Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements
Methods for the estimation of forest growing stock volume (GSV) are a major topic of investigation in the remote sensing community. The boreal zone contains almost 30% of global forest by area but measurements of forest resources are often outdated. Although past and current spaceborne synthetic ape...
Uložené v:
| Vydané v: | Remote sensing of environment Ročník 115; číslo 2; s. 490 - 507 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
Elsevier Inc
15.02.2011
Elsevier |
| Predmet: | |
| ISSN: | 0034-4257, 1879-0704 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Methods for the estimation of forest growing stock volume (GSV) are a major topic of investigation in the remote sensing community. The boreal zone contains almost 30% of global forest by area but measurements of forest resources are often outdated. Although past and current spaceborne synthetic aperture radar (SAR) backscatter data are not optimal for forest-related studies, a multi-temporal combination of individual GSV estimates can improve the retrieval as compared to the single-image case. This feature has been included in a novel GSV retrieval approach, hereafter referred to as the BIOMASAR algorithm. One innovative aspect of the algorithm is its independence from
in situ measurements for model training. Model parameter estimates are obtained from central tendency statistics of the backscatter measurements for unvegetated and dense forest areas, which can be selected by means of a continuous tree canopy cover product, such as the MODIS Vegetation Continuous Fields product. In this paper, the performance of the algorithm has been evaluated using hyper-temporal series of C-band Envisat Advanced SAR (ASAR) images acquired in ScanSAR mode at 100
m and 1
km pixel size. To assess the robustness of the retrieval approach, study areas in Central Siberia (Russia), Sweden and Québec (Canada) have been considered. The algorithm validation activities demonstrated that the automatic approach implemented in the BIOMASAR algorithm performed similarly to traditional approaches based on
in situ data. The retrieved GSV showed no saturation up to 300
m
3/ha, which represented almost the entire range of GSV at the study areas. The relative root mean square error (RMSE) was between 34.2% and 48.1% at 1
km pixel size. Larger errors were obtained at 100
m because of local errors in the reference datasets. Averaging GSV estimates over neighboring pixels improved the retrieval statistics substantially. For an aggregation factor of 10
×
10
pixels, the relative RMSE was below 25%, regardless of the original resolution of the SAR data. |
|---|---|
| AbstractList | Methods for the estimation of forest growing stock volume (GSV) are a major topic of investigation in the remote sensing community. The boreal zone contains almost 30% of global forest by area but measurements of forest resources are often outdated. Although past and current spaceborne synthetic aperture radar (SAR) backscatter data are not optimal for forest-related studies, a multi-temporal combination of individual GSV estimates can improve the retrieval as compared to the single-image case. This feature has been included in a novel GSV retrieval approach, hereafter referred to as the BIOMASAR algorithm. One innovative aspect of the algorithm is its independence from
in situ measurements for model training. Model parameter estimates are obtained from central tendency statistics of the backscatter measurements for unvegetated and dense forest areas, which can be selected by means of a continuous tree canopy cover product, such as the MODIS Vegetation Continuous Fields product. In this paper, the performance of the algorithm has been evaluated using hyper-temporal series of C-band Envisat Advanced SAR (ASAR) images acquired in ScanSAR mode at 100
m and 1
km pixel size. To assess the robustness of the retrieval approach, study areas in Central Siberia (Russia), Sweden and Québec (Canada) have been considered. The algorithm validation activities demonstrated that the automatic approach implemented in the BIOMASAR algorithm performed similarly to traditional approaches based on
in situ data. The retrieved GSV showed no saturation up to 300
m
3/ha, which represented almost the entire range of GSV at the study areas. The relative root mean square error (RMSE) was between 34.2% and 48.1% at 1
km pixel size. Larger errors were obtained at 100
m because of local errors in the reference datasets. Averaging GSV estimates over neighboring pixels improved the retrieval statistics substantially. For an aggregation factor of 10
×
10
pixels, the relative RMSE was below 25%, regardless of the original resolution of the SAR data. Methods for the estimation of forest growing stock volume (GSV) are a major topic of investigation in the remote sensing community. The boreal zone contains almost 30% of global forest by area but measurements of forest resources are often outdated. Although past and current spaceborne synthetic aperture radar (SAR) backscatter data are not optimal for forest-related studies, a multi-temporal combination of individual GSV estimates can improve the retrieval as compared to the single-image case. This feature has been included in a novel GSV retrieval approach, hereafter referred to as the BIOMASAR algorithm. One innovative aspect of the algorithm is its independence from in situ measurements for model training. Model parameter estimates are obtained from central tendency statistics of the backscatter measurements for unvegetated and dense forest areas, which can be selected by means of a continuous tree canopy cover product, such as the MODIS Vegetation Continuous Fields product. In this paper, the performance of the algorithm has been evaluated using hyper-temporal series of C-band Envisat Advanced SAR (ASAR) images acquired in ScanSAR mode at 100m and 1km pixel size. To assess the robustness of the retrieval approach, study areas in Central Siberia (Russia), Sweden and Québec (Canada) have been considered. The algorithm validation activities demonstrated that the automatic approach implemented in the BIOMASAR algorithm performed similarly to traditional approaches based on in situ data. The retrieved GSV showed no saturation up to 300m³/ha, which represented almost the entire range of GSV at the study areas. The relative root mean square error (RMSE) was between 34.2% and 48.1% at 1km pixel size. Larger errors were obtained at 100m because of local errors in the reference datasets. Averaging GSV estimates over neighboring pixels improved the retrieval statistics substantially. For an aggregation factor of 10×10pixels, the relative RMSE was below 25%, regardless of the original resolution of the SAR data. Methods for the estimation of forest growing stock volume (GSV) are a major topic of investigation in the remote sensing community. The boreal zone contains almost 30% of global forest by area but measurements of forest resources are often outdated. Although past and current spaceborne synthetic aperture radar (SAR) backscatter data are not optimal for forest-related studies, a multi-temporal combination of individual GSV estimates can improve the retrieval as compared to the single-image case. This feature has been included in a novel GSV retrieval approach, hereafter referred to as the BIOMASAR algorithm. One innovative aspect of the algorithm is its independence from in situ measurements for model training. Model parameter estimates are obtained from central tendency statistics of the backscatter measurements for unvegetated and dense forest areas, which can be selected by means of a continuous tree canopy cover product, such as the MODIS Vegetation Continuous Fields product. In this paper, the performance of the algorithm has been evaluated using hyper-temporal series of C-band Envisat Advanced SAR (ASAR) images acquired in ScanSAR mode at 100m and 1km pixel size. To assess the robustness of the retrieval approach, study areas in Central Siberia (Russia), Sweden and Quebec (Canada) have been considered. The algorithm validation activities demonstrated that the automatic approach implemented in the BIOMASAR algorithm performed similarly to traditional approaches based on in situ data. The retrieved GSV showed no saturation up to 300m3/ha, which represented almost the entire range of GSV at the study areas. The relative root mean square error (RMSE) was between 34.2% and 48.1% at 1km pixel size. Larger errors were obtained at 100m because of local errors in the reference datasets. Averaging GSV estimates over neighboring pixels improved the retrieval statistics substantially. For an aggregation factor of 10A-10pixels, the relative RMSE was below 25%, regardless of the original resolution of the SAR data. |
| Author | Cartus, Oliver Wegmüller, Urs Santoro, Maurizio Wiesmann, Andreas Beer, Christian Schmullius, Christiane McCallum, Ian Shvidenko, Anatoly |
| Author_xml | – sequence: 1 givenname: Maurizio surname: Santoro fullname: Santoro, Maurizio email: santoro@gamma-rs.ch organization: Gamma Remote Sensing, CH-3073 Gümligen, Switzerland – sequence: 2 givenname: Christian surname: Beer fullname: Beer, Christian organization: Max-Planck Institute for Biogeochemistry, D-07745 Jena, Germany – sequence: 3 givenname: Oliver surname: Cartus fullname: Cartus, Oliver organization: Department of Earth Observation, Friedrich-Schiller University, D-07743 Jena, Germany – sequence: 4 givenname: Christiane surname: Schmullius fullname: Schmullius, Christiane organization: Department of Earth Observation, Friedrich-Schiller University, D-07743 Jena, Germany – sequence: 5 givenname: Anatoly surname: Shvidenko fullname: Shvidenko, Anatoly organization: International Institute of Applied Systems Analysis, A-2361 Laxenburg, Austria – sequence: 6 givenname: Ian surname: McCallum fullname: McCallum, Ian organization: International Institute of Applied Systems Analysis, A-2361 Laxenburg, Austria – sequence: 7 givenname: Urs surname: Wegmüller fullname: Wegmüller, Urs organization: Gamma Remote Sensing, CH-3073 Gümligen, Switzerland – sequence: 8 givenname: Andreas surname: Wiesmann fullname: Wiesmann, Andreas organization: Gamma Remote Sensing, CH-3073 Gümligen, Switzerland |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23807342$$DView record in Pascal Francis |
| BookMark | eNqNkU9v1DAQxS1UJLaFD8DNFwSXLLbjxI44raryR6qE1MLZcryT4m1iLx5nq5746jhsuXBYcXqa8e89yfPOyVmIAQh5zdmaM96-360TwlqwMrNuzbh-RlZcq65iiskzsmKslpUUjXpBzhF3jPFGK74iv24gJw8HO9I40LsUH3y4o5iju6eHOM4TUB9oHxMUYiiCmc64MD8e95CqDNM-pvKGUGJwCbkKB482083t5obeOhsW7a27R2dzhkQnsDgnmCBkfEmeD3ZEePWkF-T7x6tvl5-r66-fvlxurisnO54rp3qmW64H20imYcvaHqxUfe8cNIOwyg6idZ3jZS9bK_pOctVoUI0r2LavL8jbY-4-xZ9z-YWZPDoYRxsgzmh00yotuqYr5LuTJG91q-padP-DKt4IWf9B3zyhtpxhHJINzqPZJz_Z9GhErZmqpSicOnIuRcQEg3E-2-xjyMn60XBmlr7NzpS-zdK3YZ0pfRcn_8f5N_yU58PRA-X0Bw_JoPMQHGx9ApfNNvoT7t8a18b1 |
| CODEN | RSEEA7 |
| CitedBy_id | crossref_primary_10_3390_rs71215874 crossref_primary_10_3390_rs8080661 crossref_primary_10_1016_j_rse_2019_03_032 crossref_primary_10_3390_rs5115574 crossref_primary_10_1016_j_jag_2020_102275 crossref_primary_10_1016_j_asr_2015_11_010 crossref_primary_10_3390_rs10081277 crossref_primary_10_1590_1519_6984_256425 crossref_primary_10_1016_j_rse_2014_01_024 crossref_primary_10_1016_j_rse_2013_07_036 crossref_primary_10_3390_s20143957 crossref_primary_10_3390_rs8070609 crossref_primary_10_3390_rs8070565 crossref_primary_10_3390_rs15010005 crossref_primary_10_1016_j_rsase_2018_04_007 crossref_primary_10_1016_j_rse_2012_05_029 crossref_primary_10_1016_j_rse_2017_03_016 crossref_primary_10_1016_j_rse_2019_111496 crossref_primary_10_1088_1748_9326_acfb22 crossref_primary_10_1007_s40725_024_00242_4 crossref_primary_10_1155_2020_8196081 crossref_primary_10_3390_rs10040608 crossref_primary_10_1111_gcb_13660 crossref_primary_10_1080_10095020_2024_2311867 crossref_primary_10_1016_j_rse_2022_113114 crossref_primary_10_1080_01431161_2018_1479788 crossref_primary_10_1016_j_rsase_2017_07_010 crossref_primary_10_3390_rs4113320 crossref_primary_10_1109_TGRS_2016_2575542 crossref_primary_10_1016_j_rse_2022_112917 crossref_primary_10_3390_rs13112075 crossref_primary_10_5194_gmd_11_121_2018 crossref_primary_10_1109_TGRS_2013_2283521 crossref_primary_10_1002_2016GL068794 crossref_primary_10_1016_j_rse_2011_09_028 crossref_primary_10_3390_f14122303 crossref_primary_10_1016_j_foreco_2017_11_047 crossref_primary_10_1016_j_agwat_2024_108704 crossref_primary_10_1016_j_rse_2013_06_012 crossref_primary_10_3390_jimaging2010001 crossref_primary_10_1109_TGRS_2021_3109695 crossref_primary_10_3390_rs14215560 crossref_primary_10_1016_j_srs_2025_100250 crossref_primary_10_1080_01431161_2018_1523588 crossref_primary_10_3390_f6010252 crossref_primary_10_1109_JSTARS_2018_2851030 crossref_primary_10_3390_f14091700 crossref_primary_10_1109_JSTARS_2019_2957549 crossref_primary_10_1016_j_rse_2013_06_019 crossref_primary_10_3390_f16081280 crossref_primary_10_1007_s40725_015_0021_9 crossref_primary_10_1016_j_rse_2015_02_011 crossref_primary_10_5194_bg_14_3401_2017 crossref_primary_10_1016_j_jag_2018_12_008 crossref_primary_10_3390_rs15112848 crossref_primary_10_3390_f5081999 crossref_primary_10_3390_rs11161872 crossref_primary_10_1007_s12524_024_01836_y crossref_primary_10_1080_22797254_2024_2438638 crossref_primary_10_1016_j_rse_2013_08_012 crossref_primary_10_3390_rs10101550 crossref_primary_10_5194_bg_13_2061_2016 crossref_primary_10_1007_s12076_024_00395_7 crossref_primary_10_3390_rs8120979 crossref_primary_10_1109_TGRS_2013_2295594 crossref_primary_10_5194_bg_22_4291_2025 crossref_primary_10_1016_j_isprsjprs_2012_02_009 crossref_primary_10_1016_j_rse_2016_06_004 crossref_primary_10_1016_j_rse_2019_111313 crossref_primary_10_3390_rs11131563 crossref_primary_10_1016_j_rse_2017_12_030 crossref_primary_10_3390_rs4113544 crossref_primary_10_17221_28_2020_JFS crossref_primary_10_3390_rs13214483 crossref_primary_10_3390_rs14215302 crossref_primary_10_1016_j_rse_2015_07_005 crossref_primary_10_1016_j_rse_2025_114879 crossref_primary_10_3390_rs13152993 crossref_primary_10_1080_01431161_2024_2302952 crossref_primary_10_1109_JSTARS_2015_2487503 crossref_primary_10_1080_2150704X_2013_810350 crossref_primary_10_3390_rs10071151 crossref_primary_10_1088_1748_9326_ac6b47 crossref_primary_10_1109_TGRS_2014_2319853 crossref_primary_10_1016_j_pce_2015_09_003 crossref_primary_10_1016_j_foreco_2016_12_020 crossref_primary_10_1109_JSTARS_2013_2289301 crossref_primary_10_3390_rs70404290 crossref_primary_10_1109_JSTARS_2023_3271186 crossref_primary_10_5194_bg_13_5453_2016 crossref_primary_10_1016_j_rse_2017_05_003 crossref_primary_10_1038_s41598_018_29227_7 crossref_primary_10_1016_j_jclepro_2021_127496 crossref_primary_10_3390_rs6065559 crossref_primary_10_1007_s13595_015_0463_z crossref_primary_10_1109_TGRS_2015_2513159 crossref_primary_10_1080_01431161_2015_1070316 crossref_primary_10_3390_rs12091450 crossref_primary_10_1016_j_rse_2017_05_010 crossref_primary_10_3389_feart_2021_752254 crossref_primary_10_3390_rs5094503 crossref_primary_10_1038_s41597_024_03930_9 crossref_primary_10_4102_koedoe_v62i1_1621 crossref_primary_10_1007_s10712_019_09506_2 crossref_primary_10_3390_rs70404442 crossref_primary_10_1007_s12524_020_01298_y crossref_primary_10_5589_m13_031 crossref_primary_10_3390_rs13030337 crossref_primary_10_1016_j_rse_2020_112235 crossref_primary_10_3390_rs11141695 crossref_primary_10_1080_01431161_2024_2347524 crossref_primary_10_1016_j_jag_2016_06_004 crossref_primary_10_3390_rs14215487 crossref_primary_10_1111_geb_12125 crossref_primary_10_3390_rs11192287 crossref_primary_10_3390_rs15143489 crossref_primary_10_1016_j_ecoinf_2025_102997 crossref_primary_10_1016_j_rse_2014_12_012 crossref_primary_10_3390_f16081249 crossref_primary_10_1007_s40725_017_0052_5 crossref_primary_10_1016_j_rse_2018_07_032 crossref_primary_10_3390_rs71115082 crossref_primary_10_1016_j_rse_2015_06_013 crossref_primary_10_3390_f12070944 crossref_primary_10_3390_rs12203397 crossref_primary_10_3390_f9060312 crossref_primary_10_3390_rs12060985 crossref_primary_10_1109_JSTARS_2020_2987951 crossref_primary_10_3390_rs15112821 crossref_primary_10_3390_rs12020240 crossref_primary_10_1016_j_rse_2013_07_011 crossref_primary_10_1016_j_rse_2015_10_031 crossref_primary_10_1016_j_rse_2015_10_030 crossref_primary_10_1109_JSTARS_2024_3386787 crossref_primary_10_1109_LGRS_2014_2361393 crossref_primary_10_3390_f5071753 crossref_primary_10_1016_j_rse_2019_01_019 crossref_primary_10_5194_essd_13_3927_2021 crossref_primary_10_1016_j_jag_2021_102326 crossref_primary_10_3390_rs13173468 crossref_primary_10_1186_s13021_018_0093_5 crossref_primary_10_3390_rs16214079 crossref_primary_10_1016_j_rse_2019_111515 crossref_primary_10_1029_2021EF002123 crossref_primary_10_1016_j_rse_2025_114601 crossref_primary_10_3390_f15040731 |
| Cites_doi | 10.1080/01431169308953999 10.1080/01431160121407 10.1109/36.752211 10.1016/j.rse.2006.08.004 10.1016/j.ecolmodel.2006.12.040 10.1109/36.312903 10.1109/36.536527 10.1109/TGRS.2009.2023906 10.1109/36.739154 10.1016/S0034-4257(01)00329-7 10.1080/01431160600646037 10.1109/36.499781 10.1016/S0034-4257(02)00080-9 10.1080/01431160110076199 10.1111/j.1365-2486.2010.02173.x 10.14214/sf.244 10.1016/j.rse.2006.05.025 10.1093/forestscience/49.1.12 10.3832/ifor0463-0010107 10.1109/36.134090 10.1109/TGRS.1995.8746034 10.1109/36.823949 10.1109/36.843016 10.5589/m02-067 10.1016/0034-4257(94)90056-6 10.1080/01431169508954415 10.1016/0034-4257(95)00127-1 10.1016/S0168-1923(99)00112-4 10.1016/0034-4257(94)90051-5 10.1214/aos/1176346577 10.1016/S0378-1127(99)00278-9 10.1111/j.1365-2486.2004.00891.x 10.1080/014311699213640 10.1016/S0168-1923(99)00111-2 10.1579/0044-7447-32.8.542 10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2 10.1109/36.551931 10.1109/36.964973 10.1016/S0034-4257(96)00155-1 10.1016/S0924-2716(02)00124-7 10.1029/2006GL026919 10.1109/36.312892 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SU 8FD C1K FR3 H8D KR7 L7M 7S9 L.6 7SN 7ST SOI |
| DOI | 10.1016/j.rse.2010.09.018 |
| DatabaseName | CrossRef Pascal-Francis Environmental Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic Ecology Abstracts Environment Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Environmental Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic Ecology Abstracts Environment Abstracts |
| DatabaseTitleList | AGRICOLA Ecology Abstracts Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences Statistics |
| EISSN | 1879-0704 |
| EndPage | 507 |
| ExternalDocumentID | 23807342 10_1016_j_rse_2010_09_018 S0034425710002919 |
| GeographicLocations | Canada Russian Federation Sweden Eurasia Europe Quebec Siberia Scandinavia Eastern Canada Russia, Siberia Canada, Quebec |
| GeographicLocations_xml | – name: Quebec – name: Siberia – name: Sweden – name: Canada, Quebec – name: Russia, Siberia |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV IQODW SSH 7SU 8FD C1K FR3 H8D KR7 L7M 7S9 L.6 7SN 7ST SOI |
| ID | FETCH-LOGICAL-c491t-c7b08618fa5408ed06bea47bbcce5f2a7af26c9c16be46a2b941758e75ca47db3 |
| ISICitedReferencesCount | 176 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286782500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0034-4257 |
| IngestDate | Tue Oct 07 07:52:05 EDT 2025 Sat Sep 27 20:56:50 EDT 2025 Tue Oct 07 10:11:07 EDT 2025 Mon Jul 21 09:16:18 EDT 2025 Tue Nov 18 22:01:37 EST 2025 Sat Nov 29 07:28:27 EST 2025 Fri Feb 23 02:25:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Envisat ASAR MODIS Vegetation Continuous Fields Boreal forest BIOMASAR algorithm ScanSAR Water–Cloud model Growing stock volume Backscatter algorithms data Forest resource global Image North America Modeling stocks currents Innovation Synthetic aperture radar news models Water-Cloud model Estimation Independence remote sensing utilization Method Measurement in situ Optimum volume Individual boreal zone Multidate observation Community |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c491t-c7b08618fa5408ed06bea47bbcce5f2a7af26c9c16be46a2b941758e75ca47db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1671524399 |
| PQPubID | 23500 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_856782959 proquest_miscellaneous_1686733299 proquest_miscellaneous_1671524399 pascalfrancis_primary_23807342 crossref_citationtrail_10_1016_j_rse_2010_09_018 crossref_primary_10_1016_j_rse_2010_09_018 elsevier_sciencedirect_doi_10_1016_j_rse_2010_09_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-02-15 |
| PublicationDateYYYYMMDD | 2011-02-15 |
| PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2011 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | FFSR (bb0050) 1995 Dobson, Ulaby, Le Toan, Beaudoin, Kasichke, Christensen (bb0040) 1992; 30 Santoro, Eriksson, Askne, Schmullius (bb0205) 2006; 27 Oliver, Quegan (bb0140) 1998 Baker, Luckman (bb0010) 1999; 98–99 Pulliainen, Mikkelä, Hallikainen, Ikonen (bb0160) 1996; 34 Pulliainen, Kurvonen, Hallikainen (bb0155) 1999; 37 Hansen, De Fries, Townshend, Carroll, Dimiceli, Sohlberg (bb0070) 2003; 7 Imhoff (bb0100) 1995; 33 Wang, Davis, Melack, Kasischke, Christensen (bb0250) 1995; 16 Askne, Dammert, Ulander, Smith (bb0005) 1997; 35 Santoro, Askne, Smith, Fransson (bb0195) 2002; 81 Santoro, Cartus (bb0200) 2010 Shvidenko, Shepashenko, Nilsson (bb0225) 2008 Harrell, Bourgeau-Chavez, Kasischke, French, Christensen (bb0080) 1995; 54 Fransson, Israelsson (bb0055) 1999; 20 Rignot, Way, Williams, Viereck (bb0190) 1994; 32 Guindon, Beaudoin, Leboeuf, Ung, Luther, Côté (bb0060) 2005; 2 Somogyi, Teobaldelli, Federici, Matteucci, Pagliari, Grassi (bb0240) 2008 Balzter, Talmon, Wagner, Gaveau, Plummer, Yu (bb0020) 2002; 28 Beer, Lucht, Schmullius, Shvidenko (bb0025) 2006; 33 Shvidenko, Shepashenko, Nilsson, Bouloui (bb0235) 2008 Santoro, Fransson, Eriksson, Magnusson, Ulander, Olsson (bb0210) 2009; 47 Schmullius, Baker, Balzter, Davidson, Eriksson, Gaveau (bb0220) 2001 Jenkins, Chojnacky, Heath, Birdsey (bb0105) 2003; 49 Rignot, Way, McDonald, Viereck, Williams, Adams (bb0185) 1994; 49 Harrell, Kasischke, Bourgeau-Chavez, Haney, Christensen (bb0085) 1997; 59 Wang, Kasischke, Melack, Davis, Christensen (bb0255) 1994; 49 Kindermann, McCallum, Fritz, Obersteiner (bb0110) 2008; 42 Lopes, Nezry, Touzi, Laur (bb0135) 1993; 14 Reese, Nilsson, Granqvist Pahlén, Hagner, Joyce, Tingelöf (bb0180) 2003; 32 Ranson, Sun (bb0175) 2000; 38 Quegan, Yu (bb0165) 2001; 39 Shvidenko, Shepashenko, Nilsson, Bouloui (bb0230) 2007; 204 Hartigan, Hartigan (bb0090) 1985; 13 Proisy, Mougin, Dufrêne, Le Dantec (bb0145) 2000; 38 Ulander (bb0245) 1996; 34 Pulliainen, Heiska, Hyyppä, Hallikainen (bb0150) 1994; 32 Santoro, Shvidenko, McCallum, Askne, Schmullius (bb0215) 2007; 106 Balzter, Baker, Hallikainen, Tomppo (bb0015) 2002; 23 Leboeuf, Beaudoin, Fournier, Guindon, Luther, Lambert (bb0120) 2007; 110 Häme, Salli, Lahti (bb0065) 1992 Kurvonen, Pulliainen, Hallikainen (bb0115) 1999; 37 Wegmüller, Werner, Strozzi, Wiesmann (bb0265) 2002 Wegmüller (bb0260) 1999 Rabus, Eineder, Roth, Bamler (bb0170) 2003; 57 Carvalhais, Reichstein, Ciais, Collatz, Mahecha, Montagnani (bb0030) 2010 Castel, Beaudoin, Stach, Stussi, Le Toan, Durand (bb0035) 2001; 22 Fazakas, Nilsson, Olsson (bb0045) 1999; 98–99 Hansen, DeFries, Townshend, Marufu, Sohlberg (bb0075) 2002; 83 Hyyppä, Hyyppä, Inkinen, Engdahl, Linko, Zhu (bb0095) 2000; 128 Loman (bb0125) 2006 Loman (bb0130) 2008 Williams, Schwarz, Law, Irvine, Kurpius (bb0270) 2005; 11 FFSR (10.1016/j.rse.2010.09.018_bb0050) 1995 Guindon (10.1016/j.rse.2010.09.018_bb0060) 2005; 2 Wegmüller (10.1016/j.rse.2010.09.018_bb0265) 2002 Rignot (10.1016/j.rse.2010.09.018_bb0185) 1994; 49 Beer (10.1016/j.rse.2010.09.018_bb0025) 2006; 33 Hansen (10.1016/j.rse.2010.09.018_bb0070) 2003; 7 Proisy (10.1016/j.rse.2010.09.018_bb0145) 2000; 38 Wang (10.1016/j.rse.2010.09.018_bb0255) 1994; 49 Dobson (10.1016/j.rse.2010.09.018_bb0040) 1992; 30 Imhoff (10.1016/j.rse.2010.09.018_bb0100) 1995; 33 Lopes (10.1016/j.rse.2010.09.018_bb0135) 1993; 14 Carvalhais (10.1016/j.rse.2010.09.018_bb0030) 2010 Fransson (10.1016/j.rse.2010.09.018_bb0055) 1999; 20 Castel (10.1016/j.rse.2010.09.018_bb0035) 2001; 22 Pulliainen (10.1016/j.rse.2010.09.018_bb0155) 1999; 37 Harrell (10.1016/j.rse.2010.09.018_bb0085) 1997; 59 Santoro (10.1016/j.rse.2010.09.018_bb0215) 2007; 106 Askne (10.1016/j.rse.2010.09.018_bb0005) 1997; 35 Santoro (10.1016/j.rse.2010.09.018_bb0200) 2010 Loman (10.1016/j.rse.2010.09.018_bb0130) 2008 Santoro (10.1016/j.rse.2010.09.018_bb0195) 2002; 81 Loman (10.1016/j.rse.2010.09.018_bb0125) 2006 Balzter (10.1016/j.rse.2010.09.018_bb0020) 2002; 28 Santoro (10.1016/j.rse.2010.09.018_bb0205) 2006; 27 Ulander (10.1016/j.rse.2010.09.018_bb0245) 1996; 34 Quegan (10.1016/j.rse.2010.09.018_bb0165) 2001; 39 Somogyi (10.1016/j.rse.2010.09.018_bb0240) 2008 Williams (10.1016/j.rse.2010.09.018_bb0270) 2005; 11 Pulliainen (10.1016/j.rse.2010.09.018_bb0150) 1994; 32 Shvidenko (10.1016/j.rse.2010.09.018_bb0225) 2008 Fazakas (10.1016/j.rse.2010.09.018_bb0045) 1999; 98–99 Shvidenko (10.1016/j.rse.2010.09.018_bb0230) 2007; 204 Hartigan (10.1016/j.rse.2010.09.018_bb0090) 1985; 13 Harrell (10.1016/j.rse.2010.09.018_bb0080) 1995; 54 Wang (10.1016/j.rse.2010.09.018_bb0250) 1995; 16 Rignot (10.1016/j.rse.2010.09.018_bb0190) 1994; 32 Hansen (10.1016/j.rse.2010.09.018_bb0075) 2002; 83 Balzter (10.1016/j.rse.2010.09.018_bb0015) 2002; 23 Hyyppä (10.1016/j.rse.2010.09.018_bb0095) 2000; 128 Baker (10.1016/j.rse.2010.09.018_bb0010) 1999; 98–99 Jenkins (10.1016/j.rse.2010.09.018_bb0105) 2003; 49 Reese (10.1016/j.rse.2010.09.018_bb0180) 2003; 32 Schmullius (10.1016/j.rse.2010.09.018_bb0220) 2001 Leboeuf (10.1016/j.rse.2010.09.018_bb0120) 2007; 110 Ranson (10.1016/j.rse.2010.09.018_bb0175) 2000; 38 Shvidenko (10.1016/j.rse.2010.09.018_bb0235) 2008 Häme (10.1016/j.rse.2010.09.018_bb0065) 1992 Kurvonen (10.1016/j.rse.2010.09.018_bb0115) 1999; 37 Santoro (10.1016/j.rse.2010.09.018_bb0210) 2009; 47 Rabus (10.1016/j.rse.2010.09.018_bb0170) 2003; 57 Kindermann (10.1016/j.rse.2010.09.018_bb0110) 2008; 42 Oliver (10.1016/j.rse.2010.09.018_bb0140) 1998 Wegmüller (10.1016/j.rse.2010.09.018_bb0260) 1999 Pulliainen (10.1016/j.rse.2010.09.018_bb0160) 1996; 34 |
| References_xml | – volume: 22 start-page: 2351 year: 2001 end-page: 2376 ident: bb0035 article-title: Sensitivity of space-borne SAR data to forest parameters over sloping terrain. Theory and experiment publication-title: International Journal of Remote Sensing – volume: 7 start-page: 1 year: 2003 end-page: 15 ident: bb0070 article-title: Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS Vegetation Continuous Field algorithm publication-title: Earth Interactions – volume: 38 start-page: 540 year: 2000 end-page: 552 ident: bb0145 article-title: Monitoring seasonal changes of a mixed temperate forest using ERS SAR observations publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 98–99 start-page: 389 year: 1999 end-page: 416 ident: bb0010 article-title: Microwave observations of boreal forests in the NOPEX area of Sweden and a comparison with observations of a temperate plantation in the United Kingdom publication-title: Agricultural and Forest Meteorology – start-page: 250 year: 1992 end-page: 255 ident: bb0065 article-title: Estimation of carbon storage in boreal forests using remote sensing data publication-title: Pilot study – volume: 49 start-page: 12 year: 2003 end-page: 35 ident: bb0105 article-title: National-scale biomass estimators for United States tree species publication-title: Forest Science – year: 2010 ident: bb0030 article-title: Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints publication-title: Global Change Biology – year: 2008 ident: bb0235 article-title: Tables and models of growth and biological productivity of forests of major forest forming species of Northern Eurasia (standard and reference data) – volume: 20 start-page: 123 year: 1999 end-page: 137 ident: bb0055 article-title: Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data publication-title: International Journal of Remote Sensing – volume: 33 start-page: L15403 year: 2006 ident: bb0025 article-title: Small net carbon dioxide uptake by Russian forests during 1981–1999 publication-title: Geophysical Research Letters – volume: 83 start-page: 320 year: 2002 end-page: 335 ident: bb0075 article-title: Development of a MODIS tree cover validation data set for Western Province, Zambia publication-title: Remote Sensing of Environment – volume: 57 start-page: 241 year: 2003 end-page: 262 ident: bb0170 article-title: The Shuttle Radar Topography Mission — A new class of digital elevation models acquired by spaceborne SAR publication-title: ISPRS Journal of Photogrammetry & Remote Sensing – volume: 98–99 start-page: 417 year: 1999 end-page: 425 ident: bb0045 article-title: Regional forest biomass and wood volume estimation using satellite data and ancillary data publication-title: Agricultural and Forest Meteorology – volume: 38 start-page: 1242 year: 2000 end-page: 1252 ident: bb0175 article-title: Effects of environmental conditions on boreal forest classification and biomass estimates with SAR publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 23 start-page: 3185 year: 2002 end-page: 3208 ident: bb0015 article-title: Retrieval of timber volume and snow water equivalent over a Finnish boreal forest from airborne polarimetric Synthetic Aperture Radar publication-title: International Journal of Remote Sensing – volume: 30 start-page: 412 year: 1992 end-page: 416 ident: bb0040 article-title: Dependence of radar backscatter on coniferous forest biomass publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 37 start-page: 927 year: 1999 end-page: 937 ident: bb0155 article-title: Multitemporal behavior of L- and C-band SAR observations of boreal forests publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 14 start-page: 1735 year: 1993 end-page: 1758 ident: bb0135 article-title: Structure detection and statistical adaptive speckle filtering in SAR images publication-title: International Journal of Remote Sensing – volume: 35 start-page: 25 year: 1997 end-page: 35 ident: bb0005 article-title: C-band repeat-pass interferometric SAR observations of the forest publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 34 start-page: 758 year: 1996 end-page: 770 ident: bb0160 article-title: Seasonal dynamics of C-band backscatter of boreal forests with applications to biomass and soil moisture estimation publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 42 start-page: 387 year: 2008 end-page: 396 ident: bb0110 article-title: A global forest growing stock, biomass and carbon map based on FAO statistics publication-title: Silva Fennica – volume: 49 start-page: 145 year: 1994 end-page: 154 ident: bb0185 article-title: Monitoring of environmental conditions in taiga forests using ERS-1 SAR publication-title: Remote Sensing of Environment – year: 2001 ident: bb0220 article-title: SIBERIA — SAR imaging for boreal ecology and radar interferometry applications publication-title: Final report, EC-Center for Earth Observation, project reports, contract no. ENV4-CT97-0743-SIBERIA – volume: 33 start-page: 511 year: 1995 end-page: 518 ident: bb0100 article-title: Radar backscatter and biomass saturation: ramifications for global biomass inventory publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 110 start-page: 488 year: 2007 end-page: 500 ident: bb0120 article-title: A shadow fraction method for mapping biomass of northern boreal black spruce forests using QuickBird imagery publication-title: Remote Sensing of Environment – year: 1995 ident: bb0050 article-title: Manual of forest inventory and planning in forest fund of Russia, part 1 – volume: 59 start-page: 223 year: 1997 end-page: 233 ident: bb0085 article-title: Evaluation of approaches to estimating aboveground biomass in southern pine forests using SIR-C data publication-title: Remote Sensing of Environment – volume: 204 start-page: 163 year: 2007 end-page: 179 ident: bb0230 article-title: Semi-empirical models for assessing biological productivity of Northern Eurasian forests publication-title: Ecological Modelling – year: 2006 ident: bb0125 article-title: Statistical yearbook of forestry 2006 – volume: 81 start-page: 19 year: 2002 end-page: 35 ident: bb0195 article-title: Stem volume retrieval in boreal forests from ERS-1/2 interferometry publication-title: Remote Sensing of Environment – volume: 32 start-page: 1041 year: 1994 end-page: 1050 ident: bb0150 article-title: Backscattering properties of boreal forests at the C- and X-bands publication-title: IEEE Transactions on Geoscience and Remote Sensing – start-page: 1712 year: 1999 end-page: 1714 ident: bb0260 article-title: Automated terrain corrected SAR geocoding publication-title: Proceedings of IGARSS'99, Hamburg, 28 June–2 July – volume: 32 start-page: 1117 year: 1994 end-page: 1124 ident: bb0190 article-title: Radar estimates of aboveground biomass in boreal forests of interior Alaska publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 37 start-page: 198 year: 1999 end-page: 205 ident: bb0115 article-title: Retrieval of biomass in boreal forests from multitemporal ERS-1 and JERS-1 SAR images publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 47 start-page: 4001 year: 2009 end-page: 4019 ident: bb0210 article-title: Signatures of ALOS PALSAR L-band backscatter in Swedish forest publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 28 start-page: 719 year: 2002 end-page: 737 ident: bb0020 article-title: Accuracy assessment of a large-scale forest cover map of central Siberia from synthetic aperture radar publication-title: Canadian Journal of Remote Sensing – volume: 49 start-page: 25 year: 1994 end-page: 31 ident: bb0255 article-title: The effects of changes in loblolly pine biomass and soil moisture on ERS-1 SAR backscatter publication-title: Remote Sensing of Environment – start-page: 7 year: 2008 end-page: 37 ident: bb0225 article-title: Materials for perception of productivity of forests of Russia publication-title: Proceedings of International Seminar on Sustainable Management of Forests of Russia, Krasnoyarsk, 6–7 December 2007 – volume: 128 start-page: 109 year: 2000 end-page: 120 ident: bb0095 article-title: Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes publication-title: Forest Ecology and Management – volume: 39 start-page: 2373 year: 2001 end-page: 2379 ident: bb0165 article-title: Filtering of multichannel SAR images publication-title: IEEE Transactions on Geoscience and Remote Sensing – year: 2010 ident: bb0200 article-title: STSE-BIOMASAR: Validating a novel biomass retrieval algorithm based on hyper-temporal Wide-Swath and Global Monitoring Envisat ASAR datasets publication-title: Final Report, ESA ESRIN contract No. 21892/08/I-EC, 2010 – volume: 2 start-page: 71 year: 2005 end-page: 75 ident: bb0060 publication-title: Regional mapping of Canadian subarctic forest biomass using a scaling up method combining QuickBird and Landsat imagery – year: 2008 ident: bb0130 article-title: Statistical yearbook of forestry 2008 – year: 1998 ident: bb0140 article-title: Understanding synthetic aperture radar images – volume: 13 start-page: 70 year: 1985 end-page: 84 ident: bb0090 article-title: The dip test of unimodality publication-title: Annals of Statistics – volume: 34 start-page: 1115 year: 1996 end-page: 1122 ident: bb0245 article-title: Radiometric slope correction of synthetic-aperture radar images publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 54 start-page: 247 year: 1995 end-page: 260 ident: bb0080 article-title: Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest publication-title: Remote Sensing of Environment – start-page: 107 year: 2008 end-page: 113 ident: bb0240 article-title: Allometric biomass and carbon factors database publication-title: iForest – volume: 27 start-page: 3425 year: 2006 end-page: 3454 ident: bb0205 article-title: Assessment of stand-wise stem volume retrieval in boreal forest from JERS-1 L-band SAR backscatter publication-title: International Journal of Remote Sensing – volume: 11 start-page: 89 year: 2005 end-page: 105 ident: bb0270 article-title: An improved analysis of forest carbon dynamics using data assimilation publication-title: Global Change Biology – volume: 32 start-page: 542 year: 2003 end-page: 548 ident: bb0180 article-title: Countrywide estimates of forest variables using satellite data and field data from the National Forest Inventory publication-title: Ambio – volume: 106 start-page: 154 year: 2007 end-page: 172 ident: bb0215 article-title: Properties of ERS-1/2 coherence in the Siberian boreal forest and implications for stem volume retrieval publication-title: Remote Sensing of Environment – volume: 16 start-page: 503 year: 1995 end-page: 513 ident: bb0250 article-title: The effects of changes in forest biomass on radar backscatter from tree canopies publication-title: International Journal of Remote Sensing – start-page: 37 year: 2002 end-page: 49 ident: bb0265 article-title: Automated and precise image registration procedures publication-title: Analysis of multi-temporal remote sensing images – volume: 14 start-page: 1735 year: 1993 ident: 10.1016/j.rse.2010.09.018_bb0135 article-title: Structure detection and statistical adaptive speckle filtering in SAR images publication-title: International Journal of Remote Sensing doi: 10.1080/01431169308953999 – volume: 22 start-page: 2351 year: 2001 ident: 10.1016/j.rse.2010.09.018_bb0035 article-title: Sensitivity of space-borne SAR data to forest parameters over sloping terrain. Theory and experiment publication-title: International Journal of Remote Sensing doi: 10.1080/01431160121407 – volume: 37 start-page: 927 year: 1999 ident: 10.1016/j.rse.2010.09.018_bb0155 article-title: Multitemporal behavior of L- and C-band SAR observations of boreal forests publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.752211 – volume: 106 start-page: 154 year: 2007 ident: 10.1016/j.rse.2010.09.018_bb0215 article-title: Properties of ERS-1/2 coherence in the Siberian boreal forest and implications for stem volume retrieval publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.08.004 – year: 2010 ident: 10.1016/j.rse.2010.09.018_bb0200 article-title: STSE-BIOMASAR: Validating a novel biomass retrieval algorithm based on hyper-temporal Wide-Swath and Global Monitoring Envisat ASAR datasets – volume: 204 start-page: 163 year: 2007 ident: 10.1016/j.rse.2010.09.018_bb0230 article-title: Semi-empirical models for assessing biological productivity of Northern Eurasian forests publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2006.12.040 – year: 2008 ident: 10.1016/j.rse.2010.09.018_bb0235 – year: 2008 ident: 10.1016/j.rse.2010.09.018_bb0130 – volume: 32 start-page: 1117 year: 1994 ident: 10.1016/j.rse.2010.09.018_bb0190 article-title: Radar estimates of aboveground biomass in boreal forests of interior Alaska publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.312903 – start-page: 37 year: 2002 ident: 10.1016/j.rse.2010.09.018_bb0265 article-title: Automated and precise image registration procedures – volume: 34 start-page: 1115 year: 1996 ident: 10.1016/j.rse.2010.09.018_bb0245 article-title: Radiometric slope correction of synthetic-aperture radar images publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.536527 – year: 2006 ident: 10.1016/j.rse.2010.09.018_bb0125 – volume: 47 start-page: 4001 year: 2009 ident: 10.1016/j.rse.2010.09.018_bb0210 article-title: Signatures of ALOS PALSAR L-band backscatter in Swedish forest publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2009.2023906 – year: 2001 ident: 10.1016/j.rse.2010.09.018_bb0220 article-title: SIBERIA — SAR imaging for boreal ecology and radar interferometry applications – volume: 37 start-page: 198 year: 1999 ident: 10.1016/j.rse.2010.09.018_bb0115 article-title: Retrieval of biomass in boreal forests from multitemporal ERS-1 and JERS-1 SAR images publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.739154 – volume: 81 start-page: 19 year: 2002 ident: 10.1016/j.rse.2010.09.018_bb0195 article-title: Stem volume retrieval in boreal forests from ERS-1/2 interferometry publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(01)00329-7 – volume: 27 start-page: 3425 year: 2006 ident: 10.1016/j.rse.2010.09.018_bb0205 article-title: Assessment of stand-wise stem volume retrieval in boreal forest from JERS-1 L-band SAR backscatter publication-title: International Journal of Remote Sensing doi: 10.1080/01431160600646037 – volume: 34 start-page: 758 year: 1996 ident: 10.1016/j.rse.2010.09.018_bb0160 article-title: Seasonal dynamics of C-band backscatter of boreal forests with applications to biomass and soil moisture estimation publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.499781 – volume: 83 start-page: 320 year: 2002 ident: 10.1016/j.rse.2010.09.018_bb0075 article-title: Development of a MODIS tree cover validation data set for Western Province, Zambia publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(02)00080-9 – volume: 23 start-page: 3185 year: 2002 ident: 10.1016/j.rse.2010.09.018_bb0015 article-title: Retrieval of timber volume and snow water equivalent over a Finnish boreal forest from airborne polarimetric Synthetic Aperture Radar publication-title: International Journal of Remote Sensing doi: 10.1080/01431160110076199 – year: 2010 ident: 10.1016/j.rse.2010.09.018_bb0030 article-title: Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2010.02173.x – volume: 42 start-page: 387 year: 2008 ident: 10.1016/j.rse.2010.09.018_bb0110 article-title: A global forest growing stock, biomass and carbon map based on FAO statistics publication-title: Silva Fennica doi: 10.14214/sf.244 – volume: 110 start-page: 488 year: 2007 ident: 10.1016/j.rse.2010.09.018_bb0120 article-title: A shadow fraction method for mapping biomass of northern boreal black spruce forests using QuickBird imagery publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.05.025 – start-page: 250 year: 1992 ident: 10.1016/j.rse.2010.09.018_bb0065 article-title: Estimation of carbon storage in boreal forests using remote sensing data – year: 1995 ident: 10.1016/j.rse.2010.09.018_bb0050 – volume: 49 start-page: 12 year: 2003 ident: 10.1016/j.rse.2010.09.018_bb0105 article-title: National-scale biomass estimators for United States tree species publication-title: Forest Science doi: 10.1093/forestscience/49.1.12 – start-page: 107 year: 2008 ident: 10.1016/j.rse.2010.09.018_bb0240 article-title: Allometric biomass and carbon factors database publication-title: iForest doi: 10.3832/ifor0463-0010107 – volume: 30 start-page: 412 year: 1992 ident: 10.1016/j.rse.2010.09.018_bb0040 article-title: Dependence of radar backscatter on coniferous forest biomass publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.134090 – start-page: 1712 year: 1999 ident: 10.1016/j.rse.2010.09.018_bb0260 article-title: Automated terrain corrected SAR geocoding – volume: 33 start-page: 511 year: 1995 ident: 10.1016/j.rse.2010.09.018_bb0100 article-title: Radar backscatter and biomass saturation: ramifications for global biomass inventory publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.1995.8746034 – volume: 38 start-page: 540 year: 2000 ident: 10.1016/j.rse.2010.09.018_bb0145 article-title: Monitoring seasonal changes of a mixed temperate forest using ERS SAR observations publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.823949 – volume: 38 start-page: 1242 year: 2000 ident: 10.1016/j.rse.2010.09.018_bb0175 article-title: Effects of environmental conditions on boreal forest classification and biomass estimates with SAR publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.843016 – volume: 28 start-page: 719 year: 2002 ident: 10.1016/j.rse.2010.09.018_bb0020 article-title: Accuracy assessment of a large-scale forest cover map of central Siberia from synthetic aperture radar publication-title: Canadian Journal of Remote Sensing doi: 10.5589/m02-067 – year: 1998 ident: 10.1016/j.rse.2010.09.018_bb0140 – volume: 49 start-page: 25 year: 1994 ident: 10.1016/j.rse.2010.09.018_bb0255 article-title: The effects of changes in loblolly pine biomass and soil moisture on ERS-1 SAR backscatter publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(94)90056-6 – volume: 2 start-page: 71 year: 2005 ident: 10.1016/j.rse.2010.09.018_bb0060 – volume: 16 start-page: 503 year: 1995 ident: 10.1016/j.rse.2010.09.018_bb0250 article-title: The effects of changes in forest biomass on radar backscatter from tree canopies publication-title: International Journal of Remote Sensing doi: 10.1080/01431169508954415 – volume: 54 start-page: 247 year: 1995 ident: 10.1016/j.rse.2010.09.018_bb0080 article-title: Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(95)00127-1 – volume: 98–99 start-page: 417 year: 1999 ident: 10.1016/j.rse.2010.09.018_bb0045 article-title: Regional forest biomass and wood volume estimation using satellite data and ancillary data publication-title: Agricultural and Forest Meteorology doi: 10.1016/S0168-1923(99)00112-4 – volume: 49 start-page: 145 year: 1994 ident: 10.1016/j.rse.2010.09.018_bb0185 article-title: Monitoring of environmental conditions in taiga forests using ERS-1 SAR publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(94)90051-5 – volume: 13 start-page: 70 year: 1985 ident: 10.1016/j.rse.2010.09.018_bb0090 article-title: The dip test of unimodality publication-title: Annals of Statistics doi: 10.1214/aos/1176346577 – volume: 128 start-page: 109 year: 2000 ident: 10.1016/j.rse.2010.09.018_bb0095 article-title: Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes publication-title: Forest Ecology and Management doi: 10.1016/S0378-1127(99)00278-9 – volume: 11 start-page: 89 year: 2005 ident: 10.1016/j.rse.2010.09.018_bb0270 article-title: An improved analysis of forest carbon dynamics using data assimilation publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2004.00891.x – volume: 20 start-page: 123 year: 1999 ident: 10.1016/j.rse.2010.09.018_bb0055 article-title: Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data publication-title: International Journal of Remote Sensing doi: 10.1080/014311699213640 – volume: 98–99 start-page: 389 year: 1999 ident: 10.1016/j.rse.2010.09.018_bb0010 article-title: Microwave observations of boreal forests in the NOPEX area of Sweden and a comparison with observations of a temperate plantation in the United Kingdom publication-title: Agricultural and Forest Meteorology doi: 10.1016/S0168-1923(99)00111-2 – volume: 32 start-page: 542 year: 2003 ident: 10.1016/j.rse.2010.09.018_bb0180 article-title: Countrywide estimates of forest variables using satellite data and field data from the National Forest Inventory publication-title: Ambio doi: 10.1579/0044-7447-32.8.542 – volume: 7 start-page: 1 year: 2003 ident: 10.1016/j.rse.2010.09.018_bb0070 article-title: Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS Vegetation Continuous Field algorithm publication-title: Earth Interactions doi: 10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2 – volume: 35 start-page: 25 year: 1997 ident: 10.1016/j.rse.2010.09.018_bb0005 article-title: C-band repeat-pass interferometric SAR observations of the forest publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.551931 – volume: 39 start-page: 2373 year: 2001 ident: 10.1016/j.rse.2010.09.018_bb0165 article-title: Filtering of multichannel SAR images publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.964973 – volume: 59 start-page: 223 year: 1997 ident: 10.1016/j.rse.2010.09.018_bb0085 article-title: Evaluation of approaches to estimating aboveground biomass in southern pine forests using SIR-C data publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(96)00155-1 – volume: 57 start-page: 241 year: 2003 ident: 10.1016/j.rse.2010.09.018_bb0170 article-title: The Shuttle Radar Topography Mission — A new class of digital elevation models acquired by spaceborne SAR publication-title: ISPRS Journal of Photogrammetry & Remote Sensing doi: 10.1016/S0924-2716(02)00124-7 – volume: 33 start-page: L15403 year: 2006 ident: 10.1016/j.rse.2010.09.018_bb0025 article-title: Small net carbon dioxide uptake by Russian forests during 1981–1999 publication-title: Geophysical Research Letters doi: 10.1029/2006GL026919 – volume: 32 start-page: 1041 year: 1994 ident: 10.1016/j.rse.2010.09.018_bb0150 article-title: Backscattering properties of boreal forests at the C- and X-bands publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.312892 – start-page: 7 year: 2008 ident: 10.1016/j.rse.2010.09.018_bb0225 article-title: Materials for perception of productivity of forests of Russia |
| SSID | ssj0015871 |
| Score | 2.4368553 |
| Snippet | Methods for the estimation of forest growing stock volume (GSV) are a major topic of investigation in the remote sensing community. The boreal zone contains... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 490 |
| SubjectTerms | Algorithms Animal, plant and microbial ecology Applied geophysics automation Backscatter Biological and medical sciences BIOMASAR algorithm Boreal forest boreal forests canopy data collection Earth sciences Earth, ocean, space Envisat ASAR Errors Estimates Exact sciences and technology forest mensuration forest resources Forests Fundamental and applied biological sciences. Psychology General aspects. Techniques Growing stock volume Internal geophysics land cover Mathematical models moderate resolution imaging spectroradiometer MODIS Vegetation Continuous Fields Pixels Quebec remote sensing Retrieval ScanSAR Siberia statistics Sweden Synthetic aperture radar Teledetection and vegetation maps trees Water–Cloud model |
| Title | Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements |
| URI | https://dx.doi.org/10.1016/j.rse.2010.09.018 https://www.proquest.com/docview/1671524399 https://www.proquest.com/docview/1686733299 https://www.proquest.com/docview/856782959 |
| Volume | 115 |
| WOSCitedRecordID | wos000286782500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB7KrqIgotXFellG8MmSpU0ml3ksUldFV-mu0rcwmU5sl25amrasvvgT_UuekzNJU5ctKviSlulkkvR8Obc5F8ZegEyNxCgVjtBe4AglXCfRRjtCas8LAiW9IkD2y_vw5CQaDuWnRuNnmQuznoZZFl1eyvl_JTWMAbExdfYvyF0tCgPwHYgORyA7HP-I8IOiR9aalMyvYGWTxwD4XptYEbo4gPKGUhdBKrRXhcNgDCbpwrG1qqZtvFmqSIttCHK1bPdOewNgBirDzwST83VRnbN9sXE05nVtd2AACAZWynIbXF3Lq6t8O9jGmLJtPmCNo-8UGUbJQzZNcWxZ0WbHZLFcFQj8OMXAks120vgCd7dW-dZppu7bQGet61B2JzncyqSbrZhQLKnjIKshEUZ8OwoxF4s6GVeM3S41qRnYxKYFtSi1Et-nvrtXhAn5Nc6PFrmxMYDyqGOlxXaN7tOiciLcEu6WuBLL0O67oS9BUuz33vaH76qNLT8KqYmjfYZyo70IOfztQtepSnfmCug7TanzyhUlotCMzu6xu9ak4T2C4n3WMFmTHfQ3lIYfrQjJm-zWsbFV0pvs5nHRV_rbA_ajQi2fpdyilheo5fQ_80nGCbWcUMsL1PJt1HJCLS5iUcsRtdyiltdQy-uofcg-v-6fvXrj2N4gjhayu3R0mIAx3o1SBSZHZEadIDFKhEmitfFTV4UqdQMtdRfGRaDcRApQlCMT-hqmjRLvgO1ls8w8YnykU3QrYPG7RHS1UhoMTlC7Rz4qbrLTYp2SDLG2hfOxf8s0LiMkz2OgXIyUizsyBsq12MvqlDlVjdk1WZS0ja3aS-psDEDcddrhFg6qC7nYQ8ITbos9L4ERg8zAjUB44WarPO4GIajt6InYNScKQs9zcQ6_Zk7kg6rrSl8-_rdHeMJub976p2xvuViZZ-yGXi8n-eLQvjq_ADcGBt8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retrieval+of+growing+stock+volume+in+boreal+forest+using+hyper-temporal+series+of+Envisat+ASAR+ScanSAR+backscatter+measurements&rft.jtitle=Remote+sensing+of+environment&rft.au=Santoro%2C+Maurizio&rft.au=Beer%2C+Christian&rft.au=Cartus%2C+Oliver&rft.au=Schmullius%2C+Christiane&rft.date=2011-02-15&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=115&rft.issue=2&rft.spage=490&rft.epage=507&rft_id=info:doi/10.1016%2Fj.rse.2010.09.018&rft.externalDocID=S0034425710002919 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |