K -Profiles: A Nonlinear Clustering Method for Pattern Detection in High Dimensional Data

With modern technologies such as microarray, deep sequencing, and liquid chromatography-mass spectrometry (LC-MS), it is possible to measure the expression levels of thousands of genes/proteins simultaneously to unravel important biological processes. A very first step towards elucidating hidden pat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international Jg. 2015; H. 2015; S. 1 - 10
Hauptverfasser: Yu, Tianwei, Lu, Jianwei, Zhao, Qing, Wang, Kai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 01.01.2015
John Wiley & Sons, Inc
Schlagworte:
ISSN:2314-6133, 2314-6141, 2314-6141
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With modern technologies such as microarray, deep sequencing, and liquid chromatography-mass spectrometry (LC-MS), it is possible to measure the expression levels of thousands of genes/proteins simultaneously to unravel important biological processes. A very first step towards elucidating hidden patterns and understanding the massive data is the application of clustering techniques. Nonlinear relations, which were mostly unutilized in contrast to linear correlations, are prevalent in high-throughput data. In many cases, nonlinear relations can model the biological relationship more precisely and reflect critical patterns in the biological systems. Using the general dependency measure, Distance Based on Conditional Ordered List (DCOL) that we introduced before, we designed the nonlinear K-profiles clustering method, which can be seen as the nonlinear counterpart of the K-means clustering algorithm. The method has a built-in statistical testing procedure that ensures genes not belonging to any cluster do not impact the estimation of cluster profiles. Results from extensive simulation studies showed that K-profiles clustering not only outperformed traditional linear K-means algorithm, but also presented significantly better performance over our previous General Dependency Hierarchical Clustering (GDHC) algorithm. We further analyzed a gene expression dataset, on which K-profile clustering generated biologically meaningful results.
AbstractList With modern technologies such as microarray, deep sequencing, and liquid chromatography-mass spectrometry (LC-MS), it is possible to measure the expression levels of thousands of genes/proteins simultaneously to unravel important biological processes. A very first step towards elucidating hidden patterns and understanding the massive data is the application of clustering techniques. Nonlinear relations, which were mostly unutilized in contrast to linear correlations, are prevalent in high-throughput data. In many cases, nonlinear relations can model the biological relationship more precisely and reflect critical patterns in the biological systems. Using the general dependency measure, Distance Based on Conditional Ordered List (DCOL) that we introduced before, we designed the nonlinear K-profiles clustering method, which can be seen as the nonlinear counterpart of the K-means clustering algorithm. The method has a built-in statistical testing procedure that ensures genes not belonging to any cluster do not impact the estimation of cluster profiles. Results from extensive simulation studies showed that K-profiles clustering not only outperformed traditional linear K-means algorithm, but also presented significantly better performance over our previous General Dependency Hierarchical Clustering (GDHC) algorithm. We further analyzed a gene expression dataset, on which K-profile clustering generated biologically meaningful results.
With modern technologies such as microarray, deep sequencing, and liquid chromatography-mass spectrometry (LC-MS), it is possible to measure the expression levels of thousands of genes/proteins simultaneously to unravel important biological processes. A very first step towards elucidating hidden patterns and understanding the massive data is the application of clustering techniques. Nonlinear relations, which were mostly unutilized in contrast to linear correlations, are prevalent in high-throughput data. In many cases, nonlinear relations can model the biological relationship more precisely and reflect critical patterns in the biological systems. Using the general dependency measure, Distance Based on Conditional Ordered List (DCOL) that we introduced before, we designed the nonlinear K -profiles clustering method, which can be seen as the nonlinear counterpart of the K -means clustering algorithm. The method has a built-in statistical testing procedure that ensures genes not belonging to any cluster do not impact the estimation of cluster profiles. Results from extensive simulation studies showed that K -profiles clustering not only outperformed traditional linear K -means algorithm, but also presented significantly better performance over our previous General Dependency Hierarchical Clustering (GDHC) algorithm. We further analyzed a gene expression dataset, on which K -profile clustering generated biologically meaningful results.
With modern technologies such as microarray, deep sequencing, and liquid chromatography-mass spectrometry (LC-MS), it is possible to measure the expression levels of thousands of genes/proteins simultaneously to unravel important biological processes. A very first step towards elucidating hidden patterns and understanding the massive data is the application of clustering techniques. Nonlinear relations, which were mostly unutilized in contrast to linear correlations, are prevalent in high-throughput data. In many cases, nonlinear relations can model the biological relationship more precisely and reflect critical patterns in the biological systems. Using the general dependency measure, Distance Based on Conditional Ordered List (DCOL) that we introduced before, we designed the nonlinear K-profiles clustering method, which can be seen as the nonlinear counterpart of the K-means clustering algorithm. The method has a built-in statistical testing procedure that ensures genes not belonging to any cluster do not impact the estimation of cluster profiles. Results from extensive simulation studies showed that K-profiles clustering not only outperformed traditional linear K-means algorithm, but also presented significantly better performance over our previous General Dependency Hierarchical Clustering (GDHC) algorithm. We further analyzed a gene expression dataset, on which K-profile clustering generated biologically meaningful results.With modern technologies such as microarray, deep sequencing, and liquid chromatography-mass spectrometry (LC-MS), it is possible to measure the expression levels of thousands of genes/proteins simultaneously to unravel important biological processes. A very first step towards elucidating hidden patterns and understanding the massive data is the application of clustering techniques. Nonlinear relations, which were mostly unutilized in contrast to linear correlations, are prevalent in high-throughput data. In many cases, nonlinear relations can model the biological relationship more precisely and reflect critical patterns in the biological systems. Using the general dependency measure, Distance Based on Conditional Ordered List (DCOL) that we introduced before, we designed the nonlinear K-profiles clustering method, which can be seen as the nonlinear counterpart of the K-means clustering algorithm. The method has a built-in statistical testing procedure that ensures genes not belonging to any cluster do not impact the estimation of cluster profiles. Results from extensive simulation studies showed that K-profiles clustering not only outperformed traditional linear K-means algorithm, but also presented significantly better performance over our previous General Dependency Hierarchical Clustering (GDHC) algorithm. We further analyzed a gene expression dataset, on which K-profile clustering generated biologically meaningful results.
Audience Academic
Author Lu, Jianwei
Zhao, Qing
Wang, Kai
Yu, Tianwei
AuthorAffiliation 2 School of Software Engineering, Tongji University, Shanghai 200092, China
4 Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
3 The Advanced Institute of Translational Medicine and Department of Gastroenterology, . Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China
1 Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA
AuthorAffiliation_xml – name: 1 Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA
– name: 4 Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
– name: 2 School of Software Engineering, Tongji University, Shanghai 200092, China
– name: 3 The Advanced Institute of Translational Medicine and Department of Gastroenterology, . Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China
Author_xml – sequence: 1
  fullname: Yu, Tianwei
– sequence: 2
  fullname: Lu, Jianwei
– sequence: 3
  fullname: Zhao, Qing
– sequence: 4
  fullname: Wang, Kai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26339652$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhleoiJbSE3dkiQsCLV1_73JAihKgiAI9wIGTNdkdJ64cu9ibVvx7HJKWUiGBL7bGz7yamXceVnshBqyqx7R5SamUx6yh8rijbSfFveqAcSpqRQXdu3lzvl8d5XzelNNS1XTqQbXPFOedkuyg-vaB1GcpWucxvyIT8ikG7wJCIlO_ziMmFxbkI47LOBAbEzmDsQQDmeGI_ehiIC6QE7dYkplbYcglAp7MYIRH1X0LPuPR7j6svr5982V6Up9-fvd-Ojmte9HRsR54B6AHiRoZVxIsALYwFxbt0ANIqkEBU522LZPA5rTrFWVSaGWtknTOD6vXW92L9XyFQ49hTODNRXIrSD9MBGf-_AluaRbx0gjJW62bIvBsJ5Di9zXm0axc7tF7CBjX2VDddJpK3Yr_QmnblKIL-vQOeh7XqQznFyWKOVQ2v6kFeDQu2FhK7DeiZiJk8Yu3oi3Uk9st3vR2bWMB6BboU8w5oTW9G2FjT5Fz3tDGbLbFbLbFbLel5Ly4k3Mt-3f6-ZZeujDAlfsHvKsXC4IWbsFSM8H4TyjW00w
CitedBy_id crossref_primary_10_1155_2022_4740173
Cites_doi 10.1287/ijoc.15.1.82.15157
10.1186/1471-2164-12-563
10.1007/BF01908075
10.1186/1471-2105-11-440
10.1007/s11222-008-9090-y
10.1038/75556
10.1093/nar/gkr1029
10.1214/14-aoas719
10.1186/1753-6561-5-s2-s3
10.1109/TCBB.2013.99
10.1093/bioinformatics/btm563
10.1093/bioinformatics/btl567
10.1109/tkde.2004.68
10.1109/34.841759
10.1109/tcbb.2010.73
10.1038/nrg3394
10.1137/1.9780898718348
10.1073/pnas.0402962101
10.1016/j.ygeno.2011.09.001
10.1186/1471-2105-12-197
10.1091/mbc.9.12.3273
10.1038/nrm3314
ContentType Journal Article
Copyright Copyright © 2015 Kai Wang et al.
COPYRIGHT 2015 John Wiley & Sons, Inc.
Copyright © 2015 Kai Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2015 Kai Wang et al. 2015
Copyright_xml – notice: Copyright © 2015 Kai Wang et al.
– notice: COPYRIGHT 2015 John Wiley & Sons, Inc.
– notice: Copyright © 2015 Kai Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2015 Kai Wang et al. 2015
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7T7
7TK
7U7
7U9
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
CWDGH
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1155/2015/918954
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Middle East & Africa Database (ProQuest)
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database ProQuest
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Middle East & Africa Database
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Toxicology Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef


Engineering Research Database

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2314-6141
Editor Wu, Fang-Xiang
Editor_xml – sequence: 1
  givenname: Fang-Xiang
  surname: Wu
  fullname: Wu, Fang-Xiang
EndPage 10
ExternalDocumentID PMC4538770
3779185511
A458163848
26339652
10_1155_2015_918954
1057242
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Atlanta Georgia
United States--US
China
GeographicLocations_xml – name: China
– name: Atlanta Georgia
– name: United States--US
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U19 AI090023
– fundername: NHLBI NIH HHS
  grantid: P20HL113451
– fundername: NIAID NIH HHS
  grantid: U19AI090023
– fundername: NHLBI NIH HHS
  grantid: P20 HL113451
GroupedDBID 04C
0R~
24P
4.4
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAMMB
AAWTL
ABDBF
ABUWG
ACCMX
ACIWK
ACPRK
ACUHS
ADBBV
ADJCN
ADOJX
ADRAZ
AEFGJ
AENEX
AFKRA
AFRAH
AGXDD
AHFXO
AHMBA
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BMSDO
BPHCQ
BVXVI
CCPQU
CWDGH
DIK
EAD
EAP
EAS
EBD
EBS
ECF
ECT
EIHBH
EJD
EMB
EMK
EMOBN
ESX
FYUFA
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INR
KQ8
LK8
M1P
M48
M7P
ML0
ML~
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RPM
SV3
TUS
UKHRP
3V.
AAJEY
GROUPED_DOAJ
IAG
IEA
INH
IOF
ISR
ITC
OK1
RHU
RHW
RHX
AAYXX
AFFHD
ALUQN
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7T7
7TK
7U7
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c491t-d39aa7d5e7e2365afaae8ab4fefdcaa517a6a2697f825a2b19c6125476ff651b3
IEDL.DBID 7X7
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359555600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2314-6133
2314-6141
IngestDate Tue Nov 04 01:49:30 EST 2025
Thu Oct 02 11:34:35 EDT 2025
Tue Oct 07 09:46:48 EDT 2025
Sat Nov 29 14:50:35 EST 2025
Tue Nov 11 10:56:24 EST 2025
Mon Jul 21 05:41:21 EDT 2025
Tue Nov 18 21:53:24 EST 2025
Sat Nov 29 05:07:16 EST 2025
Sun Jun 02 18:54:50 EDT 2024
Thu Sep 25 15:16:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2015
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-d39aa7d5e7e2365afaae8ab4fefdcaa517a6a2697f825a2b19c6125476ff651b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Fang-Xiang Wu
OpenAccessLink https://www.proquest.com/docview/1704314150?pq-origsite=%requestingapplication%
PMID 26339652
PQID 1704314150
PQPubID 237798
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4538770
proquest_miscellaneous_1709715784
proquest_miscellaneous_1709180517
proquest_journals_1704314150
gale_infotracmisc_A458163848
pubmed_primary_26339652
crossref_citationtrail_10_1155_2015_918954
crossref_primary_10_1155_2015_918954
hindawi_primary_10_1155_2015_918954
emarefa_primary_1057242
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: United States
– name: New York
PublicationTitle BioMed research international
PublicationTitleAlternate Biomed Res Int
PublicationYear 2015
Publisher Hindawi Publishing Corporation
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi Publishing Corporation
– name: John Wiley & Sons, Inc
References (3) 2010; 11, article 440
(9) 2004; 101
(6) 2004; 16
(21) 1998; 9
(25) 2007; 23
Gan G. Ma C. Wu J. Data Clustering: Theory, Algorithms, and Applications 2007 Philadelphia, Pa, USA SIAM American Statistical Association ASA-SIAM Series on Statistics and Applied Probability 10.1137/1.9780898718348 MR2331172
(13) 2000; 22
(10) 2011; 12, article 197
Jian A. Zhang Z. Chang E. Adaptive non-linear clustering in data streams Proceedings of the 15th ACM International Conference on Information and Knowledge Management (CIKM '06) 2006 Arlington, Va, USA 122 131 10.1145/1183614.1183636
(26) 2011; 12, article 563
(14) 2009; 19
(16) 2011; 8
(23) 2000; 25
(4) 2014; 8
Tung A. K. H. Xu X. Ooi B. C. CURLER: finding and visualizing nonlinear correlation clusters Proceedings of the ACM SIGMOD International Conference on Management of Data June 2005 New York, NY, USA ACM 467 478 10.1145/1066157.1066211 2-s2.0-29844449492
(18) 2008; 24
Hastie T. Tibshirani R. Friedman J. H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2009 2nd New York, NY, USA Springer Springer Series in Statistics MR2722294
(27) 2011; 98
(1) 2013; 14
(24) 2012; 40
Gutin G. Punnen A. P. The Traveling Salesman Problem and Its Variations 2002 Dordrecht, The Netherlands Kluwer Academic Publishers Combinatorial Optimization MR1944484
(22) 2002; 12
(15) 2013; 10
(12) 2011; 5
(20) 1985; 2
(2) 2012; 13
(19) 2003; 15
23
24
25
26
27
(7) 2009
10
12
13
14
15
16
18
19
1
2
3
4
6
(17) 2002
8
9
20
21
22087761 - BMC Genomics. 2011;12:563
21554761 - BMC Proc. 2011 May 28;5 Suppl 2:S3
25984253 - Ann Appl Stat. 2014 Jun;8(2):999-1021
21971296 - Genomics. 2011 Dec;98(6):469-77
18024473 - Bioinformatics. 2008 Mar 1;24(5):719-20
10802651 - Nat Genet. 2000 May;25(1):25-9
22436749 - Nat Rev Mol Cell Biol. 2012 Apr;13(4):263-9
24334400 - IEEE/ACM Trans Comput Biol Bioinform. 2013 Jul-Aug;10(4):1080-5
20799972 - BMC Bioinformatics. 2010;11:440
15492223 - Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15561-6
23269463 - Nat Rev Genet. 2013 Feb;14(2):89-99
22110037 - Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5
9843569 - Mol Biol Cell. 1998 Dec;9(12):3273-97
17098774 - Bioinformatics. 2007 Jan 15;23(2):257-8
20733236 - IEEE/ACM Trans Comput Biol Bioinform. 2011 May-Jun;8(3):723-31
21609452 - BMC Bioinformatics. 2011;12:197
References_xml – reference: Jian A. Zhang Z. Chang E. Adaptive non-linear clustering in data streams Proceedings of the 15th ACM International Conference on Information and Knowledge Management (CIKM '06) 2006 Arlington, Va, USA 122 131 10.1145/1183614.1183636
– volume: 101
  start-page: 15561
  issue: 44
  year: 2004
  end-page: 15566
  ident: 9
  article-title: A system for enhancing genome-wide coexpression dynamics study
– volume: 5
  year: 2011
  ident: 12
  article-title: Nonlinear gene cluster analysis with labeling for microarray gene expression data in organ development
– volume: 10
  start-page: 1080
  issue: 4
  year: 2013
  end-page: 1085
  ident: 15
  article-title: Hierarchical clustering of high-throughput expression data based on general dependences
– volume: 25
  start-page: 25
  issue: 1
  year: 2000
  end-page: 29
  ident: 23
  article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium
– volume: 19
  start-page: 255
  issue: 3
  year: 2009
  end-page: 269
  ident: 14
  article-title: Measuring non-linear dependence for two random variables distributed along a curve
– volume: 12, article 563
  year: 2011
  ident: 26
  article-title: Improving gene expression data interpretation by finding latent factors that co-regulate gene modules with clinical factors
– volume: 40
  start-page: D700
  issue: 1
  year: 2012
  end-page: D705
  ident: 24
  article-title: Saccharomyces Genome Database: the genomics resource of budding yeast
– reference: Gutin G. Punnen A. P. The Traveling Salesman Problem and Its Variations 2002 Dordrecht, The Netherlands Kluwer Academic Publishers Combinatorial Optimization MR1944484
– volume: 14
  start-page: 89
  issue: 2
  year: 2013
  end-page: 99
  ident: 1
  article-title: Reuse of public genome-wide gene expression data
– volume: 22
  start-page: 281
  issue: 3
  year: 2000
  end-page: 297
  ident: 13
  article-title: Learning and design of principal curves
– volume: 23
  start-page: 257
  issue: 2
  year: 2007
  end-page: 258
  ident: 25
  article-title: Using GOstats to test gene lists for GO term association
– volume: 13
  start-page: 263
  issue: 4
  year: 2012
  end-page: 269
  ident: 2
  article-title: Innovation: metabolomics: the apogee of the omics trilogy
– volume: 8
  start-page: 723
  issue: 3
  year: 2011
  end-page: 731
  ident: 16
  article-title: Incorporating nonlinear relationships in microarray missing value imputation
– reference: Hastie T. Tibshirani R. Friedman J. H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2009 2nd New York, NY, USA Springer Springer Series in Statistics MR2722294
– volume: 11, article 440
  year: 2010
  ident: 3
  article-title: An exploratory data analysis method to reveal modular latent structures in high-throughput data
– volume: 15
  start-page: 82
  issue: 1
  year: 2003
  end-page: 92
  ident: 19
  article-title: Chained Lin-Kernighan for large traveling salesman problems
– volume: 16
  start-page: 1370
  issue: 11
  year: 2004
  end-page: 1386
  ident: 6
  article-title: Cluster analysis for gene expression data: a survey
– volume: 9
  start-page: 3273
  issue: 12
  year: 1998
  end-page: 3297
  ident: 21
  article-title: Comprehensive identification of cell cycle-regulated genes of the yeast by microarray hybridization
– volume: 24
  start-page: 719
  issue: 5
  year: 2008
  end-page: 720
  ident: 18
  article-title: Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R
– reference: Tung A. K. H. Xu X. Ooi B. C. CURLER: finding and visualizing nonlinear correlation clusters Proceedings of the ACM SIGMOD International Conference on Management of Data June 2005 New York, NY, USA ACM 467 478 10.1145/1066157.1066211 2-s2.0-29844449492
– reference: Gan G. Ma C. Wu J. Data Clustering: Theory, Algorithms, and Applications 2007 Philadelphia, Pa, USA SIAM American Statistical Association ASA-SIAM Series on Statistics and Applied Probability 10.1137/1.9780898718348 MR2331172
– volume: 8
  start-page: 999
  issue: 2
  year: 2014
  end-page: 1021
  ident: 4
  article-title: A Bayesian nonparametric mixture model for selecting genes and gene subnetworks
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  end-page: 218
  ident: 20
  article-title: Comparing partitions
– volume: 12, article 197
  year: 2011
  ident: 10
  article-title: Linear and non-linear dependencies between copy number aberrations and mRNA expression reveal distinct molecular pathways in breast cancer
– volume: 98
  start-page: 469
  issue: 6
  year: 2011
  end-page: 477
  ident: 27
  article-title: Capturing changes in gene expression dynamics by gene set differential coordination analysis
– volume: 12
  start-page: 141
  issue: 1
  year: 2002
  end-page: 158
  ident: 22
  article-title: A simple statistical model for depicting the cdc15-synchronized yeast cell-cycle regulated gene expression data
– ident: 19
  doi: 10.1287/ijoc.15.1.82.15157
– volume: 12
  start-page: 141
  issue: 1
  year: 2002
  ident: 22
  publication-title: Statistica Sinica
– ident: 26
  doi: 10.1186/1471-2164-12-563
– ident: 20
  doi: 10.1007/BF01908075
– ident: 3
  doi: 10.1186/1471-2105-11-440
– ident: 14
  doi: 10.1007/s11222-008-9090-y
– ident: 23
  doi: 10.1038/75556
– ident: 24
  doi: 10.1093/nar/gkr1029
– ident: 4
  doi: 10.1214/14-aoas719
– ident: 12
  doi: 10.1186/1753-6561-5-s2-s3
– ident: 15
  doi: 10.1109/TCBB.2013.99
– ident: 18
  doi: 10.1093/bioinformatics/btm563
– ident: 25
  doi: 10.1093/bioinformatics/btl567
– ident: 6
  doi: 10.1109/tkde.2004.68
– ident: 13
  doi: 10.1109/34.841759
– ident: 16
  doi: 10.1109/tcbb.2010.73
– ident: 1
  doi: 10.1038/nrg3394
– year: 2002
  ident: 17
– year: 2009
  ident: 7
– ident: 8
  doi: 10.1137/1.9780898718348
– ident: 9
  doi: 10.1073/pnas.0402962101
– ident: 27
  doi: 10.1016/j.ygeno.2011.09.001
– ident: 10
  doi: 10.1186/1471-2105-12-197
– ident: 21
  doi: 10.1091/mbc.9.12.3273
– ident: 2
  doi: 10.1038/nrm3314
– reference: 20799972 - BMC Bioinformatics. 2010;11:440
– reference: 22436749 - Nat Rev Mol Cell Biol. 2012 Apr;13(4):263-9
– reference: 18024473 - Bioinformatics. 2008 Mar 1;24(5):719-20
– reference: 24334400 - IEEE/ACM Trans Comput Biol Bioinform. 2013 Jul-Aug;10(4):1080-5
– reference: 23269463 - Nat Rev Genet. 2013 Feb;14(2):89-99
– reference: 10802651 - Nat Genet. 2000 May;25(1):25-9
– reference: 9843569 - Mol Biol Cell. 1998 Dec;9(12):3273-97
– reference: 22087761 - BMC Genomics. 2011;12:563
– reference: 17098774 - Bioinformatics. 2007 Jan 15;23(2):257-8
– reference: 21609452 - BMC Bioinformatics. 2011;12:197
– reference: 25984253 - Ann Appl Stat. 2014 Jun;8(2):999-1021
– reference: 15492223 - Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15561-6
– reference: 21554761 - BMC Proc. 2011 May 28;5 Suppl 2:S3
– reference: 22110037 - Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5
– reference: 21971296 - Genomics. 2011 Dec;98(6):469-77
– reference: 20733236 - IEEE/ACM Trans Comput Biol Bioinform. 2011 May-Jun;8(3):723-31
SSID ssj0000816096
Score 2.0882828
Snippet With modern technologies such as microarray, deep sequencing, and liquid chromatography-mass spectrometry (LC-MS), it is possible to measure the expression...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
hindawi
emarefa
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Bioinformatics
Cluster Analysis
Clustering
Gene Expression
Gene Expression Profiling - statistics & numerical data
Genomics
High-Throughput Nucleotide Sequencing - statistics & numerical data
Humans
Liquid chromatography
Mass spectrometry
Methods
Microarray Analysis - statistics & numerical data
Models, Statistical
Random variables
Statistical inference
Traveling salesman problem
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdrWcdexr7rLR0a69PAzLK-rL2FpqWwNYSxQfZkTo5EA51bEmf793dnu6bpStmbjc6ypdP5fmeffsfYoddBVAZEKnOfpcoXWQp5iLiWs7DwAT2-bDcKf7XTaTGfu1mfILv-9xc-ejsMz4X-5EThtNphO4WmxK1vp_PhSwqVjshcV0VOKIyFpOw34t26esv17IVfgAcwvIr3zikI_rO8C2rezpi84YJOnrInPXbk407Zz9iDUD9nj876v-Mv2M8vPJ11NbjXn_mYTzsaDFjxo4sNESKgm-JnbclojliVz1puzZpPQtMmZNV8WXNK_OAT4vzv-Dr4BBp4yX6cHH8_Ok370glppZxo0oV0AHahgw25NBoiQCjAqxjiogLQwoKB3DgbMUKE3AtXEdRR1sRotPDyFdutL-uwz7iXCHkszqwzOVp74TLAkMW46GNU1ouEfbye1bLqecWpvMVF2cYXWpekgrJTQcIOB-Grjk7jbrHXvXpuSGmLcCJhI1JXSeaHd6nQGKpyrHRBuFIVCfvQq_H-7kfXKi57k12XwhLPEOKZLGHvh2bqn9LQ6nC5aWWwB6I1u1_G4owVNIpu1QzPkhspndE4Cru1ngYBIvvebqmX5y3pt0LPZG325r8G-JY9prPuU9GI7TarTThgD6vfzXK9eteaz1_HAQ_A
  priority: 102
  providerName: Hindawi Publishing
Title K -Profiles: A Nonlinear Clustering Method for Pattern Detection in High Dimensional Data
URI https://search.emarefa.net/detail/BIM-1057242
https://dx.doi.org/10.1155/2015/918954
https://www.ncbi.nlm.nih.gov/pubmed/26339652
https://www.proquest.com/docview/1704314150
https://www.proquest.com/docview/1709180517
https://www.proquest.com/docview/1709715784
https://pubmed.ncbi.nlm.nih.gov/PMC4538770
Volume 2015
WOSCitedRecordID wos000359555600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6133
  databaseCode: P5Z
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6133
  databaseCode: M7P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6133
  databaseCode: 7X7
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database (ProQuest)
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6133
  databaseCode: CWDGH
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6133
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6133
  databaseCode: PIMPY
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6133
  databaseCode: 24P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgY4gXvhmBUhmxJ6RocRzbMS-orJuGoFU0gdTxEjmJrVUa6dYP-Pe5S9ywoqkvvERtc3JyvbPvzrn8foQcFMKyUhoW8riIwqRIo9DE1oEvR7YqLER83rwo_FWNx-lkojO_4bbwbZXrNbFZqKtZiXvkh0whDAyEm-jj1XWIrFH4dNVTaNwlu0ibjX6uJqrbY0FSiUi3_HIsgSqJc_-KHkRRKPuZONQs1SLZCEp79qeBD6ZbpPcusDz-Pb0tCf23l_JGcDp59L9qPSYPfVpKB60fPSF3bP2U3B_5B-_PyPkXGmYtvffiAx3QcYuwYeb06HKFWAsQAemoYaOmkAbTrIHtrOnQLpter5pOa4o9JXSIdAItFAgdmqV5Tr6fHH87Og09K0NYJpotw4prY1QlrLIxl8I4Y2xqisRZV5XGCKaMNLHUykHxaeKC6RKzqERJ56RgBX9BdupZbV8SWnDIphSor2UMC0mqIwPVkNSucC5RBQvI-7VZ8tJDliNzxmXelC5C5GjDvLVhQA464asWqeN2sX1v3xtSQkGmEpAe2jvHmQ1XKWGelfkgESmmrEkakHfeD7YP31vbOferwSL_a-SAvO1O4_jY4Vbb2aqRgREQMW27jIJ_LEUtWrfr7iWWnGspQAu14ZCdAOKIb56ppxcNnngCQU-p6NX2W39NHqCe7fZTj-ws5yv7htwrfy2ni3m_mXjNMe2T3U_H4-ysj320GRwz8QN-yz6PsnP4dnY6-QPYKjfi
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VlBYuvAuGAItoL0hW_Nj1epEQihqqRnkohyK1J7O212qk4pQ8qPhT_EZm_KJBVW49cIvk0ca7-Xa-mc3sNwD7sTBuEmjX9r3YsXkcOrb2TIZYdkwaG2R8v7goPJTjcXh6qiZb8Lu-C0NllbVPLBx1OkvojLzjSpKBQbpxPl_-sKlrFP27WrfQKGExML-uMGVbfOr38Pc98LyjLyeHx3bVVcBOuHKXduorrWUqjDSeHwidaW1CHfPMZGmitXClDrQXKJlh8qS92FUJRQFcBlkWCDf2cdw7sM0R7E4Ltif90eSsOdWhNhaOKjvauRzzMt-vLgUib3eQbEVHuaESfI0Gd8x3jR90Qws755SQX01vCnv_rd68RodHD_-3hXwED6rAm3XLnfIYtkz-BHZHVWnBUzgbMHtSNjBffGRdNi41RPScHV6sSE0COZ6Nin7bDAN9NimESXPWM8uimi1n05xR1QzrUcOEUuyE9fRSP4OvtzKxPWjls9y8ABb7GC9KXG4VeOgqQ-VozPcClcVZxmXsWvChhkGUVKLs1BvkIiqSMyEiwkxUYsaC_cb4stQiudnseYWna1ZCYixmQZvwFZHvwm9J0JMkUZeLkIJyHlrwvsLd5uHbNa6iyt8tor-gsuBd85jGpxq-3MxWhQ2OQJpwm20krlhIsyhh3ryLF_i-CgTOQq5tgMaAlNLXn-TT80IxnSOtS-m83Pzqb-He8cloGA3748EruE9zLg_b2tBazlfmNdxNfi6ni_mbatsz-HbbG-QPE2yRrA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHZt44c4IFDBivCBFTeI4jpEQKusqpm5VhUDanoKT2FqlLR29MPHX-HWck6RhRVPf9sBbpRy5sfv5XNzj7wPYTYXxs0j7Lg9Szw3T2HN1YCxi2TN5ajDi8_Ki8KEcDuPjYzXagN_LuzDUVrn0iaWjzicZnZF3fEk0MBhuvI6t2yJGvf7Hix8uKUjRP61LOY0KIgPz6xLLt9mHgx7-1m-DoL__de-zWysMuFmo_Lmbc6W1zIWRJuCR0FZrE-s0tMbmmdbClzrSQaSkxUJKB6mvMsoIQhlZGwk_5TjuLdiUHIueFmx-2h-OvjQnPCRp4alK3c4PsUbjvL4giDG8g4FXdJQfKxGuhMQtc67xg25CxNYpFeeX4-tS4H87Oa-Exv69_3lR78PdOiFn3WoHPYANUzyE7aO65eARnAyYO6qEzWfvWZcNK24RPWV7ZwtimcDYz45KHW6GBQAblYSlBeuZednlVrBxwaibhvVISKEiQWE9PdeP4duNTOwJtIpJYZ4CSznmkRKXXkUButBYeRrrwEjZ1NpQpr4D75aQSLKarJ00Q86SsmgTIiH8JBV-HNhtjC8qjpLrzXZqbF2xEhJzNAfahLWEfBp-S4YeJku6oYgpWQ9jB97UGFw_fHuJsaT2g7PkL8AceN08pvGpt68wk0VpgyMQV9x6G4krFtMsKsg37xJEnKtI4CzkymZoDIhBffVJMT4tmdRDDPdSes_Wv_or2MZdkRweDAfP4Q5NuTqDa0NrPl2YF3A7-zkfz6Yvaw_A4PtN748_ghuaRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K+-Profiles%3A+A+Nonlinear+Clustering+Method+for+Pattern+Detection+in+High+Dimensional+Data&rft.jtitle=BioMed+research+international&rft.au=Wang%2C+Kai&rft.au=Zhao%2C+Qing&rft.au=Lu%2C+Jianwei&rft.au=Yu%2C+Tianwei&rft.date=2015-01-01&rft.issn=2314-6133&rft.eissn=2314-6141&rft.volume=2015&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1155%2F2015%2F918954&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2015_918954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-6133&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-6133&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-6133&client=summon