A Multiplexed, Heterogeneous, and Adaptive Code for Navigation in Medial Entorhinal Cortex
Medial entorhinal grid cells display strikingly symmetric spatial firing patterns. The clarity of these patterns motivated the use of specific activity pattern shapes to classify entorhinal cell types. While this approach successfully revealed cells that encode boundaries, head direction, and runnin...
Uloženo v:
| Vydáno v: | Neuron (Cambridge, Mass.) Ročník 94; číslo 2; s. 375 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
19.04.2017
|
| Témata: | |
| ISSN: | 1097-4199, 1097-4199 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Medial entorhinal grid cells display strikingly symmetric spatial firing patterns. The clarity of these patterns motivated the use of specific activity pattern shapes to classify entorhinal cell types. While this approach successfully revealed cells that encode boundaries, head direction, and running speed, it left a majority of cells unclassified, and its pre-defined nature may have missed unconventional, yet important coding properties. Here, we apply an unbiased statistical approach to search for cells that encode navigationally relevant variables. This approach successfully classifies the majority of entorhinal cells and reveals unsuspected entorhinal coding principles. First, we find a high degree of mixed selectivity and heterogeneity in superficial entorhinal neurons. Second, we discover a dynamic and remarkably adaptive code for space that enables entorhinal cells to rapidly encode navigational information accurately at high running speeds. Combined, these observations advance our current understanding of the mechanistic origins and functional implications of the entorhinal code for navigation. VIDEO ABSTRACT. |
|---|---|
| AbstractList | Medial entorhinal grid cells display strikingly symmetric spatial firing patterns. The clarity of these patterns motivated the use of specific activity pattern shapes to classify entorhinal cell types. While this approach successfully revealed cells that encode boundaries, head direction, and running speed, it left a majority of cells unclassified, and its pre-defined nature may have missed unconventional, yet important coding properties. Here, we apply an unbiased statistical approach to search for cells that encode navigationally relevant variables. This approach successfully classifies the majority of entorhinal cells and reveals unsuspected entorhinal coding principles. First, we find a high degree of mixed selectivity and heterogeneity in superficial entorhinal neurons. Second, we discover a dynamic and remarkably adaptive code for space that enables entorhinal cells to rapidly encode navigational information accurately at high running speeds. Combined, these observations advance our current understanding of the mechanistic origins and functional implications of the entorhinal code for navigation. VIDEO ABSTRACT.Medial entorhinal grid cells display strikingly symmetric spatial firing patterns. The clarity of these patterns motivated the use of specific activity pattern shapes to classify entorhinal cell types. While this approach successfully revealed cells that encode boundaries, head direction, and running speed, it left a majority of cells unclassified, and its pre-defined nature may have missed unconventional, yet important coding properties. Here, we apply an unbiased statistical approach to search for cells that encode navigationally relevant variables. This approach successfully classifies the majority of entorhinal cells and reveals unsuspected entorhinal coding principles. First, we find a high degree of mixed selectivity and heterogeneity in superficial entorhinal neurons. Second, we discover a dynamic and remarkably adaptive code for space that enables entorhinal cells to rapidly encode navigational information accurately at high running speeds. Combined, these observations advance our current understanding of the mechanistic origins and functional implications of the entorhinal code for navigation. VIDEO ABSTRACT. Medial entorhinal grid cells display strikingly symmetric spatial firing patterns. The clarity of these patterns motivated the use of specific activity pattern shapes to classify entorhinal cell types. While this approach successfully revealed cells that encode boundaries, head direction, and running speed, it left a majority of cells unclassified, and its pre-defined nature may have missed unconventional, yet important coding properties. Here, we apply an unbiased statistical approach to search for cells that encode navigationally relevant variables. This approach successfully classifies the majority of entorhinal cells and reveals unsuspected entorhinal coding principles. First, we find a high degree of mixed selectivity and heterogeneity in superficial entorhinal neurons. Second, we discover a dynamic and remarkably adaptive code for space that enables entorhinal cells to rapidly encode navigational information accurately at high running speeds. Combined, these observations advance our current understanding of the mechanistic origins and functional implications of the entorhinal code for navigation. VIDEO ABSTRACT. |
| Author | Maheswaranathan, Niru Hardcastle, Kiah Ganguli, Surya Giocomo, Lisa M |
| Author_xml | – sequence: 1 givenname: Kiah surname: Hardcastle fullname: Hardcastle, Kiah email: khardcas@stanford.edu organization: Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA. Electronic address: khardcas@stanford.edu – sequence: 2 givenname: Niru surname: Maheswaranathan fullname: Maheswaranathan, Niru organization: Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA – sequence: 3 givenname: Surya surname: Ganguli fullname: Ganguli, Surya organization: Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA – sequence: 4 givenname: Lisa M surname: Giocomo fullname: Giocomo, Lisa M email: giocomo@stanford.edu organization: Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Electronic address: giocomo@stanford.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28392071$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtOwzAURC1URB_wBwh5yaIJvnZeXlZRoUgtbGDDJnLim-IqtUPiVOXvqXhIrOYsjkaamZKRdRYJuQYWAoPkbhdaHDpnQ84gDZkIGY_PyASYTIMIpBz94zGZ9v2OMYhiCRdkzDMhOUthQt4WdDM03rQNHlHP6Qo9dm6LFt3Qz6mymi60ar05IM2dRlq7jj6pg9kqb5ylxtINaqMaurTede_GnjB3ncfjJTmvVdPj1W_OyOv98iVfBevnh8d8sQ6qSIIPZC1khSKOylpUuqyjFOIkYZlOMa0FZghpJmvgleBY8QoyzcpScR1DolmaMD4jtz-9bec-Bux9sTd9hU2jvkcUkGWJiAFEdFJvftWh3KMu2s7sVfdZ_P3BvwAF2GWs |
| CitedBy_id | crossref_primary_10_1002_hipo_23191 crossref_primary_10_1038_s41467_025_62733_7 crossref_primary_10_1038_s41467_024_54699_9 crossref_primary_10_1073_pnas_2417025122 crossref_primary_10_7554_eLife_29222 crossref_primary_10_1126_science_aau2013 crossref_primary_10_1002_hipo_23513 crossref_primary_10_1002_hipo_23596 crossref_primary_10_1038_s41467_021_20936_8 crossref_primary_10_1016_j_cub_2023_07_012 crossref_primary_10_1016_j_neubiorev_2019_11_013 crossref_primary_10_1002_hipo_23510 crossref_primary_10_1038_s41583_021_00479_z crossref_primary_10_1016_j_cub_2019_07_007 crossref_primary_10_1016_j_neuron_2024_08_007 crossref_primary_10_1016_j_neuron_2025_03_029 crossref_primary_10_1126_science_adk9385 crossref_primary_10_3389_fncir_2020_00056 crossref_primary_10_1016_j_conb_2018_04_013 crossref_primary_10_1038_s41467_021_22195_z crossref_primary_10_1038_s41467_017_02501_4 crossref_primary_10_1126_science_aav5297 crossref_primary_10_1371_journal_pcbi_1006041 crossref_primary_10_1007_s12264_022_00968_w crossref_primary_10_1016_j_celrep_2025_115412 crossref_primary_10_1038_s41593_019_0562_5 crossref_primary_10_7554_eLife_85646_3 crossref_primary_10_1016_j_isci_2025_111993 crossref_primary_10_1016_j_cub_2022_08_050 crossref_primary_10_1016_j_neuron_2020_05_022 crossref_primary_10_7554_eLife_86943 crossref_primary_10_1002_hipo_23188 crossref_primary_10_1038_s41593_022_01088_4 crossref_primary_10_1016_j_neuron_2022_08_013 crossref_primary_10_1146_annurev_psych_021021_103038 crossref_primary_10_1038_s41586_024_08145_x crossref_primary_10_1152_jn_00880_2017 crossref_primary_10_7554_eLife_80680 crossref_primary_10_1038_s41467_024_52315_4 crossref_primary_10_7554_eLife_59816 crossref_primary_10_1016_j_neubiorev_2023_105200 crossref_primary_10_1038_s41593_017_0055_3 crossref_primary_10_1038_s42003_021_02727_5 crossref_primary_10_1002_hipo_23017 crossref_primary_10_1523_JNEUROSCI_0861_23_2024 crossref_primary_10_1016_j_cub_2023_05_031 crossref_primary_10_1038_s41467_020_17500_1 crossref_primary_10_1038_s41586_024_07139_z crossref_primary_10_1371_journal_pcbi_1006741 crossref_primary_10_1016_j_coisb_2017_04_008 crossref_primary_10_1162_neco_a_01280 crossref_primary_10_1038_s41467_023_42609_4 crossref_primary_10_1038_s41593_019_0561_6 crossref_primary_10_1016_j_cub_2023_09_019 crossref_primary_10_1016_j_compag_2023_107628 crossref_primary_10_7554_eLife_86943_3 crossref_primary_10_1016_j_neures_2021_07_002 crossref_primary_10_1038_s41467_022_28153_7 crossref_primary_10_1242_jeb_188912 crossref_primary_10_1126_science_ads4760 crossref_primary_10_1162_neco_a_01705 crossref_primary_10_1523_JNEUROSCI_0581_23_2023 crossref_primary_10_1016_j_cub_2023_07_024 crossref_primary_10_1038_s41593_018_0189_y crossref_primary_10_1113_JP282758 crossref_primary_10_1016_j_neuron_2018_11_019 crossref_primary_10_1126_science_aav4837 crossref_primary_10_1038_s41586_021_04268_7 crossref_primary_10_1038_s41467_025_62856_x crossref_primary_10_1016_j_cub_2025_04_036 crossref_primary_10_1038_s41467_022_29583_z crossref_primary_10_1162_imag_a_00354 crossref_primary_10_1162_neco_a_01150 crossref_primary_10_1016_j_neuron_2022_10_003 crossref_primary_10_1073_pnas_1912792116 crossref_primary_10_1073_pnas_2018422118 crossref_primary_10_1177_2398212818810686 crossref_primary_10_1007_s10827_020_00740_x crossref_primary_10_1016_j_cub_2021_01_032 crossref_primary_10_1016_j_neuron_2023_09_013 crossref_primary_10_1016_j_tics_2022_11_003 crossref_primary_10_1038_s41593_023_01306_7 crossref_primary_10_1016_j_neuron_2021_07_005 crossref_primary_10_7554_eLife_46687 crossref_primary_10_7554_eLife_85646 crossref_primary_10_1038_nn_4653 crossref_primary_10_3390_e20080571 crossref_primary_10_1038_nn_4654 crossref_primary_10_1152_jn_00686_2017 crossref_primary_10_1016_j_tics_2024_03_003 crossref_primary_10_1007_s00415_018_8828_5 crossref_primary_10_1371_journal_pbio_3003087 crossref_primary_10_1038_s41583_021_00499_9 crossref_primary_10_1038_s41467_018_05562_1 crossref_primary_10_1038_s41467_024_45853_4 crossref_primary_10_1515_revneuro_2022_0107 crossref_primary_10_1152_jn_00574_2017 crossref_primary_10_1016_j_celrep_2024_114539 crossref_primary_10_1038_s41467_024_49897_4 crossref_primary_10_3389_fpsyg_2024_1359687 crossref_primary_10_1038_s41598_020_58194_1 crossref_primary_10_7554_eLife_61821 crossref_primary_10_1016_j_conb_2022_102665 crossref_primary_10_1002_hipo_23145 crossref_primary_10_1111_ejn_14594 crossref_primary_10_1016_j_conb_2020_01_015 crossref_primary_10_1016_j_neuron_2020_06_023 crossref_primary_10_3389_fnins_2024_1276714 crossref_primary_10_7554_eLife_66551 crossref_primary_10_1016_j_neuron_2018_10_002 crossref_primary_10_1016_j_cub_2017_06_067 crossref_primary_10_1038_s41586_024_08527_1 crossref_primary_10_1152_jn_00498_2017 crossref_primary_10_1016_j_neuroscience_2018_01_066 crossref_primary_10_1038_s41586_022_05378_6 crossref_primary_10_1016_j_neuron_2019_03_034 crossref_primary_10_7554_eLife_83008 crossref_primary_10_1016_j_conb_2020_11_005 crossref_primary_10_1126_science_aax4192 crossref_primary_10_1016_j_cub_2019_11_048 crossref_primary_10_1073_pnas_2106830119 crossref_primary_10_1016_j_conb_2017_07_005 crossref_primary_10_1016_j_cub_2023_03_066 crossref_primary_10_7554_eLife_62500 crossref_primary_10_1038_s41586_024_07557_z crossref_primary_10_1038_s41593_024_01683_7 crossref_primary_10_1146_annurev_neuro_090922_010618 crossref_primary_10_1016_j_neuron_2021_09_032 crossref_primary_10_1016_j_neuron_2021_06_019 crossref_primary_10_1038_s41467_023_39520_3 crossref_primary_10_1126_science_aau4940 crossref_primary_10_1111_mila_12535 crossref_primary_10_7554_eLife_43140 crossref_primary_10_1016_j_cub_2024_10_057 crossref_primary_10_1016_j_cub_2025_08_048 crossref_primary_10_1097_WCO_0000000000000638 crossref_primary_10_1016_j_neunet_2021_01_028 crossref_primary_10_1523_JNEUROSCI_1124_22_2022 crossref_primary_10_7554_eLife_52258 crossref_primary_10_1038_s41593_019_0359_6 crossref_primary_10_1016_j_conb_2022_102644 crossref_primary_10_1016_j_neuron_2023_11_018 crossref_primary_10_1371_journal_pcbi_1006804 crossref_primary_10_1038_s41467_022_34114_x crossref_primary_10_1038_s41598_025_95585_8 crossref_primary_10_1038_s41586_022_04913_9 crossref_primary_10_7554_eLife_34560 crossref_primary_10_1371_journal_pcbi_1011430 crossref_primary_10_1073_pnas_1805959115 crossref_primary_10_1016_j_neuron_2021_12_012 crossref_primary_10_1093_cercor_bhaa386 crossref_primary_10_3389_fncom_2021_616748 crossref_primary_10_1016_j_conb_2018_02_014 crossref_primary_10_1088_1741_2552_ac6771 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neuron.2017.03.025 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| EISSN | 1097-4199 |
| ExternalDocumentID | 28392071 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Wellcome Trust – fundername: NINDS NIH HHS grantid: U01 NS094288 – fundername: NIMH NIH HHS grantid: R01 MH106475 – fundername: NIMH NIH HHS grantid: T32 MH020016 |
| GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 4.4 457 4G. 53G 5RE 62- 7-5 8FE 8FH AAEDT AAEDW AAFWJ AAKRW AAKUH AALRI AAMRU AAVLU AAXUO AAYWO ABDGV ABJNI ABMAC ACGFO ACGFS ACIWK ACNCT ACPRK ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGCQF AGKMS AHHHB AHMBA AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP AQUVI ASPBG AVWKF AZFZN BAWUL BKEYQ BKNYI BPHCQ BVXVI CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EFKBS EIF EJD F5P FCP FDB FEDTE FIRID HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M3Z M41 N9A NPM O-L O9- OK1 P2P P6G PQQKQ PROAC RIG ROL RPZ SCP SDP SES SSZ TR2 WOW 7X8 |
| ID | FETCH-LOGICAL-c491t-9f39ce354bf3cdbf47156608d7e7f3e8e1789f12c32ec2c18d0bba2d516d07602 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 181 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399451400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-4199 |
| IngestDate | Wed Oct 01 13:23:22 EDT 2025 Mon Jul 21 06:08:20 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Multiplexed-coding spatial navigation entorhinal cortex adaptive coding computational models of spatial coding encoding mode tuning heterogeneity |
| Language | English |
| License | Copyright © 2017 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c491t-9f39ce354bf3cdbf47156608d7e7f3e8e1789f12c32ec2c18d0bba2d516d07602 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5498174 |
| PMID | 28392071 |
| PQID | 1886351134 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1886351134 pubmed_primary_28392071 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-19 |
| PublicationDateYYYYMMDD | 2017-04-19 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuron (Cambridge, Mass.) |
| PublicationTitleAlternate | Neuron |
| PublicationYear | 2017 |
| References | 23222610 - Nature. 2012 Dec 6;492(7427):72-8 27427460 - Neuron. 2016 Aug 3;91(3):666-79 12467597 - Neuron. 2002 Dec 5;36(5):945-54 23334580 - Nat Neurosci. 2013 Mar;16(3):318-24 25383902 - Nat Neurosci. 2014 Dec;17(12):1784-92 19095945 - Science. 2008 Dec 19;322(5909):1865-8 11518957 - Nature. 2001 Aug 23;412(6849):787-92 18215625 - Neuron. 2008 Jan 24;57(2):290-302 23334581 - Nat Neurosci. 2013 Mar;16(3):309-17 16495990 - Nature. 2006 Feb 23;439(7079):936-42 17696288 - Int J Neural Syst. 2007 Aug;17(4):231-40 19021251 - Hippocampus. 2008;18(12):1175-85 8353604 - Hippocampus. 1993 Apr;3(2):165-82 24638961 - Hippocampus. 2014 Mar;24(3):249-56 19021262 - Hippocampus. 2008;18(12):1270-82 23312522 - Neuron. 2013 Jan 9;77(1):141-54 14403679 - J Physiol. 1959 Oct;148:574-91 24743341 - PLoS Comput Biol. 2014 Apr 17;10(4):e1003558 16001064 - Nature. 2005 Jul 7;436(7047):71-7 21835347 - Neuron. 2011 Aug 11;71(3):512-28 11539168 - Adv Neural Inf Process Syst. 1995;7:173-80 11811656 - Hippocampus. 2001;11(6):626-36 26748022 - Neurobiol Learn Mem. 2016 Oct;134 Pt A:178-91 20558721 - Science. 2010 Jun 18;328(5985):1576-80 15680687 - Neuroscience. 2005;131(1):1-11 26170279 - Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9466-71 12061421 - Network. 2002 May;13(2):217-42 25033185 - Neuron. 2014 Jul 16;83(2):455-66 26824660 - Cell. 2016 Jan 28;164(3):526-37 23447596 - J Neurosci. 2013 Feb 27;33(9):3844-56 26851755 - Curr Opin Neurobiol. 2016 Apr;37:66-74 25932978 - Curr Opin Neurobiol. 2015 Jun;32:148-55 27030753 - J Neurosci. 2016 Mar 30;36(13):3660-75 1308182 - Hippocampus. 1992 Apr;2(2):189-99 20558720 - Science. 2010 Jun 18;328(5985):1573-6 16858394 - Nat Rev Neurosci. 2006 Aug;7(8):663-78 22904012 - Science. 2012 Aug 17;337(6096):853-7 7704110 - Hippocampus. 1994 Dec;4(6):661-82 12161755 - Nat Neurosci. 2002 Sep;5(9):883-91 26176924 - Nature. 2015 Jul 23;523(7561):419-24 16624947 - J Neurosci. 2006 Apr 19;26(16):4266-76 17303747 - Science. 2007 Feb 16;315(5814):961-6 15965463 - Nature. 2005 Aug 11;436(7052):801-6 12741993 - Neuron. 2003 May 8;38(3):473-85 25174005 - Nat Neurosci. 2014 Oct;17(10):1395-403 24201281 - Nature. 2013 Nov 7;503(7474):78-84 23685452 - Nature. 2013 May 30;497(7451):585-90 26539893 - Neuron. 2015 Nov 4;88(3):578-89 8604055 - J Neurosci. 1996 Mar 15;16(6):2112-26 25033187 - Neuron. 2014 Jul 16;83(2):481-95 16675704 - Science. 2006 May 5;312(5774):758-62 25482025 - Neuron. 2014 Dec 17;84(6):1191-7 23852111 - Nat Neurosci. 2013 Aug;16(8):1077-84 26711115 - Neuron. 2016 Jan 6;89(1):194-208 19229307 - PLoS Comput Biol. 2009 Feb;5(2):e1000291 1092814 - J Neurophysiol. 1975 Mar;38(2):231-49 |
| References_xml | – reference: 14403679 - J Physiol. 1959 Oct;148:574-91 – reference: 23334580 - Nat Neurosci. 2013 Mar;16(3):318-24 – reference: 26711115 - Neuron. 2016 Jan 6;89(1):194-208 – reference: 26748022 - Neurobiol Learn Mem. 2016 Oct;134 Pt A:178-91 – reference: 16624947 - J Neurosci. 2006 Apr 19;26(16):4266-76 – reference: 11811656 - Hippocampus. 2001;11(6):626-36 – reference: 15965463 - Nature. 2005 Aug 11;436(7052):801-6 – reference: 17696288 - Int J Neural Syst. 2007 Aug;17(4):231-40 – reference: 20558721 - Science. 2010 Jun 18;328(5985):1576-80 – reference: 23312522 - Neuron. 2013 Jan 9;77(1):141-54 – reference: 18215625 - Neuron. 2008 Jan 24;57(2):290-302 – reference: 7704110 - Hippocampus. 1994 Dec;4(6):661-82 – reference: 23685452 - Nature. 2013 May 30;497(7451):585-90 – reference: 25174005 - Nat Neurosci. 2014 Oct;17(10):1395-403 – reference: 25932978 - Curr Opin Neurobiol. 2015 Jun;32:148-55 – reference: 11518957 - Nature. 2001 Aug 23;412(6849):787-92 – reference: 1308182 - Hippocampus. 1992 Apr;2(2):189-99 – reference: 11539168 - Adv Neural Inf Process Syst. 1995;7:173-80 – reference: 23334581 - Nat Neurosci. 2013 Mar;16(3):309-17 – reference: 15680687 - Neuroscience. 2005;131(1):1-11 – reference: 21835347 - Neuron. 2011 Aug 11;71(3):512-28 – reference: 12467597 - Neuron. 2002 Dec 5;36(5):945-54 – reference: 19021262 - Hippocampus. 2008;18(12):1270-82 – reference: 26539893 - Neuron. 2015 Nov 4;88(3):578-89 – reference: 19095945 - Science. 2008 Dec 19;322(5909):1865-8 – reference: 8604055 - J Neurosci. 1996 Mar 15;16(6):2112-26 – reference: 19021251 - Hippocampus. 2008;18(12):1175-85 – reference: 19229307 - PLoS Comput Biol. 2009 Feb;5(2):e1000291 – reference: 23222610 - Nature. 2012 Dec 6;492(7427):72-8 – reference: 8353604 - Hippocampus. 1993 Apr;3(2):165-82 – reference: 22904012 - Science. 2012 Aug 17;337(6096):853-7 – reference: 24743341 - PLoS Comput Biol. 2014 Apr 17;10(4):e1003558 – reference: 26176924 - Nature. 2015 Jul 23;523(7561):419-24 – reference: 24201281 - Nature. 2013 Nov 7;503(7474):78-84 – reference: 27427460 - Neuron. 2016 Aug 3;91(3):666-79 – reference: 12161755 - Nat Neurosci. 2002 Sep;5(9):883-91 – reference: 25033185 - Neuron. 2014 Jul 16;83(2):455-66 – reference: 16858394 - Nat Rev Neurosci. 2006 Aug;7(8):663-78 – reference: 20558720 - Science. 2010 Jun 18;328(5985):1573-6 – reference: 25383902 - Nat Neurosci. 2014 Dec;17(12):1784-92 – reference: 25033187 - Neuron. 2014 Jul 16;83(2):481-95 – reference: 16495990 - Nature. 2006 Feb 23;439(7079):936-42 – reference: 26824660 - Cell. 2016 Jan 28;164(3):526-37 – reference: 1092814 - J Neurophysiol. 1975 Mar;38(2):231-49 – reference: 23852111 - Nat Neurosci. 2013 Aug;16(8):1077-84 – reference: 27030753 - J Neurosci. 2016 Mar 30;36(13):3660-75 – reference: 17303747 - Science. 2007 Feb 16;315(5814):961-6 – reference: 16001064 - Nature. 2005 Jul 7;436(7047):71-7 – reference: 12741993 - Neuron. 2003 May 8;38(3):473-85 – reference: 16675704 - Science. 2006 May 5;312(5774):758-62 – reference: 24638961 - Hippocampus. 2014 Mar;24(3):249-56 – reference: 23447596 - J Neurosci. 2013 Feb 27;33(9):3844-56 – reference: 12061421 - Network. 2002 May;13(2):217-42 – reference: 26851755 - Curr Opin Neurobiol. 2016 Apr;37:66-74 – reference: 25482025 - Neuron. 2014 Dec 17;84(6):1191-7 – reference: 26170279 - Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9466-71 |
| SSID | ssj0014591 |
| Score | 2.6162622 |
| Snippet | Medial entorhinal grid cells display strikingly symmetric spatial firing patterns. The clarity of these patterns motivated the use of specific activity pattern... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 375 |
| SubjectTerms | Action Potentials - physiology Animals Entorhinal Cortex - physiology Female Head Male Mice, Inbred C57BL Models, Neurological Motor Activity - physiology Neurons - physiology Space Perception - physiology Theta Rhythm - physiology |
| Title | A Multiplexed, Heterogeneous, and Adaptive Code for Navigation in Medial Entorhinal Cortex |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28392071 https://www.proquest.com/docview/1886351134 |
| Volume | 94 |
| WOSCitedRecordID | wos000399451400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnjx0fqoL1YQTw3mvbsnCdLSgw09qBQvIfuCgia1raX9985uUnoSBC-BQBaSncnst_PNzofQHQezkjhXDqBVFzYobu7QKA4cGSrOuSSutKnst2eSpnQ0YsM64TaryyrXMdEGalkKkyN_8CiNDekVhI-TL8eoRhl2tZbQ2EaNAKCMKekiow2LEEZWMc-QrIbtZOujc7a-y_aLNB1QPWLbnPrR7yDTLja9w_--5hE6qGEmTiq_OEZbqmiiVlLAFvtzhe-xLfy0GfUm2qv0KFct9J7gQV1guFSyg_umVqYEF1Pl96yD80LiROYTEyHxUykVBsSL03xh23SUBR4XeGBPouBuAXt5I839AQ9O52p5gl573ZenvlOLLzgiZN7cYTpgQgVRyHUgJNewiAHyc6kkiuhAUeURyrTni8BXwhcelS7nuS8jL5aG7fNP0U5RFuocYV8LuJeRppEOBWM8BsyoqHAJ1wJcoo1u13OZgXMbxiK3H5ZtZrONziqDZJOqC0fmG2gHAOniD6Mv0b6xs2GBPHaFGhp-bXWNdsViPp5Nb6zXwDUdDn4A8EvMcQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multiplexed%2C+Heterogeneous%2C+and+Adaptive+Code+for+Navigation+in+Medial+Entorhinal+Cortex&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Hardcastle%2C+Kiah&rft.au=Maheswaranathan%2C+Niru&rft.au=Ganguli%2C+Surya&rft.au=Giocomo%2C+Lisa+M&rft.date=2017-04-19&rft.issn=1097-4199&rft.eissn=1097-4199&rft.volume=94&rft.issue=2&rft.spage=375&rft_id=info:doi/10.1016%2Fj.neuron.2017.03.025&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4199&client=summon |