences in working memory and spatial cognition
  publication-title: Animal Learning and Behavior
– volume: 4
  start-page: 207
  year: 2001
  end-page: 220
  article-title: Do apes and children know what they have seen?
  publication-title: Animal Cognition
– volume: 70
  start-page: 855
  year: 2005
  end-page: 864
  article-title: Delayed search for social and nonsocial goals by young domestic chicks,
  publication-title: Animal Behavior
– volume: 31
  start-page: 537
  year: 1990
  end-page: 544
  article-title: Object concept and mental representation in and
  publication-title: Primates
– volume: 25
  start-page: 168
  year: 1999
  end-page: 176
  article-title: Can memory requirements account for species' differences in invisible displacement tasks?
  publication-title: Journal of Experimental Psychology‐Animal Behavior Processes
– volume: 10
  start-page: 211
  year: 2007
  end-page: 224
  article-title: Invisible displacement understanding in domestic dogs ( ): the role of visual cues in search behavior
  publication-title: Animal Cognition
– volume: 22
  start-page: 61
  year: 1986
  end-page: 88
  article-title: Early developments in children's spatial monitoring
  publication-title: Cognition
– volume: 100
  start-page: 340
  year: 1986
  end-page: 347
  article-title: Object permanence in adult cats ( )
  publication-title: Journal of Comparative Psychology
– volume: 5
  start-page: 1396
  year: 2008
  end-page: 1408
  article-title: Tracking and inferring spatial rotation by children and great apes
  publication-title: Developmental Psychology
– volume: 18
  start-page: 1415
  year: 2008
  end-page: 1419
  article-title: Fission‐fusion dynamics, behavioral flexibility, and inhibitory control in primates
  publication-title: Current Biology
– volume: 10
  start-page: 243
  year: 2007
  end-page: 258
  article-title: Piagetian object permanence and its development in Eurasian jay's ( )
  publication-title: Animal Cognition
– volume: 14
  start-page: 346
  year: 1978
  end-page: 355
  article-title: Egocentric versus allocentric spatial coding in nine‐month‐old infants: factors influencing the choice of code
  publication-title: Developmental Psychology
– volume: 14
  start-page: 322
  year: 1986
  end-page: 330
  article-title: Object permanence in the African grey parrot ( )
  publication-title: Animal Learning and Behavior
– start-page: 445
  year: 1986
  end-page: 452
– volume: 12
  start-page: 381
  year: 2009
  end-page: 388
  article-title: Object permanence in lemurs
  publication-title: Animal Cognition
– volume: 119
  start-page: 14
  year: 2005a
  end-page: 22
  article-title: Spatial memory and monitoring of hidden items through spatial displacements by chimpanzees ( )
  publication-title: Journal of Comparative Psychology
– ident: e_1_2_1_11_1
  doi: 10.1037/0735-7036.118.4.421
– ident: e_1_2_1_14_1
  doi: 10.1007/s10071-008-0197-5
– ident: e_1_2_1_22_1
  doi: 10.1126/science.1146282
– ident: e_1_2_1_18_1
  doi: 10.1037/0735-7036.122.4.403
– ident: e_1_2_1_6_1
  doi: 10.1007/s10329-005-0150-z
– ident: e_1_2_1_10_1
  doi: 10.1007/s100710100078
– ident: e_1_2_1_39_1
  doi: 10.1016/0010-0277(86)90012-0
– ident: e_1_2_1_19_1
  doi: 10.1037/0735-7036.110.4.386
– ident: e_1_2_1_25_1
  doi: 10.1016/0022-0965(80)90017-X
– start-page: 445
  volume-title: Current perspectives in primate social dynamics
  year: 1986
  ident: e_1_2_1_41_1
– ident: e_1_2_1_33_1
  doi: 10.1037/0735-7036.114.2.148
– ident: e_1_2_1_24_1
  doi: 10.1007/s10071-008-0192-x
– ident: e_1_2_1_12_1
  doi: 10.1037/0735-7036.112.2.137
– ident: e_1_2_1_3_1
  doi: 10.1037/0097-7403.32.3.239
– ident: e_1_2_1_8_1
  doi: 10.1037/0735-7036.115.2.159
– ident: e_1_2_1_28_1
  doi: 10.1007/s10071-003-0162-2
– ident: e_1_2_1_32_1
  doi: 10.1037/0735-7036.111.1.63
– ident: e_1_2_1_29_1
  doi: 10.1037/a0012594
– ident: e_1_2_1_35_1
  doi: 10.1016/0003-3472(95)80167-7
– ident: e_1_2_1_36_1
  doi: 10.1016/j.anbehav.2005.01.014
– ident: e_1_2_1_38_1
  doi: 10.1037/0012-1649.20.1.21
– ident: e_1_2_1_21_1
  doi: 10.1073/pnas.0607999103
– ident: e_1_2_1_31_1
  doi: 10.3758/BF03200074
– ident: e_1_2_1_16_1
  doi: 10.3758/BF03198962
– ident: e_1_2_1_20_1
  doi: 10.1007/s10071-006-0060-5
– ident: e_1_2_1_34_1
  doi: 10.1007/s100710000062
– ident: e_1_2_1_7_1
  doi: 10.1037/0012-1649.14.4.346
– ident: e_1_2_1_27_1
  doi: 10.1037/0735-7036.100.4.335
– ident: e_1_2_1_42_1
  doi: 10.1007/s10071-006-0063-2
– volume: 13
  start-page: 1
  year: 2000
  ident: e_1_2_1_4_1
  article-title: Monitoring spatial transpositions by bonobos (Pan paniscus) and chimpanzees (Pan troglodytes)
  publication-title: International Journal of Comparative Psychology
  doi: 10.46867/C47W2D
– ident: e_1_2_1_30_1
  doi: 10.3758/BF03205244
– ident: e_1_2_1_2_1
  doi: 10.1016/j.cub.2008.08.020
– ident: e_1_2_1_37_1
  doi: 10.1007/BF02382536
– ident: e_1_2_1_13_1
  doi: 10.1037/0097-7403.25.2.168
– ident: e_1_2_1_23_1
  doi: 10.1037/0735-7036.120.4.389
– ident: e_1_2_1_9_1
  doi: 10.1007/s10329-003-0048-6
– ident: e_1_2_1_5_1
  doi: 10.1037/0735-7036.119.1.14
– ident: e_1_2_1_40_1
  doi: 10.1037/h0075798
– ident: e_1_2_1_15_1
  doi: 10.1037/0735-7036.100.4.340
– ident: e_1_2_1_17_1
  doi: 10.1037/0735-7036.106.4.404
– ident: e_1_2_1_26_1
  doi: 10.1037/0735-7036.118.1.103
– reference: - Am J Primatol. 2012 Oct;74(10):967
SSID ssj0011465
Score 1.9890206
Snippet Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with...
Eight chimpanzees ( Pan troglodytes ), five bonobos ( Pan paniscus ), five gorillas ( Gorilla gorilla ), and seven orangutans ( Pongo pygmaeus ) were presented...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 349
SubjectTerms allocentric spatial coding
Animals
Appetitive Behavior - physiology
Chimpanzees
Cognition
Female
Food
Gorilla gorilla - psychology
Gorilla gorilla gorilla
Gorillas
Male
object permanence
Orang-utans
Orientation
Pan paniscus
Pan paniscus - psychology
Pan troglodytes
Pan troglodytes - psychology
Pongo pygmaeus
Pongo pygmaeus - psychology
Predatory Behavior - physiology
Primate behaviour
rotations
Spatial Behavior - physiology
spatial memory
Species Specificity
Visual acuity
Title Great apes track hidden objects after changes in the objects' position and in subject's orientation
URI https://api.istex.fr/ark:/67375/WNG-8LPTX8H6-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajp.20790
https://www.ncbi.nlm.nih.gov/pubmed/20052693
https://www.proquest.com/docview/733514151
https://www.proquest.com/docview/745978784
https://www.proquest.com/docview/816376813
Volume 72
WOSCitedRecordID wos000276124300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-2345
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011465
  issn: 0275-2565
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_qnUIpVK21PT9KELF9WXrNbjYb-lTUs0g5Dmnx8CVk84FnZbfs3hX9751kP7TQiuBblplls5OZZCaZ_Abg9ZFWSjsbR3ysBQYoTkTKJCyyaJUCx9-DjIdiE3w6zeZzMVuD4-4uTIMP0W-4ecsI87U3cJXXh79BQ9U3DzfJBcbrQ4p6mwxg-O7T5OKsP0TAz4UMRspZhCs764CFxvSwf_nGcjT0kv1xm69503UNa8_k4X_1-hFsti4nOWl05DGs2WILNv6okPBzC9b7iRAfHnwpQ-sJ6LCDQNSVrcmyUvqSfPWQIwUpc79_U5NQYpw0t4drsigI-pMdcZ90GWFEFcYT61Wg7NekrBbtpadiGy4m78_fnkZtWYZIJwKDTaeZcMo4SjF6NsykXJvcUmMThmRn0AewPLU01ilV1MdPziiDg4_q4jDai5_CoCgLuwuEKpynbeqYQK8mR7UxCXcxN2ObcsVcPoKDbnSkbjHLfemM77JBW6YS5SmDPEfwqme9aoA6bmN6E4a451DVpc9s40x-nn6Q2dnsfJ6dpjIdAel0QKK9-UMUVdhyVUse-7sP6Cf9hQUFgfNgltzNkqEbjIHeUTyCnUbD-i4FKKxUIOUgKNLdfyNPPs5C49m_sz6H9Sb_wecevYDBslrZl3BfXy8XdbUH9_g822vt6Bf6fB92
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB_KnWIRfFSt5zOI2H5Zes1uNhvwS1HPU8_jkCsefgm5PPBa2S27d6L_vZPsQwutCH7LMrNsNplJZiaT3wA8P9RKaWfjiA-1QAfFiUiZhEUWtVLg_HuQ8VBsgk-n2WIhZlvwsr0LU-NDdAE3rxlhvfYK7gPSB79RQ9WJx5vkAh32foJixHrQf_1pdDzpThHweyGFkXIW4dbOWmShIT3oXj63H_X90P64yNg8b7uGzWd08_-6fQtuNEYnOaql5DZs2XwHrv9RI-HnDmx3SyE-XP1ShNYd0CGGQNSZrci6VPqUfPWgIzkplj6CU5FQZJzU94crssoJWpQtcY-0OWFE5cYTq02g7FWkKFfNtaf8LhyP3sxfjaOmMEOkE4HuptNMOGUcpeg_G2ZSrs3SUmMThmRn0AqwPLU01ilV1HtQziiD048C49Dfi-9BLy9yex8IVbhS29QxgXbNEgXHJNzF3AxtyhVzywHst9MjdYNa7otnfJM13jKVOJ4yjOcAnnWsZzVUx0VML8IcdxyqPPW5bZzJz9O3MpvM5otsnMp0AKQVAoka549RVG6LTSV57G8_oKX0FxYcCFwJs-RylgwNYXT1DuMB7NYi1nUpgGGlAin7QZIu_xt59H4WGg_-nfUpXBvPP07k5N30w0PYrrMhfCbSI-ity419DFf09_WqKp806vQLXYMifg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB9KT6UIPqqt5zOI2H5Zes3uJhvwS7GeVY_jkBYPv4RcHvRa2T1276T9751kH1poRfBblsyy2XkkM8nkNwBv9rVS2tk44gMtMEBxIlImSSOLVilQ_h5kPBSb4ONxNp2KyRq8a-_C1PgQ3Yabt4wwX3sDtwvj9n6jhqozjzfJBQbsvSQVDM2yd_h1eDLqThHweyGFkfI0wqU9bZGFBnSve_nKetTzrL24ztm86ruGxWd4__-G_QDuNU4nOai15CGs2XwT7v5RI-FyEza6qRAfbn8vQusR6LCHQNTCVmRZKn1OTj3oSE6Kmd_BqUgoMk7q-8MVmecEPcq2c4e0OWFE5cZ3VqvQs1ORopw3157yx3Ay_HD8_ihqCjNEOhEYbjqdCqeMoxTjZ5MaxrWZWWosioEOnEEvwHJmaawZVdRHUM4og-JHhXEY78VbsJ4XuX0ChCqcqS1zqUC_ZoaKYxLuYm4GlnGVulkfdlvxSN2glvviGT9kjbdMJfJTBn724XVHuqihOq4jehtk3FGo8tzntvFUfht_lNlocjzNjphkfSCtEki0OH-MonJbrCrJY3_7AT2lv5AgI3AmzJKbSTJ0hDHU24_7sF2rWDekAIbFBPbsBk26-W_kwedJaDz9d9JXcGdyOJSjT-Mvz2CjTobwiUjPYX1ZruwLuKV_LudV-bKxpl-2dyH5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Great+apes+track+hidden+objects+after+changes+in+the+objects%27+position+and+in+subject%27s+orientation&rft.jtitle=American+journal+of+primatology&rft.au=Albiach-Serrano%2C+Anna&rft.au=Call%2C+Josep&rft.au=Barth%2C+Jochen&rft.date=2010-04-01&rft.issn=1098-2345&rft.eissn=1098-2345&rft.volume=72&rft.issue=4&rft.spage=349&rft_id=info:doi/10.1002%2Fajp.20790&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0275-2565&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0275-2565&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0275-2565&client=summon