StRegA: Unsupervised anomaly detection in brain MRIs using a compact context-encoding variational autoencoder

Expert interpretation of anatomical images of the human brain is the central part of neuroradiology. Several machine learning-based techniques have been proposed to assist in the analysis process. However, the ML models typically need to be trained to perform a specific task, e.g., brain tumour segm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine Jg. 149; S. 106093
Hauptverfasser: Chatterjee, Soumick, Sciarra, Alessandro, Dünnwald, Max, Tummala, Pavan, Agrawal, Shubham Kumar, Jauhari, Aishwarya, Kalra, Aman, Oeltze-Jafra, Steffen, Speck, Oliver, Nürnberger, Andreas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 01.10.2022
Elsevier Limited
Schlagworte:
ISSN:0010-4825, 1879-0534, 1879-0534
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Expert interpretation of anatomical images of the human brain is the central part of neuroradiology. Several machine learning-based techniques have been proposed to assist in the analysis process. However, the ML models typically need to be trained to perform a specific task, e.g., brain tumour segmentation or classification. Not only do the corresponding training data require laborious manual annotations, but a wide variety of abnormalities can be present in a human brain MRI — even more than one simultaneously, which renders a representation of all possible anomalies very challenging. Hence, a possible solution is an unsupervised anomaly detection (UAD) system that can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out-of-distribution samples. Such a technique can then be used to detect anomalies — lesions or abnormalities, for example, brain tumours, without explicitly training the model for that specific pathology. Several Variational Autoencoder (VAE) based techniques have been proposed in the past for this task. Even though they perform very well on controlled artificially simulated anomalies, many of them perform poorly while detecting anomalies in clinical data. This research proposes a compact version of the “context-encoding” VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA), which is more robust on clinical data and shows its applicability in detecting anomalies such as tumours in brain MRIs. The proposed pipeline achieved a Dice score of 0.642 ± 0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859 ± 0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522 ± 0.135 and 0.783 ± 0.111, respectively. •Proposes unsupervised anomaly detection pipeline StRegA and compact ceVAE model.•The model is combined the proposed pre- and post-processing steps to form StRegA.•Trained on anomaly-free brain MRI datasets and evaluated for the task of brain tumour detection.•Proposed pipeline achieved a Dice score of 0.642 ± 0.101 while detecting tumours in T2w images of the BraTS dataset.•Achieved a Dice score of 0.859 ± 0.112 while detecting artificially induced anomalies.
AbstractList Expert interpretation of anatomical images of the human brain is the central part of neuroradiology. Several machine learning-based techniques have been proposed to assist in the analysis process. However, the ML models typically need to be trained to perform a specific task, e.g., brain tumour segmentation or classification. Not only do the corresponding training data require laborious manual annotations, but a wide variety of abnormalities can be present in a human brain MRI — even more than one simultaneously, which renders a representation of all possible anomalies very challenging. Hence, a possible solution is an unsupervised anomaly detection (UAD) system that can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out-of-distribution samples. Such a technique can then be used to detect anomalies — lesions or abnormalities, for example, brain tumours, without explicitly training the model for that specific pathology. Several Variational Autoencoder (VAE) based techniques have been proposed in the past for this task. Even though they perform very well on controlled artificially simulated anomalies, many of them perform poorly while detecting anomalies in clinical data. This research proposes a compact version of the “context-encoding” VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA), which is more robust on clinical data and shows its applicability in detecting anomalies such as tumours in brain MRIs. The proposed pipeline achieved a Dice score of 0.642 ± 0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859 ± 0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522 ± 0.135 and 0.783 ± 0.111, respectively. •Proposes unsupervised anomaly detection pipeline StRegA and compact ceVAE model.•The model is combined the proposed pre- and post-processing steps to form StRegA.•Trained on anomaly-free brain MRI datasets and evaluated for the task of brain tumour detection.•Proposed pipeline achieved a Dice score of 0.642 ± 0.101 while detecting tumours in T2w images of the BraTS dataset.•Achieved a Dice score of 0.859 ± 0.112 while detecting artificially induced anomalies.
Expert interpretation of anatomical images of the human brain is the central part of neuroradiology. Several machine learning-based techniques have been proposed to assist in the analysis process. However, the ML models typically need to be trained to perform a specific task, e.g., brain tumour segmentation or classification. Not only do the corresponding training data require laborious manual annotations, but a wide variety of abnormalities can be present in a human brain MRI - even more than one simultaneously, which renders a representation of all possible anomalies very challenging. Hence, a possible solution is an unsupervised anomaly detection (UAD) system that can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out-of-distribution samples. Such a technique can then be used to detect anomalies - lesions or abnormalities, for example, brain tumours, without explicitly training the model for that specific pathology. Several Variational Autoencoder (VAE) based techniques have been proposed in the past for this task. Even though they perform very well on controlled artificially simulated anomalies, many of them perform poorly while detecting anomalies in clinical data. This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA), which is more robust on clinical data and shows its applicability in detecting anomalies such as tumours in brain MRIs. The proposed pipeline achieved a Dice score of 0.642 ± 0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859 ± 0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522 ± 0.135 and 0.783 ± 0.111, respectively.Expert interpretation of anatomical images of the human brain is the central part of neuroradiology. Several machine learning-based techniques have been proposed to assist in the analysis process. However, the ML models typically need to be trained to perform a specific task, e.g., brain tumour segmentation or classification. Not only do the corresponding training data require laborious manual annotations, but a wide variety of abnormalities can be present in a human brain MRI - even more than one simultaneously, which renders a representation of all possible anomalies very challenging. Hence, a possible solution is an unsupervised anomaly detection (UAD) system that can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out-of-distribution samples. Such a technique can then be used to detect anomalies - lesions or abnormalities, for example, brain tumours, without explicitly training the model for that specific pathology. Several Variational Autoencoder (VAE) based techniques have been proposed in the past for this task. Even though they perform very well on controlled artificially simulated anomalies, many of them perform poorly while detecting anomalies in clinical data. This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA), which is more robust on clinical data and shows its applicability in detecting anomalies such as tumours in brain MRIs. The proposed pipeline achieved a Dice score of 0.642 ± 0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859 ± 0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522 ± 0.135 and 0.783 ± 0.111, respectively.
AbstractExpert interpretation of anatomical images of the human brain is the central part of neuroradiology. Several machine learning-based techniques have been proposed to assist in the analysis process. However, the ML models typically need to be trained to perform a specific task, e.g., brain tumour segmentation or classification. Not only do the corresponding training data require laborious manual annotations, but a wide variety of abnormalities can be present in a human brain MRI — even more than one simultaneously, which renders a representation of all possible anomalies very challenging. Hence, a possible solution is an unsupervised anomaly detection (UAD) system that can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out-of-distribution samples. Such a technique can then be used to detect anomalies — lesions or abnormalities, for example, brain tumours, without explicitly training the model for that specific pathology. Several Variational Autoencoder (VAE) based techniques have been proposed in the past for this task. Even though they perform very well on controlled artificially simulated anomalies, many of them perform poorly while detecting anomalies in clinical data. This research proposes a compact version of the “context-encoding” VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA), which is more robust on clinical data and shows its applicability in detecting anomalies such as tumours in brain MRIs. The proposed pipeline achieved a Dice score of 0.642 ± 0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859 ± 0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522 ± 0.135 and 0.783 ± 0.111, respectively.
Expert interpretation of anatomical images of the human brain is the central part of neuroradiology. Several machine learning-based techniques have been proposed to assist in the analysis process. However, the ML models typically need to be trained to perform a specific task, e.g., brain tumour segmentation or classification. Not only do the corresponding training data require laborious manual annotations, but a wide variety of abnormalities can be present in a human brain MRI — even more than one simultaneously, which renders a representation of all possible anomalies very challenging. Hence, a possible solution is an unsupervised anomaly detection (UAD) system that can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out-of-distribution samples. Such a technique can then be used to detect anomalies — lesions or abnormalities, for example, brain tumours, without explicitly training the model for that specific pathology. Several Variational Autoencoder (VAE) based techniques have been proposed in the past for this task. Even though they perform very well on controlled artificially simulated anomalies, many of them perform poorly while detecting anomalies in clinical data. This research proposes a compact version of the “context-encoding” VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA), which is more robust on clinical data and shows its applicability in detecting anomalies such as tumours in brain MRIs. The proposed pipeline achieved a Dice score of 0.642 ± 0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859 ± 0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522 ± 0.135 and 0.783 ± 0.111, respectively.
ArticleNumber 106093
Author Oeltze-Jafra, Steffen
Sciarra, Alessandro
Dünnwald, Max
Speck, Oliver
Nürnberger, Andreas
Tummala, Pavan
Chatterjee, Soumick
Agrawal, Shubham Kumar
Jauhari, Aishwarya
Kalra, Aman
Author_xml – sequence: 1
  givenname: Soumick
  orcidid: 0000-0001-7594-1188
  surname: Chatterjee
  fullname: Chatterjee, Soumick
  email: soumick.chatterjee@ovgu.de, contact@soumick.com
  organization: Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany
– sequence: 2
  givenname: Alessandro
  surname: Sciarra
  fullname: Sciarra, Alessandro
  organization: Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Germany
– sequence: 3
  givenname: Max
  surname: Dünnwald
  fullname: Dünnwald, Max
  organization: Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany
– sequence: 4
  givenname: Pavan
  surname: Tummala
  fullname: Tummala, Pavan
  organization: Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany
– sequence: 5
  givenname: Shubham Kumar
  surname: Agrawal
  fullname: Agrawal, Shubham Kumar
  organization: Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany
– sequence: 6
  givenname: Aishwarya
  surname: Jauhari
  fullname: Jauhari, Aishwarya
  organization: Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany
– sequence: 7
  givenname: Aman
  surname: Kalra
  fullname: Kalra, Aman
  organization: Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany
– sequence: 8
  givenname: Steffen
  surname: Oeltze-Jafra
  fullname: Oeltze-Jafra, Steffen
  organization: MedDigit, Department of Neurology, Medical Faculty, University Hospital, Magdeburg, Germany
– sequence: 9
  givenname: Oliver
  surname: Speck
  fullname: Speck, Oliver
  organization: Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Germany
– sequence: 10
  givenname: Andreas
  surname: Nürnberger
  fullname: Nürnberger, Andreas
  organization: Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany
BookMark eNqNUt9rFDEQDlLB6-n_EPDFlz0nyd7-8KFYi62FitDa55Bk50rO3eRMsof335vtisKBcC-ZkPnmy8z3zTk5c94hIZTBigGr3m9Xxg87bf2A3YoD5_m5gla8IAvW1G0Ba1GekQUAg6Js-PoVOY9xCwAlCFiQ4SHd49PlB_ro4rjDsLcRO6qcH1R_oB0mNMl6R62jOqh8fr2_jXSM1j1RRaevlUk5uoS_UoHO-G5K7VWwaipUPVVj8s8JDK_Jy43qI775E5fk8frz96svxd23m9ury7vClC1LRaOh41hvlBBlXekW-VrpDWcGtS6Bdxp01TZtA0bU0GJVshaU0sAEA9QNiiV5N_Pugv85YkxysNFg3yuHfoyS12xdt6LNOi3J2yPo1o8h9z2juFhXZZlRFzPKBB9jwI00Nj0PmLIqvWQgJzfkVv5zQ05uyNmNTNAcEeyCHVQ4nFL6aS7FrNjeYpDR2CwodjZkd2Tn7SkkF0ckprfOGtX_wAPGvzMzGbkE-TDty7QunAM0-Z4JPv6f4LQefgOX6NiH
CitedBy_id crossref_primary_10_1016_j_compmedimag_2024_102372
crossref_primary_10_1016_j_nucengdes_2023_112712
crossref_primary_10_21833_ijaas_2025_08_024
crossref_primary_10_1016_j_bspc_2024_107063
crossref_primary_10_1007_s10489_024_05647_z
crossref_primary_10_1515_mr_2024_0086
crossref_primary_10_1016_j_ascom_2024_100921
crossref_primary_10_1177_14759217251377641
crossref_primary_10_1016_j_media_2025_103623
crossref_primary_10_1016_j_neucom_2024_127761
crossref_primary_10_1007_s11831_025_10238_3
crossref_primary_10_3390_diagnostics13111925
crossref_primary_10_3390_healthcare13151776
crossref_primary_10_1016_j_asoc_2024_111919
crossref_primary_10_1109_TAI_2023_3323918
Cites_doi 10.1016/j.media.2022.102475
10.1016/j.enbuild.2019.109689
10.1016/j.cviu.2020.102920
10.1016/j.patrec.2017.07.016
10.1016/j.nicl.2017.12.022
10.1007/s13244-016-0534-1
10.1016/j.compbiomed.2022.105620
10.1016/j.compbiomed.2022.105810
10.1016/S1474-4422(13)70124-8
10.1016/j.neuroimage.2011.09.015
10.1016/j.eswa.2011.09.088
10.1016/j.cmpb.2020.105639
10.1145/3178876.3185996
10.1177/1352458517751647
10.1109/TMI.2014.2377694
10.1148/rg.2015150023
10.1145/3466826.3466843
10.1109/42.811270
10.1002/aic.690370209
10.1016/j.sigpro.2013.12.026
10.1016/j.neucom.2019.08.044
10.1145/1007730.1007738
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Elsevier Ltd
2022. Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Elsevier Ltd
– notice: 2022. Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2022.106093
DatabaseName CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
ProQuest Biological Science
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Research Library Prep
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 106093
ExternalDocumentID 10_1016_j_compbiomed_2022_106093
S0010482522008010
1_s2_0_S0010482522008010
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
9DU
AAYXX
AFFHD
CITATION
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c491t-8b0d2e7fa33476b9e25abf21cebb402db0b698980c3709e64190aab01310eb8e3
IEDL.DBID M7P
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861361700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4825
1879-0534
IngestDate Sun Sep 28 05:50:15 EDT 2025
Sat Nov 29 14:39:20 EST 2025
Sat Nov 29 07:31:14 EST 2025
Tue Nov 18 22:31:38 EST 2025
Fri Feb 23 02:40:07 EST 2024
Tue Feb 25 20:12:01 EST 2025
Tue Oct 14 19:33:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Brain tumour segmentation
MRI
Anomaly detection
Unsupervised learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-8b0d2e7fa33476b9e25abf21cebb402db0b698980c3709e64190aab01310eb8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7594-1188
PQID 2715235644
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2715793909
proquest_journals_2715235644
crossref_citationtrail_10_1016_j_compbiomed_2022_106093
crossref_primary_10_1016_j_compbiomed_2022_106093
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_106093
elsevier_clinicalkeyesjournals_1_s2_0_S0010482522008010
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_106093
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers in biology and medicine
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Baur, Wiestler, Albarqouni, Navab (b32) 2020
Brady (b2) 2017; 8
Kingma, Ba (b45) 2014
Qi, Zhao, Yu, Heidari, Wu, Cai, Alenezi, Mansour, Chen, Chen (b47) 2022; 148
Van Leemput, Maes, Vandermeulen, Suetens (b42) 1999; 18
An, Cho (b33) 2015; 2
Iuso, Chatterjee, Heylen, Cornelissen, De Beenhouwer, Sijbers (b48) 2022; 12242
Gul, Khan, Bibi, Khandakar, Ayari, Chowdhury (b46) 2022
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b19) 2014; 27
Kramer (b26) 1991; 37
Makhzani, Shlens, Jaitly, Goodfellow, Frey (b28) 2016
Fan, Wen, Li, Qiu, Levine, Xiao (b39) 2020; 195
Guo, Liao, Wang, Yu, Ji, Li (b38) 2018
Pinaya, Tudosiu, Gray, Rees, Nachev, Ourselin, Cardoso (b16) 2022; 79
Zimmerer, Isensee, Petersen, Kohl, Maier-Hein (b13) 2019
Li, Chang (b30) 2019; 369
García González, Casas, Fernández, Gómez (b15) 2021; 48
Kim, Kang, Cho, Lee, Doh (b11) 2012; 39
Hagens, Burggraaff, Kilsdonk, Ruggieri, Collorone, Cortese, Cawley, Sbardella, Andelova, Amann (b1) 2019; 25
Pimentel, Clifton, Clifton, Tarassenko (b7) 2014; 99
Liu, Zhao, Chen, Yu, She (b14) 2020; 196
Kingma, Welling (b20) 2013
Ng (b27) 2011; 72
Beggel, Pfeiffer, Bischl (b29) 2019
Akcay, Atapour-Abarghouei, Breckon (b10) 2018
Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest (b4) 2014; 34
Liu, Xu, Li, Zhang, Li (b12) 2021
Bruno, Walker, Abujudeh (b3) 2015; 35
Guerrero, Qin, Oktay, Bowles, Chen, Joules, Wolz, Valdés-Hernández, Dickie, Wardlaw (b5) 2018; 17
H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei, Y. Feng, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications, in: Proceedings of the 2018 World Wide Web Conference, 2018, pp. 187–196.
Carrara, Amato, Brombin, Falchi, Gennaro (b23) 2021
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b24) 2017; 30
Chatterjee, Sciarra, Dünnwald, Agrawal, Tummala, Setlur, Kalra, Jauhari, Oeltze-Jafra, Speck, Nürnberger (b44) 2021
Dilokthanakul, Mediano, Garnelo, Lee, Salimbeni, Arulkumaran, Shanahan (b36) 2016
Baur, Wiestler, Albarqouni, Navab (b31) 2020
Oord, Vinyals, Kavukcuoglu (b34) 2017
Yan, Huang, Shen, Ji (b22) 2020; 210
Alain, Bengio (b17) 2014; 15
Phua, Alahakoon, Lee (b8) 2004; 6
Clifton, Bannister, Tarassenko (b9) 2007
Jenkinson, Beckmann, Behrens, Woolrich, Smith (b41) 2012; 62
Ribeiro, Lazzaretti, Lopes (b18) 2018; 105
Rumelhart, Hinton, Williams (b25) 1985
Marimont, Tarroni (b35) 2020
Chen, You, Tezcan, Konukoglu (b37) 2020
Wardlaw, Smith, Biessels, Cordonnier, Fazekas, Frayne, Lindley, T O’Brien, Barkhof, Benavente (b6) 2013; 12
Zimmerer, Kohl, Petersen, Isensee, Maier-Hein (b40) 2018
Zimmerer, Petersen, Köhler, Jäger, Full, Roß, Adler, Reinke, Maier-Hein, Maier-Hein (b43) 2021
Wardlaw (10.1016/j.compbiomed.2022.106093_b6) 2013; 12
10.1016/j.compbiomed.2022.106093_b21
Makhzani (10.1016/j.compbiomed.2022.106093_b28) 2016
Ng (10.1016/j.compbiomed.2022.106093_b27) 2011; 72
Van Leemput (10.1016/j.compbiomed.2022.106093_b42) 1999; 18
Pimentel (10.1016/j.compbiomed.2022.106093_b7) 2014; 99
Li (10.1016/j.compbiomed.2022.106093_b30) 2019; 369
Qi (10.1016/j.compbiomed.2022.106093_b47) 2022; 148
Zimmerer (10.1016/j.compbiomed.2022.106093_b13) 2019
Vaswani (10.1016/j.compbiomed.2022.106093_b24) 2017; 30
Beggel (10.1016/j.compbiomed.2022.106093_b29) 2019
Baur (10.1016/j.compbiomed.2022.106093_b31) 2020
Bruno (10.1016/j.compbiomed.2022.106093_b3) 2015; 35
Iuso (10.1016/j.compbiomed.2022.106093_b48) 2022; 12242
Alain (10.1016/j.compbiomed.2022.106093_b17) 2014; 15
Kramer (10.1016/j.compbiomed.2022.106093_b26) 1991; 37
Dilokthanakul (10.1016/j.compbiomed.2022.106093_b36) 2016
Guerrero (10.1016/j.compbiomed.2022.106093_b5) 2018; 17
Hagens (10.1016/j.compbiomed.2022.106093_b1) 2019; 25
Menze (10.1016/j.compbiomed.2022.106093_b4) 2014; 34
Liu (10.1016/j.compbiomed.2022.106093_b14) 2020; 196
Guo (10.1016/j.compbiomed.2022.106093_b38) 2018
Brady (10.1016/j.compbiomed.2022.106093_b2) 2017; 8
Phua (10.1016/j.compbiomed.2022.106093_b8) 2004; 6
Goodfellow (10.1016/j.compbiomed.2022.106093_b19) 2014; 27
García González (10.1016/j.compbiomed.2022.106093_b15) 2021; 48
Pinaya (10.1016/j.compbiomed.2022.106093_b16) 2022; 79
Oord (10.1016/j.compbiomed.2022.106093_b34) 2017
An (10.1016/j.compbiomed.2022.106093_b33) 2015; 2
Kim (10.1016/j.compbiomed.2022.106093_b11) 2012; 39
Jenkinson (10.1016/j.compbiomed.2022.106093_b41) 2012; 62
Carrara (10.1016/j.compbiomed.2022.106093_b23) 2021
Rumelhart (10.1016/j.compbiomed.2022.106093_b25) 1985
Chen (10.1016/j.compbiomed.2022.106093_b37) 2020
Baur (10.1016/j.compbiomed.2022.106093_b32) 2020
Liu (10.1016/j.compbiomed.2022.106093_b12) 2021
Yan (10.1016/j.compbiomed.2022.106093_b22) 2020; 210
Marimont (10.1016/j.compbiomed.2022.106093_b35) 2020
Fan (10.1016/j.compbiomed.2022.106093_b39) 2020; 195
Zimmerer (10.1016/j.compbiomed.2022.106093_b40) 2018
Gul (10.1016/j.compbiomed.2022.106093_b46) 2022
Akcay (10.1016/j.compbiomed.2022.106093_b10) 2018
Clifton (10.1016/j.compbiomed.2022.106093_b9) 2007
Ribeiro (10.1016/j.compbiomed.2022.106093_b18) 2018; 105
Zimmerer (10.1016/j.compbiomed.2022.106093_b43) 2021
Kingma (10.1016/j.compbiomed.2022.106093_b45) 2014
Chatterjee (10.1016/j.compbiomed.2022.106093_b44) 2021
Kingma (10.1016/j.compbiomed.2022.106093_b20) 2013
References_xml – year: 2020
  ident: b37
  article-title: Unsupervised lesion detection via image restoration with a normative prior
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: b41
  article-title: Fsl
  publication-title: Neuroimage
– volume: 12
  start-page: 822
  year: 2013
  end-page: 838
  ident: b6
  article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration
  publication-title: Lancet Neurol.
– year: 2020
  ident: b31
  article-title: Scale-space autoencoders for unsupervised anomaly segmentation in brain MRI
– volume: 35
  start-page: 1668
  year: 2015
  end-page: 1676
  ident: b3
  article-title: Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction
  publication-title: Radiographics
– volume: 37
  start-page: 233
  year: 1991
  end-page: 243
  ident: b26
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE J.
– start-page: 2399
  year: 2021
  ident: b44
  article-title: Unsupervised reconstruction based anomaly detection using a variational auto encoder
  publication-title: 2021 ISMRM & SMRT Annual Meeting & Exhibition
– year: 1985
  ident: b25
  article-title: Learning internal representations by error propagation
– year: 2020
  ident: b35
  article-title: Anomaly detection through latent space restoration using vector-quantized variational autoencoders
– year: 2016
  ident: b28
  article-title: Adversarial autoencoders
– start-page: 97
  year: 2018
  end-page: 112
  ident: b38
  article-title: Multidimensional time series anomaly detection: A gru-based gaussian mixture variational autoencoder approach
  publication-title: Asian Conference on Machine Learning
– volume: 39
  start-page: 4075
  year: 2012
  end-page: 4083
  ident: b11
  article-title: Machine learning-based novelty detection for faulty wafer detection in semiconductor manufacturing
  publication-title: Expert Syst. Appl.
– volume: 18
  start-page: 897
  year: 1999
  end-page: 908
  ident: b42
  article-title: Automated model-based tissue classification of MR images of the brain
  publication-title: IEEE Trans. Med. Imaging
– year: 2021
  ident: b12
  article-title: Anomaly detection with representative neighbors
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 196
  year: 2020
  ident: b14
  article-title: Using the VQ-VAE to improve the recognition of abnormalities in short-duration 12-lead electrocardiogram records
  publication-title: Comput. Methods Programs Biomed.
– start-page: 3939
  year: 2021
  end-page: 3946
  ident: b23
  article-title: Combining gans and autoencoders for efficient anomaly detection
  publication-title: 2020 25th International Conference on Pattern Recognition (ICPR)
– volume: 369
  start-page: 92
  year: 2019
  end-page: 105
  ident: b30
  article-title: Video anomaly detection and localization via multivariate gaussian fully convolution adversarial autoencoder
  publication-title: Neurocomputing
– volume: 2
  start-page: 1
  year: 2015
  end-page: 18
  ident: b33
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Spec. Lect. IE
– volume: 30
  year: 2017
  ident: b24
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 17
  start-page: 918
  year: 2018
  end-page: 934
  ident: b5
  article-title: White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks
  publication-title: NeuroImage: Clinical
– volume: 12242
  year: 2022
  ident: b48
  article-title: Evaluation of deeply supervised neural networks for 3D pore segmentation in additive manufacturing
  publication-title: Developments in X-Ray Tomography XIV
– volume: 25
  start-page: 352
  year: 2019
  end-page: 360
  ident: b1
  article-title: Impact of 3 tesla MRI on interobserver agreement in clinically isolated syndrome: a MAGNIMS multicentre study
  publication-title: Multiple Scler. J.
– volume: 6
  start-page: 50
  year: 2004
  end-page: 59
  ident: b8
  article-title: Minority report in fraud detection: classification of skewed data
  publication-title: ACM SIGKDD Explor. Newsl.
– year: 2019
  ident: b13
  article-title: Unsupervised anomaly localization using variational auto-encoders
– volume: 27
  year: 2014
  ident: b19
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: b36
  article-title: Deep unsupervised clustering with Gaussian mixture variational autoencoders
– year: 2017
  ident: b34
  article-title: Neural discrete representation learning
– start-page: 1905
  year: 2020
  end-page: 1909
  ident: b32
  article-title: Bayesian skip-autoencoders for unsupervised hyperintense anomaly detection in high resolution brain mri
  publication-title: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
– volume: 48
  start-page: 49
  year: 2021
  end-page: 52
  ident: b15
  article-title: On the usage of generative models for network anomaly detection in multivariate time-series
  publication-title: ACM SIGMETRICS Perform. Eval. Rev.
– year: 2013
  ident: b20
  article-title: Auto-encoding variational bayes
– year: 2019
  ident: b29
  article-title: Robust anomaly detection in images using adversarial autoencoders
– volume: 210
  year: 2020
  ident: b22
  article-title: Unsupervised learning for fault detection and diagnosis of air handling units
  publication-title: Energy Build.
– volume: 79
  year: 2022
  ident: b16
  article-title: Unsupervised brain imaging 3D anomaly detection and segmentation with transformers
  publication-title: Med. Image Anal.
– volume: 105
  start-page: 13
  year: 2018
  end-page: 22
  ident: b18
  article-title: A study of deep convolutional auto-encoders for anomaly detection in videos
  publication-title: Pattern Recognit. Lett.
– volume: 72
  start-page: 1
  year: 2011
  end-page: 19
  ident: b27
  article-title: Sparse autoencoder
  publication-title: CS294A Lect. Not.
– volume: 34
  start-page: 1993
  year: 2014
  end-page: 2024
  ident: b4
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imaging
– year: 2021
  ident: b43
  article-title: Medical out-of-distribution analysis challenge 2021
– year: 2022
  ident: b46
  article-title: Deep learning techniques for liver and liver tumor segmentation: A review
  publication-title: Comput. Biol. Med.
– volume: 99
  start-page: 215
  year: 2014
  end-page: 249
  ident: b7
  article-title: A review of novelty detection
  publication-title: Signal Process.
– volume: 8
  start-page: 171
  year: 2017
  end-page: 182
  ident: b2
  article-title: Error and discrepancy in radiology: inevitable or avoidable?
  publication-title: Insights Imaging
– volume: 195
  year: 2020
  ident: b39
  article-title: Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder
  publication-title: Comput. Vis. Image Underst.
– volume: 148
  year: 2022
  ident: b47
  article-title: Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation
  publication-title: Comput. Biol. Med.
– volume: 15
  start-page: 3563
  year: 2014
  end-page: 3593
  ident: b17
  article-title: What regularized auto-encoders learn from the data-generating distribution
  publication-title: J. Mach. Learn. Res.
– reference: H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei, Y. Feng, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications, in: Proceedings of the 2018 World Wide Web Conference, 2018, pp. 187–196.
– year: 2014
  ident: b45
  article-title: Adam: A method for stochastic optimization
– year: 2018
  ident: b40
  article-title: Context-encoding variational autoencoder for unsupervised anomaly detection
– start-page: 305
  year: 2007
  end-page: 310
  ident: b9
  article-title: A framework for novelty detection in jet engine vibration data
  publication-title: Key Engineering Materials, Vol. 347
– start-page: 622
  year: 2018
  end-page: 637
  ident: b10
  article-title: Ganomaly: Semi-supervised anomaly detection via adversarial training
  publication-title: Asian Conference on Computer Vision
– volume: 72
  start-page: 1
  issue: 2011
  year: 2011
  ident: 10.1016/j.compbiomed.2022.106093_b27
  article-title: Sparse autoencoder
  publication-title: CS294A Lect. Not.
– year: 1985
  ident: 10.1016/j.compbiomed.2022.106093_b25
– start-page: 622
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106093_b10
  article-title: Ganomaly: Semi-supervised anomaly detection via adversarial training
– volume: 79
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106093_b16
  article-title: Unsupervised brain imaging 3D anomaly detection and segmentation with transformers
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102475
– volume: 210
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106093_b22
  article-title: Unsupervised learning for fault detection and diagnosis of air handling units
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109689
– volume: 195
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106093_b39
  article-title: Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2020.102920
– volume: 105
  start-page: 13
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106093_b18
  article-title: A study of deep convolutional auto-encoders for anomaly detection in videos
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.07.016
– year: 2014
  ident: 10.1016/j.compbiomed.2022.106093_b45
– volume: 15
  start-page: 3563
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2022.106093_b17
  article-title: What regularized auto-encoders learn from the data-generating distribution
  publication-title: J. Mach. Learn. Res.
– year: 2021
  ident: 10.1016/j.compbiomed.2022.106093_b43
– volume: 17
  start-page: 918
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106093_b5
  article-title: White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2017.12.022
– year: 2021
  ident: 10.1016/j.compbiomed.2022.106093_b12
  article-title: Anomaly detection with representative neighbors
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 8
  start-page: 171
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106093_b2
  article-title: Error and discrepancy in radiology: inevitable or avoidable?
  publication-title: Insights Imaging
  doi: 10.1007/s13244-016-0534-1
– year: 2022
  ident: 10.1016/j.compbiomed.2022.106093_b46
  article-title: Deep learning techniques for liver and liver tumor segmentation: A review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105620
– volume: 148
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106093_b47
  article-title: Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105810
– volume: 27
  year: 2014
  ident: 10.1016/j.compbiomed.2022.106093_b19
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2017
  ident: 10.1016/j.compbiomed.2022.106093_b34
– year: 2018
  ident: 10.1016/j.compbiomed.2022.106093_b40
– volume: 12
  start-page: 822
  issue: 8
  year: 2013
  ident: 10.1016/j.compbiomed.2022.106093_b6
  article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70124-8
– year: 2013
  ident: 10.1016/j.compbiomed.2022.106093_b20
– year: 2020
  ident: 10.1016/j.compbiomed.2022.106093_b31
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 10.1016/j.compbiomed.2022.106093_b41
  article-title: Fsl
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 39
  start-page: 4075
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2022.106093_b11
  article-title: Machine learning-based novelty detection for faulty wafer detection in semiconductor manufacturing
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.088
– volume: 196
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106093_b14
  article-title: Using the VQ-VAE to improve the recognition of abnormalities in short-duration 12-lead electrocardiogram records
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105639
– year: 2016
  ident: 10.1016/j.compbiomed.2022.106093_b36
– ident: 10.1016/j.compbiomed.2022.106093_b21
  doi: 10.1145/3178876.3185996
– volume: 25
  start-page: 352
  issue: 3
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106093_b1
  article-title: Impact of 3 tesla MRI on interobserver agreement in clinically isolated syndrome: a MAGNIMS multicentre study
  publication-title: Multiple Scler. J.
  doi: 10.1177/1352458517751647
– volume: 30
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106093_b24
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 34
  start-page: 1993
  issue: 10
  year: 2014
  ident: 10.1016/j.compbiomed.2022.106093_b4
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 35
  start-page: 1668
  issue: 6
  year: 2015
  ident: 10.1016/j.compbiomed.2022.106093_b3
  article-title: Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction
  publication-title: Radiographics
  doi: 10.1148/rg.2015150023
– volume: 12242
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106093_b48
  article-title: Evaluation of deeply supervised neural networks for 3D pore segmentation in additive manufacturing
– start-page: 1905
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106093_b32
  article-title: Bayesian skip-autoencoders for unsupervised hyperintense anomaly detection in high resolution brain mri
– start-page: 305
  year: 2007
  ident: 10.1016/j.compbiomed.2022.106093_b9
  article-title: A framework for novelty detection in jet engine vibration data
– volume: 48
  start-page: 49
  issue: 4
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106093_b15
  article-title: On the usage of generative models for network anomaly detection in multivariate time-series
  publication-title: ACM SIGMETRICS Perform. Eval. Rev.
  doi: 10.1145/3466826.3466843
– volume: 18
  start-page: 897
  issue: 10
  year: 1999
  ident: 10.1016/j.compbiomed.2022.106093_b42
  article-title: Automated model-based tissue classification of MR images of the brain
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.811270
– volume: 37
  start-page: 233
  issue: 2
  year: 1991
  ident: 10.1016/j.compbiomed.2022.106093_b26
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE J.
  doi: 10.1002/aic.690370209
– volume: 99
  start-page: 215
  year: 2014
  ident: 10.1016/j.compbiomed.2022.106093_b7
  article-title: A review of novelty detection
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.12.026
– year: 2020
  ident: 10.1016/j.compbiomed.2022.106093_b35
– volume: 369
  start-page: 92
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106093_b30
  article-title: Video anomaly detection and localization via multivariate gaussian fully convolution adversarial autoencoder
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.044
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2022.106093_b33
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Spec. Lect. IE
– volume: 6
  start-page: 50
  issue: 1
  year: 2004
  ident: 10.1016/j.compbiomed.2022.106093_b8
  article-title: Minority report in fraud detection: classification of skewed data
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1007730.1007738
– start-page: 2399
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106093_b44
  article-title: Unsupervised reconstruction based anomaly detection using a variational auto encoder
– start-page: 3939
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106093_b23
  article-title: Combining gans and autoencoders for efficient anomaly detection
– year: 2020
  ident: 10.1016/j.compbiomed.2022.106093_b37
– year: 2019
  ident: 10.1016/j.compbiomed.2022.106093_b13
– year: 2019
  ident: 10.1016/j.compbiomed.2022.106093_b29
– year: 2016
  ident: 10.1016/j.compbiomed.2022.106093_b28
– start-page: 97
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106093_b38
  article-title: Multidimensional time series anomaly detection: A gru-based gaussian mixture variational autoencoder approach
SSID ssj0004030
Score 2.4364386
Snippet Expert interpretation of anatomical images of the human brain is the central part of neuroradiology. Several machine learning-based techniques have been...
AbstractExpert interpretation of anatomical images of the human brain is the central part of neuroradiology. Several machine learning-based techniques have...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106093
SubjectTerms Abnormalities
Annotations
Anomalies
Anomaly detection
Brain
Brain cancer
Brain tumors
Brain tumour segmentation
Context
Datasets
Image segmentation
Internal Medicine
Machine learning
Medical imaging
MRI
Neuroimaging
Other
Training
Tumors
Unsupervised learning
Title StRegA: Unsupervised anomaly detection in brain MRIs using a compact context-encoding variational autoencoder
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522008010
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522008010
https://dx.doi.org/10.1016/j.compbiomed.2022.106093
https://www.proquest.com/docview/2715235644
https://www.proquest.com/docview/2715793909
Volume 149
WOSCitedRecordID wos000861361700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: P5Z
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: K7-
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7RV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhhAvfCMKozISrxGO8-EYHtBAm0CopeoYqnix7NiZhrakNOkk_nvuHKeVEKBKvFhpk6sj3fV3d_bPd4S81EYYk7MyqgorolTkOipMnoEtQzDrrIwBl32zCTGdFouFnIUFtzbQKgdM9EBtmxLXyF9xAZ4mycB9v13-iLBrFO6uhhYae-QAqyQknro3256LZEl_BAWwJoVUKDB5en4XUrb7I-6QJXIOX-dMJn9zT78Btfc-J3f_973vkTsh7qRHvaHcJzdc_YDcmoSd9Yfk6rSbu_Oj1_SsbtdLBJDWWarr5kpf_qTWdZ6yVdOLmhrsKkEn848tRdb8OdXUM9nLjiLxHVNprI6JTpFeQyoelhupXneNv-FWj8jZyfGX9x-i0IohKlMZd6A_ZrkTlU4S0KeRjmfaVDwunTGQgVrDjO9EycpEMOnyFOIMrXGNNWbOFC55TPbrpnZPCLVxVulcJzkzNnXWGJlWpYQHK2tTbu2IiEEDqgx1yrFdxqUaCGnf1VZ3CnWnet2NSLyRXPa1OnaQkYOS1XAWFdBTgUPZQVb8Sda1AQZaFauWK6ZOfRUkMECObBO4HpE3G8kQ6fQRzI7zHg6mpjZTbe1sRF5sbgNW4AaQrl2z7p8BPJZMPv33Tzwjt3G-nrR4SPa71do9JzfL6-6iXY3Jnph_xXEh_FiMycG74-lsDp8-iQjGCf889n9FGGfZt1-Xxjn-
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwEv3BGFAUaCxwjHSeMahNAETKu2Vqjb0N6Mb5mKtqQ06dD-FL-R4zhpJQSoL3vgLYpz7Fw-n892vuMD8FJprnVGTZQPLI9SnqlooLM-YhkHs86KGP1yk2yCj8eD42PxeQN-drEwXlbZ-cTGUdvS-DXy14wj0yR9pO_3s--Rzxrl_652KTQCLPbcxQ-cslXvhh_x-75ibOfT4YfdqM0qEJlUxDXeCrXM8VwlCd6aFo71lc5ZbJzWOJmymuomqSI1CafCZSlSplJ-uTCmTg9cgvVegavox2MvIeOTL6s4TJqEkBf0bSlOvVrlUNCTeYl4CKnHWSljeDqjIvkbHf5GDA3b7dz-397THbjVjqvJdugId2HDFffg-qhVDtyHs4N64k6235CjolrMvIOsnCWqKM_U6QWxrm4kaQWZFkT7rBlkNBlWxEcFnBBFGqW-qYkX9vulAr_7pyd9cq7m03Y5lahFXTYFbv4Aji7lYR_CZlEW7hEQG_dzlakko9qmzmot0twIvDC3NmXW9oB3X1yadh92nw7kVHaCu29yhRXpsSIDVnoQLy1nYS-SNWxEByrZxdoiO0gkzDVs-Z9sXdW6uUrGsmKSyoNmlycEPPNqGjzuwdulZTuSCyO0Ndvd6qAtl02tcN2DF8ti9IX-B5cqXLkI1yDfCCoe_7uK53Bj93C0L_eH470ncNO3HQSaW7BZzxfuKVwz5_W0mj9rOjiBr5fdU34BbAeP2Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NgSZe-D1R2MBI8BjNcX64BqFpYlRUZdW0MWlvxo6dqWhLSpMO7V_bX7dznLQSAtSXPfBWNbk4bb677-x85wN4qzTXOqVZkPcND2KeqqCv0wSxjMmsNSLEuNw0m-Djcf_0VByuwXVXC-NklV1MbAK1KTO3Rr7DODJNlCB97-StLOJwf7A7_Rm4DlLuTWvXTsNDZGSvfuH0rfo43Mdn_Y6xwedvn74EbYeBIItFWONtUcMsz1UU4W1qYVmidM7CzGqNEyujqW4aLNIs4lTYNEb6VMotHYbU6r6N8Lp34C6ycOJ8bMSDZU0mjXz5C8a5GKdhrYrIa8ucXNyX1-MMlTH8OqUi-hs1_kYSDfMNHv7P_9kjeNDm22TPO8hjWLPFE9g4aBUFT-HiuD6yZ3vvyUlRzacucFbWEFWUF-r8ihhbN1K1gkwKol03DXJwNKyIqxY4I4o0Cv6sJk7w75YQ3K6gLhkgl2o2aZdZiZrXZXPAzp7Bya382E1YL8rCPgdiwiRXqYpSqk1sjdYizjOBJ-bGxMyYHvDu6cus3Z_dtQk5l50Q74dc4kY63EiPmx6EC8up36NkBRvRAUx2NbjIGhKJdAVb_idbW7Xhr5KhrJik8rjZ_QnBz5zKBj_34MPCss3wfOa24rhbHczlYqglxnvwZnEYY6R78aUKW879OchDgooX_77Ea9hAB5Ffh-PRS7jvhva6zS1Yr2dzuw33sst6Us1eNb5O4PttO8oNf2iYNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=StRegA%3A+Unsupervised+anomaly+detection+in+brain+MRIs+using+a+compact+context-encoding+variational+autoencoder&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Chatterjee%2C+Soumick&rft.au=Sciarra%2C+Alessandro&rft.au=D%C3%BCnnwald%2C+Max&rft.au=Tummala%2C+Pavan&rft.date=2022-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=149&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.106093&rft.externalDocID=S0010482522008010
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif