A Multiplexed, Heterogeneous, and Adaptive Code for Navigation in Medial Entorhinal Cortex

Medial entorhinal grid cells display strikingly symmetric spatial firing patterns. The clarity of these patterns motivated the use of specific activity pattern shapes to classify entorhinal cell types. While this approach successfully revealed cells that encode boundaries, head direction, and runnin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neuron (Cambridge, Mass.) Ročník 94; číslo 2; s. 375
Hlavní autoři: Hardcastle, Kiah, Maheswaranathan, Niru, Ganguli, Surya, Giocomo, Lisa M
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 19.04.2017
Témata:
ISSN:1097-4199, 1097-4199
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Medial entorhinal grid cells display strikingly symmetric spatial firing patterns. The clarity of these patterns motivated the use of specific activity pattern shapes to classify entorhinal cell types. While this approach successfully revealed cells that encode boundaries, head direction, and running speed, it left a majority of cells unclassified, and its pre-defined nature may have missed unconventional, yet important coding properties. Here, we apply an unbiased statistical approach to search for cells that encode navigationally relevant variables. This approach successfully classifies the majority of entorhinal cells and reveals unsuspected entorhinal coding principles. First, we find a high degree of mixed selectivity and heterogeneity in superficial entorhinal neurons. Second, we discover a dynamic and remarkably adaptive code for space that enables entorhinal cells to rapidly encode navigational information accurately at high running speeds. Combined, these observations advance our current understanding of the mechanistic origins and functional implications of the entorhinal code for navigation. VIDEO ABSTRACT.
AbstractList Medial entorhinal grid cells display strikingly symmetric spatial firing patterns. The clarity of these patterns motivated the use of specific activity pattern shapes to classify entorhinal cell types. While this approach successfully revealed cells that encode boundaries, head direction, and running speed, it left a majority of cells unclassified, and its pre-defined nature may have missed unconventional, yet important coding properties. Here, we apply an unbiased statistical approach to search for cells that encode navigationally relevant variables. This approach successfully classifies the majority of entorhinal cells and reveals unsuspected entorhinal coding principles. First, we find a high degree of mixed selectivity and heterogeneity in superficial entorhinal neurons. Second, we discover a dynamic and remarkably adaptive code for space that enables entorhinal cells to rapidly encode navigational information accurately at high running speeds. Combined, these observations advance our current understanding of the mechanistic origins and functional implications of the entorhinal code for navigation. VIDEO ABSTRACT.Medial entorhinal grid cells display strikingly symmetric spatial firing patterns. The clarity of these patterns motivated the use of specific activity pattern shapes to classify entorhinal cell types. While this approach successfully revealed cells that encode boundaries, head direction, and running speed, it left a majority of cells unclassified, and its pre-defined nature may have missed unconventional, yet important coding properties. Here, we apply an unbiased statistical approach to search for cells that encode navigationally relevant variables. This approach successfully classifies the majority of entorhinal cells and reveals unsuspected entorhinal coding principles. First, we find a high degree of mixed selectivity and heterogeneity in superficial entorhinal neurons. Second, we discover a dynamic and remarkably adaptive code for space that enables entorhinal cells to rapidly encode navigational information accurately at high running speeds. Combined, these observations advance our current understanding of the mechanistic origins and functional implications of the entorhinal code for navigation. VIDEO ABSTRACT.
Medial entorhinal grid cells display strikingly symmetric spatial firing patterns. The clarity of these patterns motivated the use of specific activity pattern shapes to classify entorhinal cell types. While this approach successfully revealed cells that encode boundaries, head direction, and running speed, it left a majority of cells unclassified, and its pre-defined nature may have missed unconventional, yet important coding properties. Here, we apply an unbiased statistical approach to search for cells that encode navigationally relevant variables. This approach successfully classifies the majority of entorhinal cells and reveals unsuspected entorhinal coding principles. First, we find a high degree of mixed selectivity and heterogeneity in superficial entorhinal neurons. Second, we discover a dynamic and remarkably adaptive code for space that enables entorhinal cells to rapidly encode navigational information accurately at high running speeds. Combined, these observations advance our current understanding of the mechanistic origins and functional implications of the entorhinal code for navigation. VIDEO ABSTRACT.
Author Maheswaranathan, Niru
Hardcastle, Kiah
Ganguli, Surya
Giocomo, Lisa M
Author_xml – sequence: 1
  givenname: Kiah
  surname: Hardcastle
  fullname: Hardcastle, Kiah
  email: khardcas@stanford.edu
  organization: Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA. Electronic address: khardcas@stanford.edu
– sequence: 2
  givenname: Niru
  surname: Maheswaranathan
  fullname: Maheswaranathan, Niru
  organization: Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
– sequence: 3
  givenname: Surya
  surname: Ganguli
  fullname: Ganguli, Surya
  organization: Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
– sequence: 4
  givenname: Lisa M
  surname: Giocomo
  fullname: Giocomo, Lisa M
  email: giocomo@stanford.edu
  organization: Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Electronic address: giocomo@stanford.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28392071$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtOwzAURC1URB_wBwh5yaIJvnZeXlZRoUgtbGDDJnLim-IqtUPiVOXvqXhIrOYsjkaamZKRdRYJuQYWAoPkbhdaHDpnQ84gDZkIGY_PyASYTIMIpBz94zGZ9v2OMYhiCRdkzDMhOUthQt4WdDM03rQNHlHP6Qo9dm6LFt3Qz6mymi60ar05IM2dRlq7jj6pg9kqb5ylxtINaqMaurTede_GnjB3ncfjJTmvVdPj1W_OyOv98iVfBevnh8d8sQ6qSIIPZC1khSKOylpUuqyjFOIkYZlOMa0FZghpJmvgleBY8QoyzcpScR1DolmaMD4jtz-9bec-Bux9sTd9hU2jvkcUkGWJiAFEdFJvftWh3KMu2s7sVfdZ_P3BvwAF2GWs
CitedBy_id crossref_primary_10_1002_hipo_23191
crossref_primary_10_1038_s41467_025_62733_7
crossref_primary_10_1038_s41467_024_54699_9
crossref_primary_10_1073_pnas_2417025122
crossref_primary_10_7554_eLife_29222
crossref_primary_10_1126_science_aau2013
crossref_primary_10_1002_hipo_23513
crossref_primary_10_1002_hipo_23596
crossref_primary_10_1038_s41467_021_20936_8
crossref_primary_10_1016_j_cub_2023_07_012
crossref_primary_10_1016_j_neubiorev_2019_11_013
crossref_primary_10_1002_hipo_23510
crossref_primary_10_1038_s41583_021_00479_z
crossref_primary_10_1016_j_cub_2019_07_007
crossref_primary_10_1016_j_neuron_2024_08_007
crossref_primary_10_1016_j_neuron_2025_03_029
crossref_primary_10_1126_science_adk9385
crossref_primary_10_3389_fncir_2020_00056
crossref_primary_10_1016_j_conb_2018_04_013
crossref_primary_10_1038_s41467_021_22195_z
crossref_primary_10_1038_s41467_017_02501_4
crossref_primary_10_1126_science_aav5297
crossref_primary_10_1371_journal_pcbi_1006041
crossref_primary_10_1007_s12264_022_00968_w
crossref_primary_10_1016_j_celrep_2025_115412
crossref_primary_10_1038_s41593_019_0562_5
crossref_primary_10_7554_eLife_85646_3
crossref_primary_10_1016_j_isci_2025_111993
crossref_primary_10_1016_j_cub_2022_08_050
crossref_primary_10_1016_j_neuron_2020_05_022
crossref_primary_10_7554_eLife_86943
crossref_primary_10_1002_hipo_23188
crossref_primary_10_1038_s41593_022_01088_4
crossref_primary_10_1016_j_neuron_2022_08_013
crossref_primary_10_1146_annurev_psych_021021_103038
crossref_primary_10_1038_s41586_024_08145_x
crossref_primary_10_1152_jn_00880_2017
crossref_primary_10_7554_eLife_80680
crossref_primary_10_1038_s41467_024_52315_4
crossref_primary_10_7554_eLife_59816
crossref_primary_10_1016_j_neubiorev_2023_105200
crossref_primary_10_1038_s41593_017_0055_3
crossref_primary_10_1038_s42003_021_02727_5
crossref_primary_10_1002_hipo_23017
crossref_primary_10_1523_JNEUROSCI_0861_23_2024
crossref_primary_10_1016_j_cub_2023_05_031
crossref_primary_10_1038_s41467_020_17500_1
crossref_primary_10_1038_s41586_024_07139_z
crossref_primary_10_1371_journal_pcbi_1006741
crossref_primary_10_1016_j_coisb_2017_04_008
crossref_primary_10_1162_neco_a_01280
crossref_primary_10_1038_s41467_023_42609_4
crossref_primary_10_1038_s41593_019_0561_6
crossref_primary_10_1016_j_cub_2023_09_019
crossref_primary_10_1016_j_compag_2023_107628
crossref_primary_10_7554_eLife_86943_3
crossref_primary_10_1016_j_neures_2021_07_002
crossref_primary_10_1038_s41467_022_28153_7
crossref_primary_10_1242_jeb_188912
crossref_primary_10_1126_science_ads4760
crossref_primary_10_1162_neco_a_01705
crossref_primary_10_1523_JNEUROSCI_0581_23_2023
crossref_primary_10_1016_j_cub_2023_07_024
crossref_primary_10_1038_s41593_018_0189_y
crossref_primary_10_1113_JP282758
crossref_primary_10_1016_j_neuron_2018_11_019
crossref_primary_10_1126_science_aav4837
crossref_primary_10_1038_s41586_021_04268_7
crossref_primary_10_1038_s41467_025_62856_x
crossref_primary_10_1016_j_cub_2025_04_036
crossref_primary_10_1038_s41467_022_29583_z
crossref_primary_10_1162_imag_a_00354
crossref_primary_10_1162_neco_a_01150
crossref_primary_10_1016_j_neuron_2022_10_003
crossref_primary_10_1073_pnas_1912792116
crossref_primary_10_1073_pnas_2018422118
crossref_primary_10_1177_2398212818810686
crossref_primary_10_1007_s10827_020_00740_x
crossref_primary_10_1016_j_cub_2021_01_032
crossref_primary_10_1016_j_neuron_2023_09_013
crossref_primary_10_1016_j_tics_2022_11_003
crossref_primary_10_1038_s41593_023_01306_7
crossref_primary_10_1016_j_neuron_2021_07_005
crossref_primary_10_7554_eLife_46687
crossref_primary_10_7554_eLife_85646
crossref_primary_10_1038_nn_4653
crossref_primary_10_3390_e20080571
crossref_primary_10_1038_nn_4654
crossref_primary_10_1152_jn_00686_2017
crossref_primary_10_1016_j_tics_2024_03_003
crossref_primary_10_1007_s00415_018_8828_5
crossref_primary_10_1371_journal_pbio_3003087
crossref_primary_10_1038_s41583_021_00499_9
crossref_primary_10_1038_s41467_018_05562_1
crossref_primary_10_1038_s41467_024_45853_4
crossref_primary_10_1515_revneuro_2022_0107
crossref_primary_10_1152_jn_00574_2017
crossref_primary_10_1016_j_celrep_2024_114539
crossref_primary_10_1038_s41467_024_49897_4
crossref_primary_10_3389_fpsyg_2024_1359687
crossref_primary_10_1038_s41598_020_58194_1
crossref_primary_10_7554_eLife_61821
crossref_primary_10_1016_j_conb_2022_102665
crossref_primary_10_1002_hipo_23145
crossref_primary_10_1111_ejn_14594
crossref_primary_10_1016_j_conb_2020_01_015
crossref_primary_10_1016_j_neuron_2020_06_023
crossref_primary_10_3389_fnins_2024_1276714
crossref_primary_10_7554_eLife_66551
crossref_primary_10_1016_j_neuron_2018_10_002
crossref_primary_10_1016_j_cub_2017_06_067
crossref_primary_10_1038_s41586_024_08527_1
crossref_primary_10_1152_jn_00498_2017
crossref_primary_10_1016_j_neuroscience_2018_01_066
crossref_primary_10_1038_s41586_022_05378_6
crossref_primary_10_1016_j_neuron_2019_03_034
crossref_primary_10_7554_eLife_83008
crossref_primary_10_1016_j_conb_2020_11_005
crossref_primary_10_1126_science_aax4192
crossref_primary_10_1016_j_cub_2019_11_048
crossref_primary_10_1073_pnas_2106830119
crossref_primary_10_1016_j_conb_2017_07_005
crossref_primary_10_1016_j_cub_2023_03_066
crossref_primary_10_7554_eLife_62500
crossref_primary_10_1038_s41586_024_07557_z
crossref_primary_10_1038_s41593_024_01683_7
crossref_primary_10_1146_annurev_neuro_090922_010618
crossref_primary_10_1016_j_neuron_2021_09_032
crossref_primary_10_1016_j_neuron_2021_06_019
crossref_primary_10_1038_s41467_023_39520_3
crossref_primary_10_1126_science_aau4940
crossref_primary_10_1111_mila_12535
crossref_primary_10_7554_eLife_43140
crossref_primary_10_1016_j_cub_2024_10_057
crossref_primary_10_1016_j_cub_2025_08_048
crossref_primary_10_1097_WCO_0000000000000638
crossref_primary_10_1016_j_neunet_2021_01_028
crossref_primary_10_1523_JNEUROSCI_1124_22_2022
crossref_primary_10_7554_eLife_52258
crossref_primary_10_1038_s41593_019_0359_6
crossref_primary_10_1016_j_conb_2022_102644
crossref_primary_10_1016_j_neuron_2023_11_018
crossref_primary_10_1371_journal_pcbi_1006804
crossref_primary_10_1038_s41467_022_34114_x
crossref_primary_10_1038_s41598_025_95585_8
crossref_primary_10_1038_s41586_022_04913_9
crossref_primary_10_7554_eLife_34560
crossref_primary_10_1371_journal_pcbi_1011430
crossref_primary_10_1073_pnas_1805959115
crossref_primary_10_1016_j_neuron_2021_12_012
crossref_primary_10_1093_cercor_bhaa386
crossref_primary_10_3389_fncom_2021_616748
crossref_primary_10_1016_j_conb_2018_02_014
crossref_primary_10_1088_1741_2552_ac6771
ContentType Journal Article
Copyright Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2017 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neuron.2017.03.025
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
ExternalDocumentID 28392071
Genre Journal Article
GrantInformation_xml – fundername: Wellcome Trust
– fundername: NINDS NIH HHS
  grantid: U01 NS094288
– fundername: NIMH NIH HHS
  grantid: R01 MH106475
– fundername: NIMH NIH HHS
  grantid: T32 MH020016
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
4.4
457
4G.
53G
5RE
62-
7-5
8FE
8FH
AAEDT
AAEDW
AAFWJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGKMS
AHHHB
AHMBA
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BKEYQ
BKNYI
BPHCQ
BVXVI
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
7X8
ID FETCH-LOGICAL-c491t-9f39ce354bf3cdbf47156608d7e7f3e8e1789f12c32ec2c18d0bba2d516d07602
IEDL.DBID 7X8
ISICitedReferencesCount 181
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399451400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4199
IngestDate Wed Oct 01 13:23:22 EDT 2025
Mon Jul 21 06:08:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Multiplexed-coding
spatial navigation
entorhinal cortex
adaptive coding
computational models of spatial coding
encoding mode
tuning heterogeneity
Language English
License Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-9f39ce354bf3cdbf47156608d7e7f3e8e1789f12c32ec2c18d0bba2d516d07602
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5498174
PMID 28392071
PQID 1886351134
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1886351134
pubmed_primary_28392071
PublicationCentury 2000
PublicationDate 2017-04-19
PublicationDateYYYYMMDD 2017-04-19
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2017
References 23222610 - Nature. 2012 Dec 6;492(7427):72-8
27427460 - Neuron. 2016 Aug 3;91(3):666-79
12467597 - Neuron. 2002 Dec 5;36(5):945-54
23334580 - Nat Neurosci. 2013 Mar;16(3):318-24
25383902 - Nat Neurosci. 2014 Dec;17(12):1784-92
19095945 - Science. 2008 Dec 19;322(5909):1865-8
11518957 - Nature. 2001 Aug 23;412(6849):787-92
18215625 - Neuron. 2008 Jan 24;57(2):290-302
23334581 - Nat Neurosci. 2013 Mar;16(3):309-17
16495990 - Nature. 2006 Feb 23;439(7079):936-42
17696288 - Int J Neural Syst. 2007 Aug;17(4):231-40
19021251 - Hippocampus. 2008;18(12):1175-85
8353604 - Hippocampus. 1993 Apr;3(2):165-82
24638961 - Hippocampus. 2014 Mar;24(3):249-56
19021262 - Hippocampus. 2008;18(12):1270-82
23312522 - Neuron. 2013 Jan 9;77(1):141-54
14403679 - J Physiol. 1959 Oct;148:574-91
24743341 - PLoS Comput Biol. 2014 Apr 17;10(4):e1003558
16001064 - Nature. 2005 Jul 7;436(7047):71-7
21835347 - Neuron. 2011 Aug 11;71(3):512-28
11539168 - Adv Neural Inf Process Syst. 1995;7:173-80
11811656 - Hippocampus. 2001;11(6):626-36
26748022 - Neurobiol Learn Mem. 2016 Oct;134 Pt A:178-91
20558721 - Science. 2010 Jun 18;328(5985):1576-80
15680687 - Neuroscience. 2005;131(1):1-11
26170279 - Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9466-71
12061421 - Network. 2002 May;13(2):217-42
25033185 - Neuron. 2014 Jul 16;83(2):455-66
26824660 - Cell. 2016 Jan 28;164(3):526-37
23447596 - J Neurosci. 2013 Feb 27;33(9):3844-56
26851755 - Curr Opin Neurobiol. 2016 Apr;37:66-74
25932978 - Curr Opin Neurobiol. 2015 Jun;32:148-55
27030753 - J Neurosci. 2016 Mar 30;36(13):3660-75
1308182 - Hippocampus. 1992 Apr;2(2):189-99
20558720 - Science. 2010 Jun 18;328(5985):1573-6
16858394 - Nat Rev Neurosci. 2006 Aug;7(8):663-78
22904012 - Science. 2012 Aug 17;337(6096):853-7
7704110 - Hippocampus. 1994 Dec;4(6):661-82
12161755 - Nat Neurosci. 2002 Sep;5(9):883-91
26176924 - Nature. 2015 Jul 23;523(7561):419-24
16624947 - J Neurosci. 2006 Apr 19;26(16):4266-76
17303747 - Science. 2007 Feb 16;315(5814):961-6
15965463 - Nature. 2005 Aug 11;436(7052):801-6
12741993 - Neuron. 2003 May 8;38(3):473-85
25174005 - Nat Neurosci. 2014 Oct;17(10):1395-403
24201281 - Nature. 2013 Nov 7;503(7474):78-84
23685452 - Nature. 2013 May 30;497(7451):585-90
26539893 - Neuron. 2015 Nov 4;88(3):578-89
8604055 - J Neurosci. 1996 Mar 15;16(6):2112-26
25033187 - Neuron. 2014 Jul 16;83(2):481-95
16675704 - Science. 2006 May 5;312(5774):758-62
25482025 - Neuron. 2014 Dec 17;84(6):1191-7
23852111 - Nat Neurosci. 2013 Aug;16(8):1077-84
26711115 - Neuron. 2016 Jan 6;89(1):194-208
19229307 - PLoS Comput Biol. 2009 Feb;5(2):e1000291
1092814 - J Neurophysiol. 1975 Mar;38(2):231-49
References_xml – reference: 14403679 - J Physiol. 1959 Oct;148:574-91
– reference: 23334580 - Nat Neurosci. 2013 Mar;16(3):318-24
– reference: 26711115 - Neuron. 2016 Jan 6;89(1):194-208
– reference: 26748022 - Neurobiol Learn Mem. 2016 Oct;134 Pt A:178-91
– reference: 16624947 - J Neurosci. 2006 Apr 19;26(16):4266-76
– reference: 11811656 - Hippocampus. 2001;11(6):626-36
– reference: 15965463 - Nature. 2005 Aug 11;436(7052):801-6
– reference: 17696288 - Int J Neural Syst. 2007 Aug;17(4):231-40
– reference: 20558721 - Science. 2010 Jun 18;328(5985):1576-80
– reference: 23312522 - Neuron. 2013 Jan 9;77(1):141-54
– reference: 18215625 - Neuron. 2008 Jan 24;57(2):290-302
– reference: 7704110 - Hippocampus. 1994 Dec;4(6):661-82
– reference: 23685452 - Nature. 2013 May 30;497(7451):585-90
– reference: 25174005 - Nat Neurosci. 2014 Oct;17(10):1395-403
– reference: 25932978 - Curr Opin Neurobiol. 2015 Jun;32:148-55
– reference: 11518957 - Nature. 2001 Aug 23;412(6849):787-92
– reference: 1308182 - Hippocampus. 1992 Apr;2(2):189-99
– reference: 11539168 - Adv Neural Inf Process Syst. 1995;7:173-80
– reference: 23334581 - Nat Neurosci. 2013 Mar;16(3):309-17
– reference: 15680687 - Neuroscience. 2005;131(1):1-11
– reference: 21835347 - Neuron. 2011 Aug 11;71(3):512-28
– reference: 12467597 - Neuron. 2002 Dec 5;36(5):945-54
– reference: 19021262 - Hippocampus. 2008;18(12):1270-82
– reference: 26539893 - Neuron. 2015 Nov 4;88(3):578-89
– reference: 19095945 - Science. 2008 Dec 19;322(5909):1865-8
– reference: 8604055 - J Neurosci. 1996 Mar 15;16(6):2112-26
– reference: 19021251 - Hippocampus. 2008;18(12):1175-85
– reference: 19229307 - PLoS Comput Biol. 2009 Feb;5(2):e1000291
– reference: 23222610 - Nature. 2012 Dec 6;492(7427):72-8
– reference: 8353604 - Hippocampus. 1993 Apr;3(2):165-82
– reference: 22904012 - Science. 2012 Aug 17;337(6096):853-7
– reference: 24743341 - PLoS Comput Biol. 2014 Apr 17;10(4):e1003558
– reference: 26176924 - Nature. 2015 Jul 23;523(7561):419-24
– reference: 24201281 - Nature. 2013 Nov 7;503(7474):78-84
– reference: 27427460 - Neuron. 2016 Aug 3;91(3):666-79
– reference: 12161755 - Nat Neurosci. 2002 Sep;5(9):883-91
– reference: 25033185 - Neuron. 2014 Jul 16;83(2):455-66
– reference: 16858394 - Nat Rev Neurosci. 2006 Aug;7(8):663-78
– reference: 20558720 - Science. 2010 Jun 18;328(5985):1573-6
– reference: 25383902 - Nat Neurosci. 2014 Dec;17(12):1784-92
– reference: 25033187 - Neuron. 2014 Jul 16;83(2):481-95
– reference: 16495990 - Nature. 2006 Feb 23;439(7079):936-42
– reference: 26824660 - Cell. 2016 Jan 28;164(3):526-37
– reference: 1092814 - J Neurophysiol. 1975 Mar;38(2):231-49
– reference: 23852111 - Nat Neurosci. 2013 Aug;16(8):1077-84
– reference: 27030753 - J Neurosci. 2016 Mar 30;36(13):3660-75
– reference: 17303747 - Science. 2007 Feb 16;315(5814):961-6
– reference: 16001064 - Nature. 2005 Jul 7;436(7047):71-7
– reference: 12741993 - Neuron. 2003 May 8;38(3):473-85
– reference: 16675704 - Science. 2006 May 5;312(5774):758-62
– reference: 24638961 - Hippocampus. 2014 Mar;24(3):249-56
– reference: 23447596 - J Neurosci. 2013 Feb 27;33(9):3844-56
– reference: 12061421 - Network. 2002 May;13(2):217-42
– reference: 26851755 - Curr Opin Neurobiol. 2016 Apr;37:66-74
– reference: 25482025 - Neuron. 2014 Dec 17;84(6):1191-7
– reference: 26170279 - Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9466-71
SSID ssj0014591
Score 2.6162622
Snippet Medial entorhinal grid cells display strikingly symmetric spatial firing patterns. The clarity of these patterns motivated the use of specific activity pattern...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 375
SubjectTerms Action Potentials - physiology
Animals
Entorhinal Cortex - physiology
Female
Head
Male
Mice, Inbred C57BL
Models, Neurological
Motor Activity - physiology
Neurons - physiology
Space Perception - physiology
Theta Rhythm - physiology
Title A Multiplexed, Heterogeneous, and Adaptive Code for Navigation in Medial Entorhinal Cortex
URI https://www.ncbi.nlm.nih.gov/pubmed/28392071
https://www.proquest.com/docview/1886351134
Volume 94
WOSCitedRecordID wos000399451400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnjx0fqoL1YQTw3mvbsnCdLSgw09qBQvIfuCgia1raX9985uUnoSBC-BQBaSncnst_PNzofQHQezkjhXDqBVFzYobu7QKA4cGSrOuSSutKnst2eSpnQ0YsM64TaryyrXMdEGalkKkyN_8CiNDekVhI-TL8eoRhl2tZbQ2EaNAKCMKekiow2LEEZWMc-QrIbtZOujc7a-y_aLNB1QPWLbnPrR7yDTLja9w_--5hE6qGEmTiq_OEZbqmiiVlLAFvtzhe-xLfy0GfUm2qv0KFct9J7gQV1guFSyg_umVqYEF1Pl96yD80LiROYTEyHxUykVBsSL03xh23SUBR4XeGBPouBuAXt5I839AQ9O52p5gl573ZenvlOLLzgiZN7cYTpgQgVRyHUgJNewiAHyc6kkiuhAUeURyrTni8BXwhcelS7nuS8jL5aG7fNP0U5RFuocYV8LuJeRppEOBWM8BsyoqHAJ1wJcoo1u13OZgXMbxiK3H5ZtZrONziqDZJOqC0fmG2gHAOniD6Mv0b6xs2GBPHaFGhp-bXWNdsViPp5Nb6zXwDUdDn4A8EvMcQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multiplexed%2C+Heterogeneous%2C+and+Adaptive+Code+for+Navigation+in+Medial+Entorhinal+Cortex&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Hardcastle%2C+Kiah&rft.au=Maheswaranathan%2C+Niru&rft.au=Ganguli%2C+Surya&rft.au=Giocomo%2C+Lisa+M&rft.date=2017-04-19&rft.issn=1097-4199&rft.eissn=1097-4199&rft.volume=94&rft.issue=2&rft.spage=375&rft_id=info:doi/10.1016%2Fj.neuron.2017.03.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4199&client=summon