Training Ultrasound Image Classification Deep-Learning Algorithms for Pneumothorax Detection Using a Synthetic Tissue Phantom Apparatus

Ultrasound (US) imaging is a critical tool in emergency and military medicine because of its portability and immediate nature. However, proper image interpretation requires skill, limiting its utility in remote applications for conditions such as pneumothorax (PTX) which requires rapid intervention....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of imaging Ročník 8; číslo 9; s. 249
Hlavní autoři: Boice, Emily N., Hernandez Torres, Sofia I., Knowlton, Zechariah J., Berard, David, Gonzalez, Jose M., Avital, Guy, Snider, Eric J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 11.09.2022
MDPI
Témata:
ISSN:2313-433X, 2313-433X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ultrasound (US) imaging is a critical tool in emergency and military medicine because of its portability and immediate nature. However, proper image interpretation requires skill, limiting its utility in remote applications for conditions such as pneumothorax (PTX) which requires rapid intervention. Artificial intelligence has the potential to automate ultrasound image analysis for various pathophysiological conditions. Training models require large data sets and a means of troubleshooting in real-time for ultrasound integration deployment, and they also require large animal models or clinical testing. Here, we detail the development of a dynamic synthetic tissue phantom model for PTX and its use in training image classification algorithms. The model comprises a synthetic gelatin phantom cast in a custom 3D-printed rib mold and a lung mimicking phantom. When compared to PTX images acquired in swine, images from the phantom were similar in both PTX negative and positive mimicking scenarios. We then used a deep learning image classification algorithm, which we previously developed for shrapnel detection, to accurately predict the presence of PTX in swine images by only training on phantom image sets, highlighting the utility for a tissue phantom for AI applications.
AbstractList Ultrasound (US) imaging is a critical tool in emergency and military medicine because of its portability and immediate nature. However, proper image interpretation requires skill, limiting its utility in remote applications for conditions such as pneumothorax (PTX) which requires rapid intervention. Artificial intelligence has the potential to automate ultrasound image analysis for various pathophysiological conditions. Training models require large data sets and a means of troubleshooting in real-time for ultrasound integration deployment, and they also require large animal models or clinical testing. Here, we detail the development of a dynamic synthetic tissue phantom model for PTX and its use in training image classification algorithms. The model comprises a synthetic gelatin phantom cast in a custom 3D-printed rib mold and a lung mimicking phantom. When compared to PTX images acquired in swine, images from the phantom were similar in both PTX negative and positive mimicking scenarios. We then used a deep learning image classification algorithm, which we previously developed for shrapnel detection, to accurately predict the presence of PTX in swine images by only training on phantom image sets, highlighting the utility for a tissue phantom for AI applications.
Ultrasound (US) imaging is a critical tool in emergency and military medicine because of its portability and immediate nature. However, proper image interpretation requires skill, limiting its utility in remote applications for conditions such as pneumothorax (PTX) which requires rapid intervention. Artificial intelligence has the potential to automate ultrasound image analysis for various pathophysiological conditions. Training models require large data sets and a means of troubleshooting in real-time for ultrasound integration deployment, and they also require large animal models or clinical testing. Here, we detail the development of a dynamic synthetic tissue phantom model for PTX and its use in training image classification algorithms. The model comprises a synthetic gelatin phantom cast in a custom 3D-printed rib mold and a lung mimicking phantom. When compared to PTX images acquired in swine, images from the phantom were similar in both PTX negative and positive mimicking scenarios. We then used a deep learning image classification algorithm, which we previously developed for shrapnel detection, to accurately predict the presence of PTX in swine images by only training on phantom image sets, highlighting the utility for a tissue phantom for AI applications.Ultrasound (US) imaging is a critical tool in emergency and military medicine because of its portability and immediate nature. However, proper image interpretation requires skill, limiting its utility in remote applications for conditions such as pneumothorax (PTX) which requires rapid intervention. Artificial intelligence has the potential to automate ultrasound image analysis for various pathophysiological conditions. Training models require large data sets and a means of troubleshooting in real-time for ultrasound integration deployment, and they also require large animal models or clinical testing. Here, we detail the development of a dynamic synthetic tissue phantom model for PTX and its use in training image classification algorithms. The model comprises a synthetic gelatin phantom cast in a custom 3D-printed rib mold and a lung mimicking phantom. When compared to PTX images acquired in swine, images from the phantom were similar in both PTX negative and positive mimicking scenarios. We then used a deep learning image classification algorithm, which we previously developed for shrapnel detection, to accurately predict the presence of PTX in swine images by only training on phantom image sets, highlighting the utility for a tissue phantom for AI applications.
Author Snider, Eric J.
Knowlton, Zechariah J.
Avital, Guy
Boice, Emily N.
Hernandez Torres, Sofia I.
Gonzalez, Jose M.
Berard, David
AuthorAffiliation 1 U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
3 Division of Anesthesia, Intensive Care & Pain Management, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
2 Trauma & Combat Medicine Branch, Surgeon General’s Headquarters, Israel Defense Forces, Ramat-Gan 52620, Israel
AuthorAffiliation_xml – name: 3 Division of Anesthesia, Intensive Care & Pain Management, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
– name: 1 U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
– name: 2 Trauma & Combat Medicine Branch, Surgeon General’s Headquarters, Israel Defense Forces, Ramat-Gan 52620, Israel
Author_xml – sequence: 1
  givenname: Emily N.
  orcidid: 0000-0001-7180-2842
  surname: Boice
  fullname: Boice, Emily N.
– sequence: 2
  givenname: Sofia I.
  orcidid: 0000-0002-0764-519X
  surname: Hernandez Torres
  fullname: Hernandez Torres, Sofia I.
– sequence: 3
  givenname: Zechariah J.
  surname: Knowlton
  fullname: Knowlton, Zechariah J.
– sequence: 4
  givenname: David
  orcidid: 0000-0003-2286-3846
  surname: Berard
  fullname: Berard, David
– sequence: 5
  givenname: Jose M.
  orcidid: 0000-0002-4325-409X
  surname: Gonzalez
  fullname: Gonzalez, Jose M.
– sequence: 6
  givenname: Guy
  orcidid: 0000-0002-9337-185X
  surname: Avital
  fullname: Avital, Guy
– sequence: 7
  givenname: Eric J.
  orcidid: 0000-0002-0293-4937
  surname: Snider
  fullname: Snider, Eric J.
BackLink https://www.osti.gov/biblio/1886975$$D View this record in Osti.gov
BookMark eNp1kl-LGyEUxYeypbvd7nNfh_alL-nqqDP6Ugjpv0CgC02gb-LonYxhRlN1lu4n6NeuSZbSDfRBFO_vHK-H-7K4cN5BUbzG6D0hAt3u7Ki21m05Eqii4llxVRFMZpSQHxf_nC-Lmxh3CCEsqrzEi-KS1JgwiulV8XsdlHXZpNwMKajoJ2fKZfaFcjGoGG1ntUrWu_IjwH62AhWO9HzY-mBTP8ay86G8czCNPvU-qF-ZTKCPmk08sKr8_uBSD8nqcm1jnKC865VLfizn-70KKk3xVfG8U0OEm8f9uth8_rRefJ2tvn1ZLuarmaYCp5nusEKIUQaCtXVL2k40CutcNB1RXIuaQ6N5RRvVNA1HwE2rESAjGGetAHJdLE--xqud3IccYXiQXll5vPBhK1XIjQ4gTSvqShhGTGVoA6pVLSgE1HTMUMAie304ee2ndgSjweUEhyemTyvO9nLr76VgqKrFweDNycDHZGXUNufWa-9cjk9izmvRsAy9e3wl-J8TxCRHGzUMg3LgpyirBteCEi54Rt-eoTs_BZfzPFKMEYxopm5PlA4-xgDd344xkofBkmeDlRXsTJFbPU5F_pYd_qv7A7Lq2Ok
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105183
crossref_primary_10_1177_10806032241304441
crossref_primary_10_1038_s41598_024_55480_0
crossref_primary_10_1108_IJRDM_12_2024_0666
crossref_primary_10_3390_diagnostics14030335
crossref_primary_10_1007_s13665_024_00344_1
crossref_primary_10_3389_fphys_2025_1530808
crossref_primary_10_1016_j_techfore_2023_123149
crossref_primary_10_3390_diagnostics13030417
crossref_primary_10_3390_bioengineering11040392
crossref_primary_10_3390_jimaging8090252
crossref_primary_10_3389_fbioe_2023_1244616
crossref_primary_10_3390_s24248204
crossref_primary_10_3390_jimaging8100270
Cites_doi 10.1002/mrd.22489
10.1016/j.eng.2018.11.020
10.1016/S0196-0644(01)70030-3
10.1016/j.annemergmed.2008.12.013
10.1109/JPROC.2015.2494218
10.1371/journal.pone.0255886
10.1109/CVPR.2018.00474
10.1038/sj.sc.3101889
10.1002/jum.14629
10.1007/978-3-030-33128-3_3
10.1111/j.1553-2712.2012.01349.x
10.1007/s00330-019-06130-x
10.1109/TUFFC.2020.2993779
10.1002/jcu.1870170617
10.1109/TUFFC.2020.3002249
10.1186/s13054-016-1399-x
10.1213/ANE.0b013e3181d5e4d8
10.1109/CVPR.2016.90
10.3390/jimaging8050140
10.1002/acm2.13695
10.1186/cc5004
10.1007/s11739-010-0347-z
10.1378/chest.11-0131
10.1016/j.compbiomed.2021.104742
10.1016/j.chest.2017.10.019
10.1088/1361-6560/aa82ec
10.3390/app11020672
10.1016/j.rapm.2005.08.007
10.1038/nmeth.2019
10.1038/s41598-022-12367-2
10.1177/1129729820961941
10.4103/0974-2700.93116
10.1053/j.jvca.2019.11.051
10.1136/emermed-2011-200264
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
OTOTI
5PM
DOA
DOI 10.3390/jimaging8090249
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2313-433X
ExternalDocumentID oai_doaj_org_article_db9629d53d2d47eababea0e4df5d4e19
PMC9502699
1886975
10_3390_jimaging8090249
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: U.S. Army Medical Research and Development Command
– fundername: National Institutes of Health (NIH)
– fundername: U.S. Department of Energy, Oak Ridge Institute for Science and Education
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IHR
ITC
KQ8
MODMG
M~E
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
7X8
DKF
OTOTI
5PM
ID FETCH-LOGICAL-c491t-cf1a00545e95b6b3bf97a1cc49df3a8c968e7c8247a77780e8dbc0e0d9585b9e3
IEDL.DBID P5Z
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000856388900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2313-433X
IngestDate Fri Oct 03 12:40:00 EDT 2025
Tue Nov 04 02:07:16 EST 2025
Mon Sep 19 16:16:41 EDT 2022
Wed Oct 01 13:40:07 EDT 2025
Sun Sep 07 03:46:34 EDT 2025
Sat Nov 29 07:12:25 EST 2025
Tue Nov 18 22:23:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-cf1a00545e95b6b3bf97a1cc49df3a8c968e7c8247a77780e8dbc0e0d9585b9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
ORCID 0000-0002-0764-519X
0000-0003-2286-3846
0000-0002-4325-409X
0000-0002-0293-4937
0000-0001-7180-2842
0000-0002-9337-185X
0000000322863846
0000000171802842
000000029337185X
0000000202934937
000000024325409X
OpenAccessLink https://www.proquest.com/docview/2716553104?pq-origsite=%requestingapplication%
PMID 36135414
PQID 2716553104
PQPubID 2059558
ParticipantIDs doaj_primary_oai_doaj_org_article_db9629d53d2d47eababea0e4df5d4e19
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9502699
osti_scitechconnect_1886975
proquest_miscellaneous_2716943898
proquest_journals_2716553104
crossref_primary_10_3390_jimaging8090249
crossref_citationtrail_10_3390_jimaging8090249
PublicationCentury 2000
PublicationDate 20220911
PublicationDateYYYYMMDD 2022-09-11
PublicationDate_xml – month: 9
  year: 2022
  text: 20220911
  day: 11
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
– name: Switzerland
PublicationTitle Journal of imaging
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Alakwaa (ref_12) 2017; 8
Barillari (ref_23) 2010; 5
Shahriari (ref_42) 2016; 104
Prada (ref_36) 2021; 35
Avila (ref_8) 2018; 37
Oveland (ref_24) 2012; 19
Park (ref_11) 2019; 29
Xu (ref_18) 2005; 30
Schindelin (ref_26) 2012; 9
Husain (ref_29) 2012; 5
ref_31
Singh (ref_35) 2018; 153
Nair (ref_14) 2020; 67
Snider (ref_27) 2022; 12
Lo (ref_19) 2012; 29
Lloyd (ref_37) 2006; 44
ref_39
ref_16
Kim (ref_38) 2010; 110
ref_15
Han (ref_13) 2017; 62
Baloescu (ref_32) 2020; 67
Zhang (ref_9) 2006; 10
Selame (ref_21) 2021; 22
Lin (ref_34) 2022; 23
Whitson (ref_3) 2016; 20
Ebrahimi (ref_7) 2014; 13
ref_22
Liu (ref_17) 2019; 5
Secco (ref_33) 2021; 136
ref_43
Kumar (ref_30) 2020; 43
ref_41
ref_40
ref_1
Mp (ref_20) 1989; 17
ref_2
ref_28
Schindelin (ref_25) 2015; 82
ref_5
ref_4
Alrajhi (ref_6) 2012; 141
Lee (ref_10) 2020; Volume 1213
References_xml – volume: 82
  start-page: 518
  year: 2015
  ident: ref_25
  article-title: The ImageJ Ecosystem: An Open Platform for Biomedical Image Analysis
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.22489
– volume: 43
  start-page: 114
  year: 2020
  ident: ref_30
  article-title: Automated Deep Transfer Learning-Based Approach for Detection of COVID-19 Infection in Chest X-Rays
  publication-title: IRBM
– volume: 5
  start-page: 261
  year: 2019
  ident: ref_17
  article-title: Deep Learning in Medical Ultrasound Analysis: A Review
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.11.020
– ident: ref_4
  doi: 10.1016/S0196-0644(01)70030-3
– ident: ref_5
  doi: 10.1016/j.annemergmed.2008.12.013
– volume: 104
  start-page: 148
  year: 2016
  ident: ref_42
  article-title: Taking the Human Out of the Loop: A Review of Bayesian Optimization
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– ident: ref_15
  doi: 10.1371/journal.pone.0255886
– ident: ref_41
  doi: 10.1109/CVPR.2018.00474
– volume: 44
  start-page: 505
  year: 2006
  ident: ref_37
  article-title: Diaphragmatic Paralysis: The Use of M Mode Ultrasound for Diagnosis in Adults
  publication-title: Spinal Cord
  doi: 10.1038/sj.sc.3101889
– volume: 37
  start-page: 2681
  year: 2018
  ident: ref_8
  article-title: Does the Addition of M-Mode to B-Mode Ultrasound Increase the Accuracy of Identification of Lung Sliding in Traumatic Pneumothoraces?
  publication-title: J. Ultrasound Med.
  doi: 10.1002/jum.14629
– volume: Volume 1213
  start-page: 47
  year: 2020
  ident: ref_10
  article-title: Deep Learning for Pulmonary Image Analysis: Classification, Detection, and Segmentation
  publication-title: Deep Learning in Medical Image Analysis
  doi: 10.1007/978-3-030-33128-3_3
– ident: ref_16
– volume: 19
  start-page: 586
  year: 2012
  ident: ref_24
  article-title: A Porcine Pneumothorax Model for Teaching Ultrasound Diagnostics
  publication-title: Acad. Emerg. Med.
  doi: 10.1111/j.1553-2712.2012.01349.x
– volume: 29
  start-page: 5341
  year: 2019
  ident: ref_11
  article-title: Application of Deep Learning–Based Computer-Aided Detection System: Detecting Pneumothorax on Chest Radiograph after Biopsy
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06130-x
– ident: ref_40
– volume: 67
  start-page: 2493
  year: 2020
  ident: ref_14
  article-title: Deep Learning to Obtain Simultaneous Image and Segmentation Outputs From a Single Input of Raw Ultrasound Channel Data
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
  doi: 10.1109/TUFFC.2020.2993779
– volume: 17
  start-page: 456
  year: 1989
  ident: ref_20
  article-title: Preparation of a Homemade Ultrasound Biopsy Phantom
  publication-title: J. Clin. Ultrasound: JCU
  doi: 10.1002/jcu.1870170617
– volume: 67
  start-page: 2312
  year: 2020
  ident: ref_32
  article-title: Automated Lung Ultrasound B-Line Assessment Using a Deep Learning Algorithm
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
  doi: 10.1109/TUFFC.2020.3002249
– volume: 20
  start-page: 227
  year: 2016
  ident: ref_3
  article-title: Ultrasonography in the Emergency Department
  publication-title: Crit. Care
  doi: 10.1186/s13054-016-1399-x
– volume: 110
  start-page: 1349
  year: 2010
  ident: ref_38
  article-title: An Evaluation of Diaphragmatic Movement by M-Mode Sonography as a Predictor of Pulmonary Dysfunction after Upper Abdominal Surgery
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0b013e3181d5e4d8
– ident: ref_1
– ident: ref_39
  doi: 10.1109/CVPR.2016.90
– ident: ref_28
  doi: 10.3390/jimaging8050140
– volume: 23
  start-page: e13695
  year: 2022
  ident: ref_34
  article-title: Deep Learning for Emergency Ascites Diagnosis Using Ultrasonography Images
  publication-title: J. Appl. Clin. Med. Phys.
  doi: 10.1002/acm2.13695
– volume: 10
  start-page: R112
  year: 2006
  ident: ref_9
  article-title: Rapid Detection of Pneumothorax by Ultrasonography in Patients with Multiple Trauma
  publication-title: Crit. Care
  doi: 10.1186/cc5004
– volume: 5
  start-page: 253
  year: 2010
  ident: ref_23
  article-title: Detection of Spontaneous Pneumothorax with Chest Ultrasound in the Emergency Department
  publication-title: Intern. Emerg. Med.
  doi: 10.1007/s11739-010-0347-z
– volume: 141
  start-page: 703
  year: 2012
  ident: ref_6
  article-title: Test Characteristics of Ultrasonography for the Detection of Pneumothorax: A Systematic Review and Meta-Analysis
  publication-title: Chest
  doi: 10.1378/chest.11-0131
– volume: 136
  start-page: 104742
  year: 2021
  ident: ref_33
  article-title: Deep Learning and Lung Ultrasound for COVID-19 Pneumonia Detection and Severity Classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104742
– ident: ref_2
– volume: 153
  start-page: 689
  year: 2018
  ident: ref_35
  article-title: The Use of M-Mode Ultrasonography to Differentiate the Causes of B Lines
  publication-title: Chest
  doi: 10.1016/j.chest.2017.10.019
– volume: 8
  start-page: 409
  year: 2017
  ident: ref_12
  article-title: Lung Cancer Detection and Classification with 3D Convolutional Neural Network (3D-CNN)
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 62
  start-page: 7714
  year: 2017
  ident: ref_13
  article-title: A Deep Learning Framework for Supporting the Classification of Breast Lesions in Ultrasound Images
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa82ec
– ident: ref_31
  doi: 10.3390/app11020672
– volume: 30
  start-page: 593
  year: 2005
  ident: ref_18
  article-title: Ultrasound Phantom for Hands-on Practice
  publication-title: Reg. Anesth. Pain Med.
  doi: 10.1016/j.rapm.2005.08.007
– volume: 9
  start-page: 676
  year: 2012
  ident: ref_26
  article-title: Fiji: An Open-Source Platform for Biological-Image Analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 12
  start-page: 8427
  year: 2022
  ident: ref_27
  article-title: An Image Classification Deep-Learning Algorithm for Shrapnel Detection from Ultrasound Images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-12367-2
– volume: 13
  start-page: 29
  year: 2014
  ident: ref_7
  article-title: Diagnostic Accuracy of Chest Ultrasonography versus Chest Radiography for Identification of Pneumothorax: A Systematic Review and Meta-Analysis
  publication-title: Tanaffos
– ident: ref_43
– volume: 22
  start-page: 891
  year: 2021
  ident: ref_21
  article-title: A Comparison of Homemade Vascular Access Ultrasound Phantom Models for Peripheral Intravenous Catheter Insertion
  publication-title: J. Vasc. Access
  doi: 10.1177/1129729820961941
– volume: 5
  start-page: 76
  year: 2012
  ident: ref_29
  article-title: Sonographic Diagnosis of Pneumothorax
  publication-title: J. Emerg. Trauma Shock
  doi: 10.4103/0974-2700.93116
– ident: ref_22
– volume: 35
  start-page: 310
  year: 2021
  ident: ref_36
  article-title: Tracheal, Lung, and Diaphragmatic Applications of M-Mode Ultrasonography in Anesthesiology and Critical Care
  publication-title: J. Cardiothorac. Vasc. Anesth.
  doi: 10.1053/j.jvca.2019.11.051
– volume: 29
  start-page: 738
  year: 2012
  ident: ref_19
  article-title: Homemade Ultrasound Phantom for Teaching Identification of Superficial Soft Tissue Abscess
  publication-title: Emerg. Med. J.
  doi: 10.1136/emermed-2011-200264
SSID ssj0001920199
Score 2.2994754
Snippet Ultrasound (US) imaging is a critical tool in emergency and military medicine because of its portability and immediate nature. However, proper image...
SourceID doaj
pubmedcentral
osti
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 249
SubjectTerms Algorithms
Artificial intelligence
automation
Classification
Datasets
Deep learning
Emergency medical care
Emergency medical services
Gelatin
Image acquisition
Image analysis
Image classification
Lungs
Machine learning
model development
Pneumothorax
porcine
Respiration
Shrapnel
Swine
Three dimensional printing
tissue phantom
Training
Trouble shooting
Troubleshooting
Ultrasonic imaging
ultrasound
X-rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC5k8aAH8YnZXaUFD17i5tXp7uP6WBRkGXBW9hb6lZ1ZZjLLJCP6C_zbVnWyQyKIFw8hkO6ETqoqVR-pfB_Aa8wJmBVrjO9Ck4RZXcSSWxMnwlAGSngd_pD79kWcn8vLSzUbSX1RT1hPD9w_uBNnVJkpx3OXuUJ4bbTxOvGFq7krfCD8zBKhRmDquq9bcFM9l0-OuP7kerkOsj-SGhGJOXOUhgJbP-42GFWTSnPaJzlKPGcP4cFQMbLTfqWP4I5vHsP9EY_gE_g1H4Qe2MUKL9GSVBL7jCvxLIheUjtQsAD74P1NPHCqXrHT1dVmu-wW65Zh7cpmjd-R5dArfuDMLnRpNSx0FTDNvv5ssFrEVbB5sBabLUiBeM2wkiUC8V37FC7OPs7ff4oHhYXYFirtYlunmoo27hU3pclNrYROLQ66OtfSqlJ6YWVWCC2EkImXztjEJ04hyjDK58_goNk0_jkwBGJ4mijT0mCR4nOEUY4U8hDiEK9THsHb2wde2YF-nFQwVhXCELJQ9YeFInizP-GmZ974-9R3ZMH9NKLMDgfQkarBkap_OVIER2T_CisPos-11GdkuyqVslSCR3B86xbVEOVtlSHY5PgSS4oIXu2HMT7po4tu_GbXz1EkMS8jEBN3mix3OtIsF4HpW3GEyEod_o_7O4J7Gf26QfIX6TEcdNudfwF37fdu2W5fhvD5De_sJpc
  priority: 102
  providerName: Directory of Open Access Journals
Title Training Ultrasound Image Classification Deep-Learning Algorithms for Pneumothorax Detection Using a Synthetic Tissue Phantom Apparatus
URI https://www.proquest.com/docview/2716553104
https://www.proquest.com/docview/2716943898
https://www.osti.gov/biblio/1886975
https://pubmed.ncbi.nlm.nih.gov/PMC9502699
https://doaj.org/article/db9629d53d2d47eababea0e4df5d4e19
Volume 8
WOSCitedRecordID wos000856388900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: P5Z
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: BENPR
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: PIMPY
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYXQ5w4L2i7FIZiQOXsHnbPqFd2BUrQRVBFxUuUfxIW9QmpUkR_AL-NjOu222Q4MIpUmwnjmbGM-OMv4-Q5-ATwCuWYN9xgRRmZezxREnPZxI9kJ-U9oTcp3dsMOCjkcjchlvjyio3a6JdqHWtcI_8JITAPgGF8eNXi28eskbh31VHobFHDhAlAakbsuTL9R6LAPcmxBrRJ4Ls_uTrdG7JfziWIyJ-5o4zspj9cKnBtjrxZrdacsf9XNz934nfI3dc4ElP15pyn9ww1QNyeweO8CH5NXR8EfRqBnNokHGJXsKnGGq5M7GqyAqSvjFm4Tlo1jE9nY3hhe1k3lAIgWlWmRUqACjXD-jZ2mKvitriBFrQjz8rCDphFnRohU6zCRIZzykExIhDvmoekauL8-Hrt54javBULILWU2VQYOyXGJHIVEayFKwIFDTqMiq4Eik3TPEwZgVjjPuGa6l842sByYoUJjok-1VdmceEQj4Hw1gapBJiHRNBNqaRaA8yJYSHinrk5UZiuXIo5kimMcshm0ER53-IuEdebAcs1gAef-96hiqw7YbI2_ZGvRznzpBzLUUaCp1EOtQxM4UspCl8E-sy0bEJ4CFHqEA5BDCIwquwXEm1ecB5KljSI8cbJcndYtHk1xrSI8-2zWDm-O-mqEy9WvcRyFTPe4R19LEz3W5LNZ1YwHCRQKYtxJN_v_yI3ArxbAfyYwTHZL9drsxTclN9b6fNsk_22Ij3ycHZ-SD70LdbF31rbXAvu3yfff4NRA831g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKRKw4I0ILTBIILEx9Xs8C4QKpWrUNIpEisrKeB5OghInxA7QL-Bv-EbunThpggS7LlhFyowde3Lu3DP2nXMAnmNOwKyYY3yHGVmY5aGTREo6LpeUgdwotzvkPrZ5p5OcnYnuFvxa7oWhssrlnGgnaj1R9Ix8z0diHyFg3PDN9KtDrlH0dnVpobGAxbE5_45LtvJ16wD_3xe-f_i-9-7IqV0FHBUKr3JU7mVEVCIjIhnLQOaCZ57CRp0HWaJEnBiuEj_kGec8cU2ipXKNqwUyaylMgOe9Atshgb0B293WSffTxVMdgQlViIWGUBAId-_LcGzthhIqgCTFzrX0Z10C8GOC0bzBcDfrM9cS3uGt_22obsPNmlqz_UUs3IEtU9yFG2uCi_fgZ692xGCnI7znkjylWAuHzjDrDkp1Uxaq7MCYqVOLz_bZ_qiPN1gNxiVDks-6hZkTxDF8fmDPypazFcyWX7CMfTgvkFbjVbCehTXrDsiqecyQ8pPS-ry8D6eXMhIPoFFMCvMQGK5Y8TAee7FENmcCXG9qshLEtSAJYAVNeLVESKpqnXayCxmluF4jSKV_QKoJL1cHTBcSJX_v-pYgt-pG2uL2i8msn9ZTVaqliH2ho0D7OuQmk5k0mWtCnUc6NB6eZIcAmyJFI51hRQVZqkq9JIkFj5qwuwRlWk-HZXqByCY8WzXjREZvp7LCTOaLPiJE_pw0gW_gf-NyN1uK4cBKoovI9WMhHv37x5_CtaPeSTtttzrHO3Ddp50s5Abi7UKjms3NY7iqvlXDcvakjmsGny87Pn4D83qSNA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB2VghBd8EYNLTBIILEx8XtmFggVQkTUKopEiio2xvNwEpQ4IXaAfgH_xNdx78ROYyTYdcEqUmbs2JNzX_adcwh5BjEBomIG9h2mKGGWhQ6PlHRcJjECuVFmd8h9PGH9Pj87E4Md8qveC4NtlbVPtI5azxU-I2_7kNhHABg3bGdVW8Sg0329-OqgghS-aa3lNNYQOTbn36F8K171OvBfP_f97rvh2_dOpTDgqFB4paMyL8WkJTIikrEMZCZY6ikY1FmQciVibpjifshSxhh3DddSucbVArJsKUwA571CrjKoMbGdcBB9uni-IyC0CrFmEwoC4ba_TGZWeIhjKyRyd24FQqsXAB9zsOtGrtvs1NwKfd1b__Oi3SY3q4SbHq0t5A7ZMfldsrdFw3iP_BxWOhn0dAr3X6DSFO3BMhpqNUOxm8oCmHaMWTgVJe2IHk1HcIPleFZQSP3pIDcrBD4Y1Q-YWdomt5zapgya0g_nOSTbcBV0aMFOB2MUcJ5RKASQf31V3Cenl7ISD8huPs_NPqFQx8JhLPZiCTmeCaAK1SgwCBUi0mIFLfKyRkuiKvZ2FBGZJlDFIbySP-DVIi82ByzWxCV_n_oG4beZhozj9ov5cpRUDizRUsS-0FGgfR0yk8pUmtQ1oc4iHRoPTnKA4E0gcUP2YYVtWqpMPM5jwaIWOawBmlROskgu0NkiTzfD4N7wnVWam_lqPUeEkFXzFmENW2hcbnMkn4wtUbqIXD8W4uG_f_wJuQ5GkZz0-scH5IaP21tQIsQ7JLvlcmUekWvqWzkplo-tgVPy-bKN4zf87JmX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+Ultrasound+Image+Classification+Deep-Learning+Algorithms+for+Pneumothorax+Detection+Using+a+Synthetic+Tissue+Phantom+Apparatus&rft.jtitle=Journal+of+imaging&rft.au=Boice%2C+Emily+N&rft.au=Hernandez+Torres%2C+Sofia+I&rft.au=Knowlton%2C+Zechariah+J&rft.au=Berard%2C+David&rft.date=2022-09-11&rft.pub=MDPI+AG&rft.eissn=2313-433X&rft.volume=8&rft.issue=9&rft.spage=249&rft_id=info:doi/10.3390%2Fjimaging8090249&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon