The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair

The complexity of chromatin architecture presents a significant barrier to the ability of the DNA repair machinery to access and repair DNA double-strand breaks (DSBs). Consequently, remodeling of the chromatin landscape adjacent to DSBs is vital for efficient DNA repair. Here, we demonstrate that D...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of cell biology Ročník 191; číslo 1; s. 31
Hlavní autori: Xu, Ye, Sun, Yingli, Jiang, Xiaofeng, Ayrapetov, Marina K, Moskwa, Patryk, Yang, Shenghong, Weinstock, David M, Price, Brendan D
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 04.10.2010
Predmet:
ISSN:1540-8140, 1540-8140
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The complexity of chromatin architecture presents a significant barrier to the ability of the DNA repair machinery to access and repair DNA double-strand breaks (DSBs). Consequently, remodeling of the chromatin landscape adjacent to DSBs is vital for efficient DNA repair. Here, we demonstrate that DNA damage destabilizes nucleosomes within chromatin regions that correspond to the γ-H2AX domains surrounding DSBs. This nucleosome destabilization is an active process requiring the ATPase activity of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. p400 is recruited to DSBs by a mechanism that is independent of ATM but requires mdc1. Further, the destabilization of nucleosomes by p400 is required for the RNF8-dependent ubiquitination of chromatin, and for the subsequent recruitment of brca1 and 53BP1 to DSBs. These results identify p400 as a novel DNA damage response protein and demonstrate that p400-mediated alterations in nucleosome and chromatin structure promote both chromatin ubiquitination and the accumulation of brca1 and 53BP1 at sites of DNA damage.
AbstractList The complexity of chromatin architecture presents a significant barrier to the ability of the DNA repair machinery to access and repair DNA double-strand breaks (DSBs). Consequently, remodeling of the chromatin landscape adjacent to DSBs is vital for efficient DNA repair. Here, we demonstrate that DNA damage destabilizes nucleosomes within chromatin regions that correspond to the γ-H2AX domains surrounding DSBs. This nucleosome destabilization is an active process requiring the ATPase activity of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. p400 is recruited to DSBs by a mechanism that is independent of ATM but requires mdc1. Further, the destabilization of nucleosomes by p400 is required for the RNF8-dependent ubiquitination of chromatin, and for the subsequent recruitment of brca1 and 53BP1 to DSBs. These results identify p400 as a novel DNA damage response protein and demonstrate that p400-mediated alterations in nucleosome and chromatin structure promote both chromatin ubiquitination and the accumulation of brca1 and 53BP1 at sites of DNA damage.The complexity of chromatin architecture presents a significant barrier to the ability of the DNA repair machinery to access and repair DNA double-strand breaks (DSBs). Consequently, remodeling of the chromatin landscape adjacent to DSBs is vital for efficient DNA repair. Here, we demonstrate that DNA damage destabilizes nucleosomes within chromatin regions that correspond to the γ-H2AX domains surrounding DSBs. This nucleosome destabilization is an active process requiring the ATPase activity of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. p400 is recruited to DSBs by a mechanism that is independent of ATM but requires mdc1. Further, the destabilization of nucleosomes by p400 is required for the RNF8-dependent ubiquitination of chromatin, and for the subsequent recruitment of brca1 and 53BP1 to DSBs. These results identify p400 as a novel DNA damage response protein and demonstrate that p400-mediated alterations in nucleosome and chromatin structure promote both chromatin ubiquitination and the accumulation of brca1 and 53BP1 at sites of DNA damage.
The complexity of chromatin architecture presents a significant barrier to the ability of the DNA repair machinery to access and repair DNA double-strand breaks (DSBs). Consequently, remodeling of the chromatin landscape adjacent to DSBs is vital for efficient DNA repair. Here, we demonstrate that DNA damage destabilizes nucleosomes within chromatin regions that correspond to the γ-H2AX domains surrounding DSBs. This nucleosome destabilization is an active process requiring the ATPase activity of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. p400 is recruited to DSBs by a mechanism that is independent of ATM but requires mdc1. Further, the destabilization of nucleosomes by p400 is required for the RNF8-dependent ubiquitination of chromatin, and for the subsequent recruitment of brca1 and 53BP1 to DSBs. These results identify p400 as a novel DNA damage response protein and demonstrate that p400-mediated alterations in nucleosome and chromatin structure promote both chromatin ubiquitination and the accumulation of brca1 and 53BP1 at sites of DNA damage.
Author Yang, Shenghong
Xu, Ye
Sun, Yingli
Ayrapetov, Marina K
Price, Brendan D
Jiang, Xiaofeng
Moskwa, Patryk
Weinstock, David M
Author_xml – sequence: 1
  givenname: Ye
  surname: Xu
  fullname: Xu, Ye
  organization: Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
– sequence: 2
  givenname: Yingli
  surname: Sun
  fullname: Sun, Yingli
– sequence: 3
  givenname: Xiaofeng
  surname: Jiang
  fullname: Jiang, Xiaofeng
– sequence: 4
  givenname: Marina K
  surname: Ayrapetov
  fullname: Ayrapetov, Marina K
– sequence: 5
  givenname: Patryk
  surname: Moskwa
  fullname: Moskwa, Patryk
– sequence: 6
  givenname: Shenghong
  surname: Yang
  fullname: Yang, Shenghong
– sequence: 7
  givenname: David M
  surname: Weinstock
  fullname: Weinstock, David M
– sequence: 8
  givenname: Brendan D
  surname: Price
  fullname: Price, Brendan D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20876283$$D View this record in MEDLINE/PubMed
BookMark eNpNkDtPwzAYRS1URB8wsiJvTCmfHcePsSpPqQKGMqLIdpzWVeKkcTL03xOJIjHdc6WjO9w5moQmOIRuCSwJyPThYM2SAgEghMMFmpGMQSIJg8k_nqJ5jAcAYIKlV2hKQQpOZTpD39u9wy0DwKvtp44Od243VLp3EYfBVq6JTe1w7LXxle9PWIcC233X1Lr3AQ_GHwc_0tiagIuh82GHH99X40yrfXeNLktdRXdzzgX6en7arl-TzcfL23q1SSxTpE8kWC45UY6ogqWFpMwaRsAVpWCEk1QDs9JQVZZCF5nISlcoLY2hoGxGhKALdP-723bNcXCxz2sfrasqHVwzxFxknHOpVDaad2dzMLUr8rbzte5O-d8j9Aek1mQ8
CitedBy_id crossref_primary_10_1016_j_dnarep_2021_103129
crossref_primary_10_1016_j_mrfmmm_2020_111714
crossref_primary_10_1016_j_mrrev_2012_10_001
crossref_primary_10_3390_ijms130911844
crossref_primary_10_1080_15384101_2020_1801190
crossref_primary_10_1093_genetics_iyab042
crossref_primary_10_1093_nar_gkx715
crossref_primary_10_1038_celldisc_2015_34
crossref_primary_10_1146_annurev_biochem_061809_174504
crossref_primary_10_1007_s00018_019_03366_0
crossref_primary_10_1073_pnas_1403565111
crossref_primary_10_1186_s13072_021_00413_8
crossref_primary_10_1016_j_febslet_2012_09_030
crossref_primary_10_1101_gad_2021311
crossref_primary_10_1016_j_molcel_2016_03_031
crossref_primary_10_1093_nar_gku284
crossref_primary_10_1073_pnas_1504868112
crossref_primary_10_3390_ijms23094653
crossref_primary_10_1016_j_molcel_2016_04_006
crossref_primary_10_1016_j_molcel_2013_06_018
crossref_primary_10_1186_s12985_015_0266_8
crossref_primary_10_1016_j_tig_2021_08_016
crossref_primary_10_1128_MCB_06182_11
crossref_primary_10_1038_s12276_022_00862_5
crossref_primary_10_1038_s41416_019_0624_1
crossref_primary_10_3389_fcell_2022_1071786
crossref_primary_10_1007_s00412_011_0358_1
crossref_primary_10_1038_s41586_022_05551_x
crossref_primary_10_4161_cc_27143
crossref_primary_10_1016_j_jmb_2014_05_025
crossref_primary_10_1667_RR3001_1
crossref_primary_10_1007_s11427_016_5011_z
crossref_primary_10_1038_ncomms12235
crossref_primary_10_1016_j_ceb_2012_03_008
crossref_primary_10_1038_s41418_019_0397_3
crossref_primary_10_1038_emboj_2012_78
crossref_primary_10_3390_ijms222010957
crossref_primary_10_3390_ijms23052484
crossref_primary_10_1038_ncomms15110
crossref_primary_10_1016_j_tig_2021_10_003
crossref_primary_10_1186_s13072_023_00501_x
crossref_primary_10_1016_j_mrrev_2012_06_002
crossref_primary_10_1093_hmg_ddw364
crossref_primary_10_1073_pnas_1306160110
crossref_primary_10_1074_jbc_M115_665489
crossref_primary_10_1371_journal_pone_0023155
crossref_primary_10_1038_s41598_018_32323_3
crossref_primary_10_3892_or_2013_2698
crossref_primary_10_1038_nsmb_2188
crossref_primary_10_1016_j_mad_2012_11_001
crossref_primary_10_1186_1476_4598_13_249
crossref_primary_10_1371_journal_pcbi_1006224
crossref_primary_10_1038_cr_2011_32
crossref_primary_10_1091_mbc_E23_07_0281
crossref_primary_10_1016_j_jmb_2015_11_021
crossref_primary_10_1038_s41467_018_05588_5
crossref_primary_10_1016_j_mrfmmm_2013_07_008
crossref_primary_10_1038_s41388_024_02937_1
crossref_primary_10_1007_s11515_011_1135_5
crossref_primary_10_1371_journal_pone_0114651
crossref_primary_10_1093_nar_gkt622
crossref_primary_10_1128_MCB_00194_19
crossref_primary_10_1128_MCB_01567_12
crossref_primary_10_1016_j_febslet_2011_07_034
crossref_primary_10_1002_advs_202308018
crossref_primary_10_1016_j_febslet_2012_07_054
crossref_primary_10_1101_gad_307702_117
crossref_primary_10_1111_nan_12616
crossref_primary_10_1186_s12867_016_0075_7
crossref_primary_10_1261_rna_029900_111
crossref_primary_10_3233_JAD_161221
crossref_primary_10_3390_ijms18081715
crossref_primary_10_1007_s10555_014_9524_2
crossref_primary_10_1016_j_molonc_2011_06_001
crossref_primary_10_2217_epi_11_14
crossref_primary_10_3390_ijms18071486
crossref_primary_10_1101_gad_288282_116
crossref_primary_10_4161_cc_28383
crossref_primary_10_1016_j_cell_2013_02_011
crossref_primary_10_1016_j_bbagrm_2011_06_005
crossref_primary_10_1016_j_molcel_2012_09_026
crossref_primary_10_1016_j_tcb_2014_01_005
crossref_primary_10_3389_freae_2024_1445765
crossref_primary_10_1139_bcb_2016_0017
crossref_primary_10_1016_j_dnarep_2021_103210
crossref_primary_10_1038_nprot_2014_031
crossref_primary_10_1080_15384101_2020_1796037
crossref_primary_10_1016_j_mrfmmm_2013_07_002
crossref_primary_10_1002_jbt_21438
crossref_primary_10_2217_epi_10_79
crossref_primary_10_1038_s41467_019_12861_8
crossref_primary_10_1002_em_21830
crossref_primary_10_1186_1756_8935_5_4
crossref_primary_10_1242_jcs_159103
crossref_primary_10_1016_j_semcdb_2020_07_002
crossref_primary_10_1242_jcs_109413
crossref_primary_10_2217_epi_15_76
crossref_primary_10_1038_s41588_017_0016_5
crossref_primary_10_1016_j_molcel_2014_07_007
crossref_primary_10_1186_s12964_019_0477_5
crossref_primary_10_1038_s41598_017_13036_5
crossref_primary_10_1016_j_mrrev_2017_11_002
crossref_primary_10_1091_mbc_E15_05_0316
crossref_primary_10_1080_15384101_2020_1831256
crossref_primary_10_1016_j_tcb_2014_07_006
crossref_primary_10_1083_jcb_201205059
crossref_primary_10_1016_j_jmb_2014_08_001
crossref_primary_10_1111_eci_12362
crossref_primary_10_1002_2211_5463_13071
crossref_primary_10_1038_s41467_025_59503_w
crossref_primary_10_1093_nar_gkv1202
crossref_primary_10_1126_science_adl5816
crossref_primary_10_4161_cc_10_2_14543
crossref_primary_10_1007_s13148_011_0044_4
crossref_primary_10_3389_fgene_2014_00296
crossref_primary_10_1080_15384101_2015_1010918
crossref_primary_10_1038_ncb2344
crossref_primary_10_1186_1749_8104_6_5
crossref_primary_10_1083_jcb_201705005
crossref_primary_10_1016_j_mrrev_2017_09_005
crossref_primary_10_1038_s41594_023_01107_3
crossref_primary_10_3390_cells9071699
crossref_primary_10_1038_s41467_018_02894_w
crossref_primary_10_1007_s11427_015_4817_4
crossref_primary_10_1016_j_dnarep_2015_04_022
crossref_primary_10_3390_ph17050602
crossref_primary_10_1038_nrg3345
crossref_primary_10_4161_cc_25064
crossref_primary_10_3390_ijms22147583
crossref_primary_10_1016_j_molcel_2016_08_019
crossref_primary_10_1038_nrm_2016_58
crossref_primary_10_1016_j_dnarep_2013_07_006
crossref_primary_10_3389_fcell_2022_928113
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1083/jcb.201001160
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1540-8140
ExternalDocumentID 20876283
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA93602
– fundername: NCI NIH HHS
  grantid: CA64585
– fundername: NCI NIH HHS
  grantid: T32 CA09078
– fundername: NCI NIH HHS
  grantid: T32 CA009078
– fundername: NCI NIH HHS
  grantid: R01 CA064585
– fundername: NCI NIH HHS
  grantid: R01 CA093602
GroupedDBID ---
-DZ
-~X
.55
0VX
123
18M
29K
2WC
34G
36B
39C
4.4
53G
85S
9QQ
ABDNZ
ABOCM
ABPPZ
ABRJW
ABTAH
ABZEH
ACGFO
ACGOD
ACIWK
ACKIV
ACKOT
ACNCT
ACNKL
ACPRK
ADBBV
AEILP
AENEX
AFOSN
AFRAH
AGCDD
AHJTV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
C45
CGR
CS3
CUY
CVF
D-I
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMB
EMOBN
F5P
F9R
FRP
GX1
H13
HF~
HYE
IH2
JZ9
KQ8
N9A
NHB
NPM
O5R
O5S
OK1
P2P
PQQKQ
R.V
RHI
RNS
RXW
SJN
SV3
TAE
TN5
TR2
TRP
TWZ
UBX
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YKV
YNH
YOC
YQT
YSK
YWH
YZZ
ZCA
ZY4
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c491t-80c68619e19d43d824cb410edf741613a04c8b29ff7ad575fed9a8bb209c51772
IEDL.DBID 7X8
ISICitedReferencesCount 153
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000282648500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1540-8140
IngestDate Thu Sep 04 16:33:52 EDT 2025
Thu Apr 03 04:55:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-80c68619e19d43d824cb410edf741613a04c8b29ff7ad575fed9a8bb209c51772
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2953432
PMID 20876283
PQID 756668995
PQPubID 23479
ParticipantIDs proquest_miscellaneous_756668995
pubmed_primary_20876283
PublicationCentury 2000
PublicationDate 2010-10-04
PublicationDateYYYYMMDD 2010-10-04
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of cell biology
PublicationTitleAlternate J Cell Biol
PublicationYear 2010
References 19234530 - Biochem Cell Biol. 2009 Feb;87(1):139-50
15604286 - Cancer Res. 2004 Dec 15;64(24):9152-9
15655109 - Genes Dev. 2005 Jan 15;19(2):196-201
18001824 - Cell. 2007 Nov 30;131(5):887-900
10022855 - Mol Cell Biol. 1999 Mar;19(3):1673-85
17671089 - Genes Dev. 2007 Aug 1;21(15):1869-81
11425866 - J Cell Biol. 2001 Jun 25;153(7):1341-53
19680244 - Nat Biotechnol. 2009 Sep;27(9):851-7
18657500 - Mol Cell. 2008 Jul 25;31(2):167-77
15610740 - Mol Cell. 2004 Dec 22;16(6):979-90
15797201 - Curr Opin Genet Dev. 2005 Apr;15(2):185-90
16382133 - Mol Cell Biol. 2006 Jan;26(2):402-12
17387148 - Mol Cell Biol. 2007 Jun;27(11):4037-48
18411307 - J Cell Biol. 2008 Apr 21;181(2):213-26
19549848 - Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10620-5
19783983 - Nat Cell Biol. 2009 Nov;11(11):1376-82
16469925 - Science. 2006 Feb 10;311(5762):844-7
15458641 - Curr Biol. 2004 Oct 5;14(19):1703-11
11719385 - Blood. 2001 Dec 1;98(12):3435-40
17728759 - Nature. 2007 Aug 30;448(7157):1063-7
15790808 - Science. 2005 Apr 22;308(5721):551-4
18006705 - Science. 2007 Dec 7;318(5856):1637-40
11509179 - Cell. 2001 Aug 10;106(3):297-307
16292314 - Nature. 2005 Nov 17;438(7066):379-83
17190600 - Cell. 2006 Dec 29;127(7):1361-73
19169279 - Oncogene. 2009 Mar 26;28(12):1506-17
16141325 - Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13182-7
18285460 - Mol Cell Biol. 2008 Apr;28(8):2690-700
15795371 - Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5501-6
19203579 - Cell. 2009 Feb 6;136(3):435-46
18001825 - Cell. 2007 Nov 30;131(5):901-14
15806097 - Nature. 2005 Jun 2;435(7042):646-51
16862143 - Nat Cell Biol. 2006 Aug;8(8):870-6
14966270 - Mol Cell Biol. 2004 Mar;24(5):1884-96
12353039 - Nature. 2002 Sep 26;419(6905):411-5
20016603 - Nature. 2009 Dec 17;462(7275):935-9
18411308 - J Cell Biol. 2008 Apr 21;181(2):227-40
16377563 - Cell. 2005 Dec 29;123(7):1213-26
16460006 - Biochemistry. 2006 Feb 14;45(6):1591-8
17923702 - Mol Cell Biol. 2007 Dec;27(24):8502-9
16520385 - J Cell Biol. 2006 Mar 13;172(6):823-34
15059890 - Cancer Res. 2004 Apr 1;64(7):2390-6
16087684 - Hum Mol Genet. 2005 Sep 15;14(18):2685-93
2549339 - Methods Enzymol. 1989;170:431-523
19203578 - Cell. 2009 Feb 6;136(3):420-34
12574133 - EMBO J. 2003 Feb 17;22(4):975-86
15550243 - Cell. 2004 Nov 24;119(5):603-14
15607975 - Cell. 2004 Dec 17;119(6):777-88
15196461 - Curr Opin Genet Dev. 2004 Apr;14(2):147-54
15528408 - Science. 2004 Dec 17;306(5704):2084-7
15741165 - J Biol Chem. 2005 Jun 10;280(23):21915-23
17545981 - Nat Protoc. 2007;2(6):1445-57
17709392 - Mol Cell Biol. 2007 Oct;27(20):7028-40
15663933 - J Mol Biol. 2005 Feb 11;346(1):135-46
16341205 - Nat Cell Biol. 2006 Jan;8(1):91-9
20016594 - Nature. 2009 Dec 17;462(7275):886-90
678515 - Biochemistry. 1978 Jun 13;17(12):2377-86
16951256 - Genes Dev. 2006 Sep 1;20(17):2437-49
17938198 - Mol Cell Biol. 2008 Jan;28(1):227-36
19005492 - Nat Rev Cancer. 2008 Dec;8(12):957-67
References_xml – reference: 11509179 - Cell. 2001 Aug 10;106(3):297-307
– reference: 15741165 - J Biol Chem. 2005 Jun 10;280(23):21915-23
– reference: 16087684 - Hum Mol Genet. 2005 Sep 15;14(18):2685-93
– reference: 16460006 - Biochemistry. 2006 Feb 14;45(6):1591-8
– reference: 16292314 - Nature. 2005 Nov 17;438(7066):379-83
– reference: 16341205 - Nat Cell Biol. 2006 Jan;8(1):91-9
– reference: 15458641 - Curr Biol. 2004 Oct 5;14(19):1703-11
– reference: 16377563 - Cell. 2005 Dec 29;123(7):1213-26
– reference: 19783983 - Nat Cell Biol. 2009 Nov;11(11):1376-82
– reference: 15790808 - Science. 2005 Apr 22;308(5721):551-4
– reference: 17190600 - Cell. 2006 Dec 29;127(7):1361-73
– reference: 15797201 - Curr Opin Genet Dev. 2005 Apr;15(2):185-90
– reference: 10022855 - Mol Cell Biol. 1999 Mar;19(3):1673-85
– reference: 15655109 - Genes Dev. 2005 Jan 15;19(2):196-201
– reference: 2549339 - Methods Enzymol. 1989;170:431-523
– reference: 11719385 - Blood. 2001 Dec 1;98(12):3435-40
– reference: 15550243 - Cell. 2004 Nov 24;119(5):603-14
– reference: 17387148 - Mol Cell Biol. 2007 Jun;27(11):4037-48
– reference: 19234530 - Biochem Cell Biol. 2009 Feb;87(1):139-50
– reference: 15059890 - Cancer Res. 2004 Apr 1;64(7):2390-6
– reference: 15607975 - Cell. 2004 Dec 17;119(6):777-88
– reference: 20016594 - Nature. 2009 Dec 17;462(7275):886-90
– reference: 17728759 - Nature. 2007 Aug 30;448(7157):1063-7
– reference: 15528408 - Science. 2004 Dec 17;306(5704):2084-7
– reference: 678515 - Biochemistry. 1978 Jun 13;17(12):2377-86
– reference: 15795371 - Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5501-6
– reference: 18001825 - Cell. 2007 Nov 30;131(5):901-14
– reference: 18001824 - Cell. 2007 Nov 30;131(5):887-900
– reference: 11425866 - J Cell Biol. 2001 Jun 25;153(7):1341-53
– reference: 16141325 - Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13182-7
– reference: 16382133 - Mol Cell Biol. 2006 Jan;26(2):402-12
– reference: 15196461 - Curr Opin Genet Dev. 2004 Apr;14(2):147-54
– reference: 18657500 - Mol Cell. 2008 Jul 25;31(2):167-77
– reference: 15806097 - Nature. 2005 Jun 2;435(7042):646-51
– reference: 17938198 - Mol Cell Biol. 2008 Jan;28(1):227-36
– reference: 18411307 - J Cell Biol. 2008 Apr 21;181(2):213-26
– reference: 19005492 - Nat Rev Cancer. 2008 Dec;8(12):957-67
– reference: 12574133 - EMBO J. 2003 Feb 17;22(4):975-86
– reference: 18285460 - Mol Cell Biol. 2008 Apr;28(8):2690-700
– reference: 15663933 - J Mol Biol. 2005 Feb 11;346(1):135-46
– reference: 19680244 - Nat Biotechnol. 2009 Sep;27(9):851-7
– reference: 15610740 - Mol Cell. 2004 Dec 22;16(6):979-90
– reference: 17709392 - Mol Cell Biol. 2007 Oct;27(20):7028-40
– reference: 17545981 - Nat Protoc. 2007;2(6):1445-57
– reference: 14966270 - Mol Cell Biol. 2004 Mar;24(5):1884-96
– reference: 19549848 - Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10620-5
– reference: 15604286 - Cancer Res. 2004 Dec 15;64(24):9152-9
– reference: 19203579 - Cell. 2009 Feb 6;136(3):435-46
– reference: 12353039 - Nature. 2002 Sep 26;419(6905):411-5
– reference: 16951256 - Genes Dev. 2006 Sep 1;20(17):2437-49
– reference: 17923702 - Mol Cell Biol. 2007 Dec;27(24):8502-9
– reference: 19203578 - Cell. 2009 Feb 6;136(3):420-34
– reference: 17671089 - Genes Dev. 2007 Aug 1;21(15):1869-81
– reference: 16862143 - Nat Cell Biol. 2006 Aug;8(8):870-6
– reference: 19169279 - Oncogene. 2009 Mar 26;28(12):1506-17
– reference: 16469925 - Science. 2006 Feb 10;311(5762):844-7
– reference: 16520385 - J Cell Biol. 2006 Mar 13;172(6):823-34
– reference: 18411308 - J Cell Biol. 2008 Apr 21;181(2):227-40
– reference: 20016603 - Nature. 2009 Dec 17;462(7275):935-9
– reference: 18006705 - Science. 2007 Dec 7;318(5856):1637-40
SSID ssj0004743
Score 2.4165406
Snippet The complexity of chromatin architecture presents a significant barrier to the ability of the DNA repair machinery to access and repair DNA double-strand...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 31
SubjectTerms Chromatin - metabolism
Chromatin Assembly and Disassembly
DNA Damage
DNA Helicases - metabolism
DNA Helicases - physiology
DNA Repair
DNA-Binding Proteins - metabolism
DNA-Binding Proteins - physiology
Histone Acetyltransferases - metabolism
Histone Acetyltransferases - physiology
Histones - metabolism
Humans
Lysine Acetyltransferase 5
Nucleosomes - metabolism
Protein Stability
Ubiquitination
Title The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair
URI https://www.ncbi.nlm.nih.gov/pubmed/20876283
https://www.proquest.com/docview/756668995
Volume 191
WOSCitedRecordID wos000282648500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLaAgsTCfZRLHlijJo7T2BOqgIqFqEORuqDIV0SQSNKkReq_59lJEQtiYImyJIqcd3zP3_P7ELoVXAmob6QHqVd6lNHIk4oaz4-YDjVRgoeZE5uIk4TNZnzS9eY0XVvlOia6QK1LZffIBzHgjiEUB9FdNfesaJQlVzsFjU3UCwHJWL-MZz-GhXf99Zb7t4OduhGbADoG70q6ti5LQ_i_g0uXZMb7__y8A7TXoUs8as3hEG2Y4gjttHqTq2P0CkaBK_AnPJpOIH3hulWiNw0u7Fzjsik_DAa86DpmV1gUGqu3urSotsBLmc-XOdy5n4nbA474IRnBayqR1yfoZfw4vX_yOn0FT1EeLCA5qSGDAsoEXNNQM0KVpIFvdObKnlD4VDFJ7K6u0ADrMqO5YFISn6soAFh-iraKsjDnCMeZNppAqJTa0EhJQUQYUSj9KIfcSPw-wutlS8F-LSkhClMum_R74frorF36tGrnbKTEjssD-HPx98OXaNfR-pbZp1eol4Hvmmu0rT4XeVPfOLuAazJ5_gI2-sMx
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+p400+ATPase+regulates+nucleosome+stability+and+chromatin+ubiquitination+during+DNA+repair&rft.jtitle=The+Journal+of+cell+biology&rft.au=Xu%2C+Ye&rft.au=Sun%2C+Yingli&rft.au=Jiang%2C+Xiaofeng&rft.au=Ayrapetov%2C+Marina+K&rft.date=2010-10-04&rft.issn=1540-8140&rft.eissn=1540-8140&rft.volume=191&rft.issue=1&rft.spage=31&rft_id=info:doi/10.1083%2Fjcb.201001160&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-8140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-8140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-8140&client=summon