Unsupervised Deep Learning based Variational Autoencoder Model for COVID-19 Diagnosis and Classification

•Design a novel Unsupervised DL model for COVID-19 Diagnosis and Classification•Propose a Parameter Tuned Adagrad with Inception v4 model as feature extractor•Employ an Unsupervised Variational Autoencoder Model for classification process•Validate the classification performance on COVID Chest X-ray...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition letters Ročník 151; s. 267 - 274
Hlavní autoři: Mansour, Romany F., Escorcia-Gutierrez, José, Gamarra, Margarita, Gupta, Deepak, Castillo, Oscar, Kumar, Sachin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.11.2021
Elsevier Science Ltd
Témata:
ISSN:0167-8655, 1872-7344, 0167-8655
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Design a novel Unsupervised DL model for COVID-19 Diagnosis and Classification•Propose a Parameter Tuned Adagrad with Inception v4 model as feature extractor•Employ an Unsupervised Variational Autoencoder Model for classification process•Validate the classification performance on COVID Chest X-ray dataset At present times, COVID-19 has become a global illness and infected people has increased exponentially and it is difficult to control due to the non-availability of large quantity of testing kits. Artificial intelligence (AI) techniques including machine learning (ML), deep learning (DL), and computer vision (CV) approaches find useful for the recognition, analysis, and prediction of COVID-19. Several ML and DL techniques are trained to resolve the supervised learning issue. At the same time, the potential measure of the unsupervised learning technique is quite high. Therefore, unsupervised learning techniques can be designed in the existing DL models for proficient COVID-19 prediction. In this view, this paper introduces a novel unsupervised DL based variational autoencoder (UDL-VAE) model for COVID-19 detection and classification. The UDL-VAE model involved adaptive Wiener filtering (AWF) based preprocessing technique to enhance the image quality. Besides, Inception v4 with Adagrad technique is employed as a feature extractor and unsupervised VAE model is applied for the classification process. In order to verify the superior diagnostic performance of the UDL-VAE model, a set of experimentation was carried out to highlight the effective outcome of the UDL-VAE model. The obtained experimental values showcased the effectual results of the UDL-VAE model with the higher accuracy of 0.987 and 0.992 on the binary and multiple classes respectively.
AbstractList At present times, COVID-19 has become a global illness and infected people has increased exponentially and it is difficult to control due to the non-availability of large quantity of testing kits. Artificial intelligence (AI) techniques including machine learning (ML), deep learning (DL), and computer vision (CV) approaches find useful for the recognition, analysis, and prediction of COVID-19. Several ML and DL techniques are trained to resolve the supervised learning issue. At the same time, the potential measure of the unsupervised learning technique is quite high. Therefore, unsupervised learning techniques can be designed in the existing DL models for proficient COVID-19 prediction. In this view, this paper introduces a novel unsupervised DL based variational autoencoder (UDL-VAE) model for COVID-19 detection and classification. The UDL-VAE model involved adaptive Wiener filtering (AWF) based preprocessing technique to enhance the image quality. Besides, Inception v4 with Adagrad technique is employed as a feature extractor and unsupervised VAE model is applied for the classification process. In order to verify the superior diagnostic performance of the UDL-VAE model, a set of experimentation was carried out to highlight the effective outcome of the UDL-VAE model. The obtained experimental values showcased the effectual results of the UDL-VAE model with the higher accuracy of 0.987 and 0.992 on the binary and multiple classes respectively.
•Design a novel Unsupervised DL model for COVID-19 Diagnosis and Classification•Propose a Parameter Tuned Adagrad with Inception v4 model as feature extractor•Employ an Unsupervised Variational Autoencoder Model for classification process•Validate the classification performance on COVID Chest X-ray dataset At present times, COVID-19 has become a global illness and infected people has increased exponentially and it is difficult to control due to the non-availability of large quantity of testing kits. Artificial intelligence (AI) techniques including machine learning (ML), deep learning (DL), and computer vision (CV) approaches find useful for the recognition, analysis, and prediction of COVID-19. Several ML and DL techniques are trained to resolve the supervised learning issue. At the same time, the potential measure of the unsupervised learning technique is quite high. Therefore, unsupervised learning techniques can be designed in the existing DL models for proficient COVID-19 prediction. In this view, this paper introduces a novel unsupervised DL based variational autoencoder (UDL-VAE) model for COVID-19 detection and classification. The UDL-VAE model involved adaptive Wiener filtering (AWF) based preprocessing technique to enhance the image quality. Besides, Inception v4 with Adagrad technique is employed as a feature extractor and unsupervised VAE model is applied for the classification process. In order to verify the superior diagnostic performance of the UDL-VAE model, a set of experimentation was carried out to highlight the effective outcome of the UDL-VAE model. The obtained experimental values showcased the effectual results of the UDL-VAE model with the higher accuracy of 0.987 and 0.992 on the binary and multiple classes respectively.
At present times, COVID-19 has become a global illness and infected people has increased exponentially and it is difficult to control due to the non-availability of large quantity of testing kits. Artificial intelligence (AI) techniques including machine learning (ML), deep learning (DL), and computer vision (CV) approaches find useful for the recognition, analysis, and prediction of COVID-19. Several ML and DL techniques are trained to resolve the supervised learning issue. At the same time, the potential measure of the unsupervised learning technique is quite high. Therefore, unsupervised learning techniques can be designed in the existing DL models for proficient COVID-19 prediction. In this view, this paper introduces a novel unsupervised DL based variational autoencoder (UDL-VAE) model for COVID-19 detection and classification. The UDL-VAE model involved adaptive Wiener filtering (AWF) based preprocessing technique to enhance the image quality. Besides, Inception v4 with Adagrad technique is employed as a feature extractor and unsupervised VAE model is applied for the classification process. In order to verify the superior diagnostic performance of the UDL-VAE model, a set of experimentation was carried out to highlight the effective outcome of the UDL-VAE model. The obtained experimental values showcased the effectual results of the UDL-VAE model with the higher accuracy of 0.987 and 0.992 on the binary and multiple classes respectively.At present times, COVID-19 has become a global illness and infected people has increased exponentially and it is difficult to control due to the non-availability of large quantity of testing kits. Artificial intelligence (AI) techniques including machine learning (ML), deep learning (DL), and computer vision (CV) approaches find useful for the recognition, analysis, and prediction of COVID-19. Several ML and DL techniques are trained to resolve the supervised learning issue. At the same time, the potential measure of the unsupervised learning technique is quite high. Therefore, unsupervised learning techniques can be designed in the existing DL models for proficient COVID-19 prediction. In this view, this paper introduces a novel unsupervised DL based variational autoencoder (UDL-VAE) model for COVID-19 detection and classification. The UDL-VAE model involved adaptive Wiener filtering (AWF) based preprocessing technique to enhance the image quality. Besides, Inception v4 with Adagrad technique is employed as a feature extractor and unsupervised VAE model is applied for the classification process. In order to verify the superior diagnostic performance of the UDL-VAE model, a set of experimentation was carried out to highlight the effective outcome of the UDL-VAE model. The obtained experimental values showcased the effectual results of the UDL-VAE model with the higher accuracy of 0.987 and 0.992 on the binary and multiple classes respectively.
Author Castillo, Oscar
Escorcia-Gutierrez, José
Kumar, Sachin
Gamarra, Margarita
Mansour, Romany F.
Gupta, Deepak
Author_xml – sequence: 1
  givenname: Romany F.
  surname: Mansour
  fullname: Mansour, Romany F.
  email: romanyf@scinv.au.edu.eg
  organization: Department of Mathematics, Faculty of Science, New Valley University, El-Kharga 72511, Egypt
– sequence: 2
  givenname: José
  surname: Escorcia-Gutierrez
  fullname: Escorcia-Gutierrez, José
  email: jose.escorcia23@gmail.com
  organization: Electronic and telecommunications program, Universidad Autónoma del Caribe, Barranquilla, Colombia
– sequence: 3
  givenname: Margarita
  surname: Gamarra
  fullname: Gamarra, Margarita
  email: mrgamarra22@gmail.com
  organization: Department of Computational Science and Electronic, Universidad de la Costa, CUC, Barranquilla, Colombia
– sequence: 4
  givenname: Deepak
  surname: Gupta
  fullname: Gupta, Deepak
  email: deepakgupta@mait.ac.in
  organization: Department of Computer Science & Engineering, Maharaja Agrasen Institute of Technology, Delhi, India
– sequence: 5
  givenname: Oscar
  surname: Castillo
  fullname: Castillo, Oscar
  email: ocastillo@tectijuana.mx
  organization: Tijuana Institute Technology, Tijuana, Mexico
– sequence: 6
  givenname: Sachin
  surname: Kumar
  fullname: Kumar, Sachin
  email: sachinagnihotri16@gmail.com
  organization: Department of Computer Science, South Ural State University, Chelyabinsk, Russian Federation
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34566223$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URKcD_wAhS2zYJPgRJw4LpGqGR6VB3dBuLce-mXqUsQc7GYl_j-dBBV3A5lry_c7RvfdcoQsfPCD0mpKSElq_35Q7PUYwJSOMlkSWhMpnaEZlw4qGV9UFmmWsKWQtxCW6SmlDCKl5K1-gS16JumaMz9DDnU_TDuLeJbB4CbDDK9DRO7_GnT783evo9OiC1wO-nsYA3gQLEX_LdcB9iHhxe3-zLGiLl06vfUguYe0tXgw6Jdc7c1S_RM97PSR4dX7n6O7zp--Lr8Xq9svN4npVmKqlY1ExrsGQitrakE4aQiTpZU8gL5mL7mzbWMYEdNALCbXQpGm7BqTgllPJ-Rx9PPnupm4L1oAfox7ULrqtjj9V0E793fHuQa3DXslKCHY0eHc2iOHHBGlUW5cMDIP2EKakmGjqloo2s3P09gm6CVPMhzpQLeNVW_MmU2_-nOhxlN8hZKA6ASaGlCL0jwgl6pC12qhT1uqQtSJS5ayz7MMTmXHj8dZ5Lzf8T3w-E-Qs9g6iSsblaMG6jI7KBvdvg19aTce1
CitedBy_id crossref_primary_10_1007_s00354_025_00296_3
crossref_primary_10_1016_j_bspc_2024_106133
crossref_primary_10_1007_s12553_024_00879_y
crossref_primary_10_3390_math10244766
crossref_primary_10_3390_atmos13050813
crossref_primary_10_3390_diagnostics12112569
crossref_primary_10_1016_j_compbiomed_2023_107569
crossref_primary_10_1016_j_artmed_2022_102427
crossref_primary_10_3390_electronics12051167
crossref_primary_10_1007_s11227_022_04775_y
crossref_primary_10_3390_diagnostics13111925
crossref_primary_10_1016_j_jbi_2024_104706
crossref_primary_10_1007_s11517_022_02632_x
crossref_primary_10_3390_healthcare10050910
crossref_primary_10_3389_fpubh_2023_1140353
crossref_primary_10_3390_magnetochemistry9070171
crossref_primary_10_1007_s11663_024_03358_x
crossref_primary_10_1007_s00500_022_07322_2
crossref_primary_10_1016_j_measen_2024_101410
crossref_primary_10_1007_s00354_024_00247_4
crossref_primary_10_1016_j_imu_2021_100835
crossref_primary_10_1109_ACCESS_2022_3212535
crossref_primary_10_47836_pjst_33_3_01
crossref_primary_10_1007_s11042_023_16116_z
crossref_primary_10_1016_j_ins_2022_12_017
crossref_primary_10_3390_ijerph20054244
crossref_primary_10_1007_s12553_023_00757_z
crossref_primary_10_1016_j_compmedimag_2024_102372
crossref_primary_10_3390_healthcare11091204
crossref_primary_10_1016_j_patcog_2023_110037
crossref_primary_10_3389_frfst_2024_1372770
crossref_primary_10_1155_2022_3532605
crossref_primary_10_1016_j_knosys_2022_109242
crossref_primary_10_3390_s22176617
crossref_primary_10_32604_cmc_2022_031732
crossref_primary_10_3390_math11061279
crossref_primary_10_1155_2021_9949328
crossref_primary_10_1007_s00521_022_07424_w
crossref_primary_10_1007_s00500_022_06946_8
crossref_primary_10_1186_s40537_022_00561_y
crossref_primary_10_1007_s11045_024_00897_z
crossref_primary_10_32604_cmc_2023_032192
crossref_primary_10_1002_mp_18020
crossref_primary_10_1007_s00530_023_01096_9
crossref_primary_10_3390_healthcare10010080
crossref_primary_10_1155_2022_7508836
crossref_primary_10_1051_e3sconf_202346900070
crossref_primary_10_3390_healthcare10071339
crossref_primary_10_1016_j_compeleceng_2022_108479
crossref_primary_10_3390_electronics11233875
crossref_primary_10_1002_mco2_70247
crossref_primary_10_1051_e3sconf_202455601011
crossref_primary_10_1155_2022_8706784
crossref_primary_10_1007_s42979_024_03546_1
crossref_primary_10_1007_s40747_023_00972_1
crossref_primary_10_1016_j_patcog_2025_112042
crossref_primary_10_1007_s11227_022_04349_y
crossref_primary_10_1007_s10489_022_04254_0
Cites_doi 10.1016/j.asoc.2020.106282
10.1109/ACCESS.2020.3001973
10.1016/S0168-9002(00)00349-1
10.1145/3065386
10.1007/s10916-021-01707-w
10.1101/2020.02.14.20023028
10.1016/j.asoc.2020.106580
10.1016/j.imu.2020.100412
10.1016/j.ejrnm.2015.11.004
10.1016/j.eng.2020.04.010
10.1109/TMI.2020.2994459
10.1016/j.asoc.2020.106885
10.1016/S0933-3657(01)00101-4
10.1016/j.irbm.2021.01.004
10.1016/j.artmed.2021.102114
10.1016/j.asoc.2020.106742
10.1007/s13369-018-3454-1
10.1016/j.future.2018.10.009
10.1016/j.chaos.2020.110071
ContentType Journal Article
Copyright 2021
2021 Elsevier B.V. All rights reserved.
Copyright Elsevier Science Ltd. Nov 2021
2021 Elsevier B.V. All rights reserved. 2021
Copyright_xml – notice: 2021
– notice: 2021 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier Science Ltd. Nov 2021
– notice: 2021 Elsevier B.V. All rights reserved. 2021
DBID AAYXX
CITATION
NPM
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1016/j.patrec.2021.08.018
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
0167-8655
EndPage 274
ExternalDocumentID PMC8455283
34566223
10_1016_j_patrec_2021_08_018
S016786552100310X
Genre Journal Article
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
NPM
SSH
7SC
7TK
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c491t-423aec041d6c0b8c0080f8f0e0210e0abd97d225ebef58e65a079b7e853d31833
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704882700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8655
IngestDate Tue Sep 30 16:44:50 EDT 2025
Sun Nov 09 14:40:36 EST 2025
Fri Jul 25 07:45:07 EDT 2025
Thu Apr 03 07:08:38 EDT 2025
Tue Nov 18 22:11:32 EST 2025
Sat Nov 29 07:23:46 EST 2025
Fri Feb 23 02:42:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Deep learning
Variational autoencoder
Unsupervised learning
Image classification
Language English
License 2021 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c491t-423aec041d6c0b8c0080f8f0e0210e0abd97d225ebef58e65a079b7e853d31833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8455283
PMID 34566223
PQID 2592349637
PQPubID 2047552
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8455283
proquest_miscellaneous_2576915928
proquest_journals_2592349637
pubmed_primary_34566223
crossref_primary_10_1016_j_patrec_2021_08_018
crossref_citationtrail_10_1016_j_patrec_2021_08_018
elsevier_sciencedirect_doi_10_1016_j_patrec_2021_08_018
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationTitleAlternate Pattern Recognit Lett
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Ezzat, D. and Ella, H.A., 2020. GSA-DenseNet121-COVID-19: a hybrid deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization algorithm. arXiv preprint arXiv:2004.05084.
Lakshmanaprabu, Mohanty, Shankar, Arunkumar, Ramirez (bib0011) 2019; 92
Shan, F., Gao, Y., Wang, J., Shi, W., Shi, N., Han, M., Xue, Z., and Shi, Y. Lung Infection Quantification of COVID-19 in CT Images with Deep Learning. arXiv preprint arXiv:2003.04655, 1-19, 2020.
Jaiswal, Gianchandani, Singh, Kumar, Kaur (bib0026) 2020
Alazab, Awajan, Mesleh, Abraham, Jatana, Alhyari (bib0027) 2020; 12
Sorensen, Loog, Lo, Ashraf, Dirksen, Duin, De Bruijne (bib0004) 2010
Ezzat, Hassanien, Ella (bib0028) 2020
Hamimi (bib0016) 2016; 47
Zhou, Lu, Yang, Qiu, Huo, Dong (bib0033) 2021; 98
Agarwal, Saba, Gupta, Carriero, Falaschi, Paschè, Danna, El-Baz, Naidu, Suri (bib0020) 2021; 45
Louati, Bechikh, Louati, Hung, Said (bib0024) 2021
Ozyurt, Tuncer, Avci, Koc, Serhatlioglu (bib0009) 2019; 44
Xie, Li, Wan, Gong (bib0017) 2006
Islam, Islam, Asraf (bib0036) 2020; 20
Rahaman, Li, Yao, Kulwa, Rahman, Wang, Qi, Kong, Zhu, Zhao (bib0037) 2020 Jan 1
Kumar, Arora, Bansal, Sahayasheela, Buckchash, Imran, Narayanan, Pandian, Raman (bib0031) 2020
Turkoglu, M., 2021. COVID-19 Detection System Using Chest CT Images and Multiple Kernels-Extreme Learning Machine Based on Deep Neural Network. IRBM.
Nath, Kanhe, Mishra (bib0038) 2020
Pustokhin, Pustokhina, Dinh, Phan, Nguyen, Joshi (bib0002) 2020
Gao, Bagci, Lu, Wu, Buty, Shin, Xu (bib0012) 2018; 6
Roy, Menapace, Oei, Luijten, Fini, Saltori, Huijben, Chennakeshava, Mento, Sentelli, Peschiera (bib0032) 2020; 39
Jamshidi, Lalbakhsh, Talla, Peroutka, Hadjilooei, Lalbakhsh, Jamshidi, La Spada, Mirmozafari, Dehghani, Sabet (bib0021) 2020; 8
Xu, Cao, Udupa, Yue, Dong, Cao, Torigian (bib0010) 2020; 11431
Albrecht, Hein, Steinhˆfel, Taupitz, Wong (bib0007) 2002; 24
Ganesan, Rajarajeswari, Govindaraj, Prakash, Naren (bib0025) 2021
Westin, Knutsson, Kikinis (bib0039) 2000
Sikkandar, Alrasheadi, Prakash, Hemalakshmi, Mohanarathinam, Shankar (bib0041) 2020
Krizhevsky, Sutskever, Hinton (bib0001) 2017; 60
Zhang, Wang (bib0005) 2007; 2
COVID-19 Image Data Collection: Prospective Predictions Are the Future Joseph Paul Cohen and Paul Morrison and Lan Dao and Karsten Roth and Tim Q Duong and Marzyeh Ghassemi arXiv:2006.11988, https://github.com/ieee8023/covid-chestxray-dataset, 2020
Hemdan, E.E.D., Shouman, M.A. and Karar, M.E., 2020. Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images. arXiv preprint arXiv:2003.11055.
Yang, Sechopoulos, Fei (bib0008) 2011; 7962
Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., Cai, M., Yang, J., Li, Y., Meng, X., and Xu, B. A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). medRxiv preprint doi: https://doi.org/ 10.1101/2020.02.14.20023028, 1-26, 2020.
Pennisi, M., Kavasidis, I., Spampinato, C., Schininà, V., Palazzo, S., Rundo, F., Cristofaro, M., Campioni, P., Pianura, E., Di Stefano, F. and Petrone, A., 2021. An Explainable AI System for Automated COVID-19 Assessment and Lesion Categorization from CT-scans. arXiv preprint arXiv:2101.11943.
Xu, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., Yu, L., Chen, Y., Su, J., Lang, G., Li, Y., Zhao, H., Xu, K., Ruan, L., and Wu, W. Deep Learning System to Screen Coronavirus Disease 2019 Pneumonia. arXiv preprint arXiv:2002.09334, 1-29, 2020.
Homem, Mascarenhas, Cruvinel (bib0006) 2000; 452
Nour, Cömert, Polat (bib0034) 2020; 97
Kasinathan, Montoya, Gil-González, Arul, Moovendan, Dhivya, Kanimozhi, Angalaeswari (bib0029) 2020; 7
Fong, Li, Dey, Crespo, Herrera-Viedma (bib0023) 2020; 93
Le, Parvathy, Gupta, Khanna, Rodrigues, Shankar (bib0003) 2021
Altan, Karasu (bib0030) 2020; 140
Szegedy, Iofe, Vanhoucke, Alemi (bib0040) 2017
Kasinathan (10.1016/j.patrec.2021.08.018_bib0029) 2020; 7
Pustokhin (10.1016/j.patrec.2021.08.018_bib0002) 2020
Zhou (10.1016/j.patrec.2021.08.018_bib0033) 2021; 98
Lakshmanaprabu (10.1016/j.patrec.2021.08.018_bib0011) 2019; 92
Hamimi (10.1016/j.patrec.2021.08.018_bib0016) 2016; 47
Nath (10.1016/j.patrec.2021.08.018_bib0038) 2020
Xu (10.1016/j.patrec.2021.08.018_bib0010) 2020; 11431
Albrecht (10.1016/j.patrec.2021.08.018_bib0007) 2002; 24
Krizhevsky (10.1016/j.patrec.2021.08.018_bib0001) 2017; 60
Sorensen (10.1016/j.patrec.2021.08.018_bib0004) 2010
Kumar (10.1016/j.patrec.2021.08.018_bib0031) 2020
Rahaman (10.1016/j.patrec.2021.08.018_bib0037) 2020
10.1016/j.patrec.2021.08.018_bib0013
10.1016/j.patrec.2021.08.018_bib0035
Sikkandar (10.1016/j.patrec.2021.08.018_bib0041) 2020
Agarwal (10.1016/j.patrec.2021.08.018_bib0020) 2021; 45
Fong (10.1016/j.patrec.2021.08.018_bib0023) 2020; 93
Jamshidi (10.1016/j.patrec.2021.08.018_bib0021) 2020; 8
Homem (10.1016/j.patrec.2021.08.018_bib0006) 2000; 452
Islam (10.1016/j.patrec.2021.08.018_bib0036) 2020; 20
Westin (10.1016/j.patrec.2021.08.018_bib0039) 2000
Gao (10.1016/j.patrec.2021.08.018_bib0012) 2018; 6
Zhang (10.1016/j.patrec.2021.08.018_bib0005) 2007; 2
10.1016/j.patrec.2021.08.018_bib0019
10.1016/j.patrec.2021.08.018_bib0018
10.1016/j.patrec.2021.08.018_bib0015
10.1016/j.patrec.2021.08.018_bib0014
10.1016/j.patrec.2021.08.018_bib0022
Louati (10.1016/j.patrec.2021.08.018_bib0024) 2021
Alazab (10.1016/j.patrec.2021.08.018_bib0027) 2020; 12
Nour (10.1016/j.patrec.2021.08.018_bib0034) 2020; 97
Jaiswal (10.1016/j.patrec.2021.08.018_bib0026) 2020
Ezzat (10.1016/j.patrec.2021.08.018_bib0028) 2020
Xie (10.1016/j.patrec.2021.08.018_bib0017) 2006
10.1016/j.patrec.2021.08.018_bib0042
Ganesan (10.1016/j.patrec.2021.08.018_bib0025) 2021
Roy (10.1016/j.patrec.2021.08.018_bib0032) 2020; 39
Szegedy (10.1016/j.patrec.2021.08.018_bib0040) 2017
Le (10.1016/j.patrec.2021.08.018_bib0003) 2021
Ozyurt (10.1016/j.patrec.2021.08.018_bib0009) 2019; 44
Yang (10.1016/j.patrec.2021.08.018_bib0008) 2011; 7962
Altan (10.1016/j.patrec.2021.08.018_bib0030) 2020; 140
References_xml – volume: 7962
  start-page: 79623H
  year: 2011
  ident: bib0008
  article-title: Automatic tissue classification for high-resolution breast CT images based on bilateral filtering
  publication-title: In Medical Imaging 2011: Image Processing
– start-page: 282
  year: 2006
  end-page: 294
  ident: bib0017
  article-title: Mining X-ray images of SARS patients
  publication-title: Data Mining: Theory, Methodology, Techniques, and Applications
– volume: 97
  year: 2020
  ident: bib0034
  article-title: A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization
  publication-title: Applied Soft Computing
– volume: 20
  year: 2020
  ident: bib0036
  article-title: A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images
  publication-title: Informatics in medicine unlocked
– volume: 47
  start-page: 95
  year: 2016
  end-page: 106
  ident: bib0016
  article-title: Middle East respiratory syndrome corona virus: Can radiology be of help? Initial single center experience
  publication-title: The Egyptian Journal of Radiology and Nuclear Medicine
– volume: 98
  year: 2021
  ident: bib0033
  article-title: The ensemble deep learning model for novel COVID-19 on CT images
  publication-title: Applied Soft Computing
– volume: 8
  start-page: 109581
  year: 2020
  end-page: 109595
  ident: bib0021
  article-title: Artificial intelligence and COVID-19: deep learning approaches for diagnosis and treatment
  publication-title: IEEE Access
– year: 2020
  ident: bib0031
  article-title: Accurate prediction of COVID-19 using chest x-ray images through deep feature learning model with smote and machine learning classifiers
  publication-title: MedRxiv
– volume: 452
  start-page: 351
  year: 2000
  end-page: 360
  ident: bib0006
  article-title: The linear attenuation coefficients as features of multiple energy CT image classification
  publication-title: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
– year: 2021
  ident: bib0024
  article-title: Deep Convolutional Neural Network Architecture Design as a Bi-level Optimization Problem
– start-page: 3208
  year: 2000
  end-page: 3212
  ident: bib0039
  article-title: Adaptive image filtering
  publication-title: Handbook of Medical Imaging Processing and Analysis
– start-page: 1
  year: 2020
  end-page: 11
  ident: bib0041
  article-title: Deep learning based an automated skin lesion segmentation and intelligent classification model
  publication-title: Journal of ambient intelligence and humanized computing
– volume: 24
  start-page: 179
  year: 2002
  end-page: 192
  ident: bib0007
  article-title: Bounded-depth threshold circuits for computer-assisted CT image classification
  publication-title: Artificial Intelligence in Medicine
– start-page: 1
  year: 2020
  end-page: 8
  ident: bib0026
  article-title: Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning
  publication-title: Journal of Biomolecular Structure and Dynamics
– start-page: 1
  year: 2021
  end-page: 14
  ident: bib0003
  article-title: IoT enabled depthwise separable convolution neural network with deep support vector machine for COVID-19 diagnosis and classification
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 45
  start-page: 1
  year: 2021
  end-page: 30
  ident: bib0020
  article-title: A Novel Block Imaging Technique Using Nine Artificial Intelligence Models for COVID-19 Disease Classification, Characterization and Severity Measurement in Lung Computed Tomography Scans on an Italian Cohort
  publication-title: Journal of Medical Systems
– year: 2020
  ident: bib0028
  article-title: An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization
  publication-title: Applied Soft Computing
– start-page: 1
  year: 2020 Jan 1
  end-page: 9
  ident: bib0037
  article-title: Identification of COVID-19 samples from chest X-Ray images using deep learning: A comparison of transfer learning approaches
  publication-title: Journal of X-ray Science and Technology
– volume: 12
  start-page: 168
  year: 2020
  end-page: 181
  ident: bib0027
  article-title: COVID-19 prediction and detection using deep learning
  publication-title: International Journal of Computer Information Systems and Industrial Management Applications
– volume: 6
  start-page: 1
  year: 2018
  end-page: 6
  ident: bib0012
  article-title: Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
– reference: Xu, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., Yu, L., Chen, Y., Su, J., Lang, G., Li, Y., Zhao, H., Xu, K., Ruan, L., and Wu, W. Deep Learning System to Screen Coronavirus Disease 2019 Pneumonia. arXiv preprint arXiv:2002.09334, 1-29, 2020.
– reference: Turkoglu, M., 2021. COVID-19 Detection System Using Chest CT Images and Multiple Kernels-Extreme Learning Machine Based on Deep Neural Network. IRBM.
– start-page: 1
  year: 2020
  end-page: 18
  ident: bib0002
  article-title: An effective deep residual network based class attention layer with bidirectional LSTM for diagnosis and classification of COVID-19
  publication-title: Journal of Applied Statistics
– reference: Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., Cai, M., Yang, J., Li, Y., Meng, X., and Xu, B. A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). medRxiv preprint doi: https://doi.org/ 10.1101/2020.02.14.20023028, 1-26, 2020.
– volume: 140
  year: 2020
  ident: bib0030
  article-title: Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique
  publication-title: Chaos, Solitons & Fractals
– start-page: 752
  year: 2020
  end-page: 757
  ident: bib0038
  article-title: A Novel Deep Learning Approach for Classification of COVID-19 Images
  publication-title: In 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA)
– volume: 92
  start-page: 374
  year: 2019
  end-page: 382
  ident: bib0011
  article-title: Optimal deep learning model for classification of lung cancer on CT images
  publication-title: Future Generation Computer Systems
– reference: Pennisi, M., Kavasidis, I., Spampinato, C., Schininà, V., Palazzo, S., Rundo, F., Cristofaro, M., Campioni, P., Pianura, E., Di Stefano, F. and Petrone, A., 2021. An Explainable AI System for Automated COVID-19 Assessment and Lesion Categorization from CT-scans. arXiv preprint arXiv:2101.11943.
– start-page: 37
  year: 2010
  end-page: 44
  ident: bib0004
  article-title: Image dissimilarity-based quantification of lung disease from CT
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 11431
  year: 2020
  ident: bib0010
  article-title: A novel exponential loss function for pathological lymph node image classification
  publication-title: In MIPPR 2019: Parallel Processing of Images and Optimization Techniques; and Medical Imaging
– start-page: 1
  year: 2017
  end-page: 3
  ident: bib0040
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: In Thirty-First AAAI Conference on Artifcial Intelligence, Association for the Advancement of Artifcial Intelligence,USA
– volume: 2
  start-page: 1155
  year: 2007
  end-page: 1159
  ident: bib0005
  article-title: Feature extraction and classification for human brain CT images
  publication-title: In 2007 International Conference on Machine Learning and Cybernetics
– reference: Shan, F., Gao, Y., Wang, J., Shi, W., Shi, N., Han, M., Xue, Z., and Shi, Y. Lung Infection Quantification of COVID-19 in CT Images with Deep Learning. arXiv preprint arXiv:2003.04655, 1-19, 2020.
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: bib0001
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
– reference: COVID-19 Image Data Collection: Prospective Predictions Are the Future Joseph Paul Cohen and Paul Morrison and Lan Dao and Karsten Roth and Tim Q Duong and Marzyeh Ghassemi arXiv:2006.11988, https://github.com/ieee8023/covid-chestxray-dataset, 2020
– reference: Ezzat, D. and Ella, H.A., 2020. GSA-DenseNet121-COVID-19: a hybrid deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization algorithm. arXiv preprint arXiv:2004.05084.
– start-page: 275
  year: 2021
  end-page: 287
  ident: bib0025
  article-title: Post-COVID-19 Emerging Challenges and Predictions on People, Process, and Product by Metaheuristic Deep Learning Algorithm
  publication-title: Machine Intelligence and Soft Computing
– volume: 93
  year: 2020
  ident: bib0023
  article-title: Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction
  publication-title: Applied soft computing
– volume: 39
  start-page: 2676
  year: 2020
  end-page: 2687
  ident: bib0032
  article-title: Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound
  publication-title: IEEE Transactions on Medical Imaging
– volume: 44
  start-page: 3173
  year: 2019
  end-page: 3182
  ident: bib0009
  article-title: A novel liver image classification method using perceptual hash-based convolutional neural network
  publication-title: Arabian Journal for Science and Engineering
– reference: Hemdan, E.E.D., Shouman, M.A. and Karar, M.E., 2020. Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images. arXiv preprint arXiv:2003.11055.
– volume: 7
  start-page: 2480
  year: 2020
  end-page: 2503
  ident: bib0029
  article-title: APPLICATION OF SOFT COMPUTING TECHNIQUES IN THE ANALYSIS OF COVID–19: A REVIEW
  publication-title: European Journal of Molecular & Clinical Medicine
– start-page: 37
  year: 2010
  ident: 10.1016/j.patrec.2021.08.018_bib0004
  article-title: Image dissimilarity-based quantification of lung disease from CT
– volume: 11431
  year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0010
  article-title: A novel exponential loss function for pathological lymph node image classification
  publication-title: In MIPPR 2019: Parallel Processing of Images and Optimization Techniques; and Medical Imaging
– year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0028
  article-title: An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization
  publication-title: Applied Soft Computing
– start-page: 1
  year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0002
  article-title: An effective deep residual network based class attention layer with bidirectional LSTM for diagnosis and classification of COVID-19
  publication-title: Journal of Applied Statistics
– volume: 93
  year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0023
  article-title: Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction
  publication-title: Applied soft computing
  doi: 10.1016/j.asoc.2020.106282
– start-page: 752
  year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0038
  article-title: A Novel Deep Learning Approach for Classification of COVID-19 Images
– volume: 8
  start-page: 109581
  year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0021
  article-title: Artificial intelligence and COVID-19: deep learning approaches for diagnosis and treatment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001973
– volume: 452
  start-page: 351
  issue: 1-2
  year: 2000
  ident: 10.1016/j.patrec.2021.08.018_bib0006
  article-title: The linear attenuation coefficients as features of multiple energy CT image classification
  publication-title: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
  doi: 10.1016/S0168-9002(00)00349-1
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.patrec.2021.08.018_bib0001
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
  doi: 10.1145/3065386
– volume: 45
  start-page: 1
  issue: 3
  year: 2021
  ident: 10.1016/j.patrec.2021.08.018_bib0020
  article-title: A Novel Block Imaging Technique Using Nine Artificial Intelligence Models for COVID-19 Disease Classification, Characterization and Severity Measurement in Lung Computed Tomography Scans on an Italian Cohort
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-021-01707-w
– ident: 10.1016/j.patrec.2021.08.018_bib0013
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.patrec.2021.08.018_bib0012
  article-title: Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
– start-page: 3208
  year: 2000
  ident: 10.1016/j.patrec.2021.08.018_bib0039
  article-title: Adaptive image filtering
– start-page: 275
  year: 2021
  ident: 10.1016/j.patrec.2021.08.018_bib0025
  article-title: Post-COVID-19 Emerging Challenges and Predictions on People, Process, and Product by Metaheuristic Deep Learning Algorithm
– ident: 10.1016/j.patrec.2021.08.018_bib0015
  doi: 10.1101/2020.02.14.20023028
– volume: 97
  year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0034
  article-title: A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106580
– ident: 10.1016/j.patrec.2021.08.018_bib0042
– volume: 20
  year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0036
  article-title: A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images
  publication-title: Informatics in medicine unlocked
  doi: 10.1016/j.imu.2020.100412
– volume: 47
  start-page: 95
  issue: 1
  year: 2016
  ident: 10.1016/j.patrec.2021.08.018_bib0016
  article-title: Middle East respiratory syndrome corona virus: Can radiology be of help? Initial single center experience
  publication-title: The Egyptian Journal of Radiology and Nuclear Medicine
  doi: 10.1016/j.ejrnm.2015.11.004
– start-page: 1
  year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0026
  article-title: Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning
  publication-title: Journal of Biomolecular Structure and Dynamics
– start-page: 1
  issue: Preprint
  year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0037
  article-title: Identification of COVID-19 samples from chest X-Ray images using deep learning: A comparison of transfer learning approaches
  publication-title: Journal of X-ray Science and Technology
– start-page: 1
  year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0041
  article-title: Deep learning based an automated skin lesion segmentation and intelligent classification model
  publication-title: Journal of ambient intelligence and humanized computing
– volume: 7962
  start-page: 79623H
  year: 2011
  ident: 10.1016/j.patrec.2021.08.018_bib0008
  article-title: Automatic tissue classification for high-resolution breast CT images based on bilateral filtering
  publication-title: In Medical Imaging 2011: Image Processing
– ident: 10.1016/j.patrec.2021.08.018_bib0014
  doi: 10.1016/j.eng.2020.04.010
– volume: 2
  start-page: 1155
  year: 2007
  ident: 10.1016/j.patrec.2021.08.018_bib0005
  article-title: Feature extraction and classification for human brain CT images
– year: 2021
  ident: 10.1016/j.patrec.2021.08.018_bib0024
– volume: 39
  start-page: 2676
  issue: 8
  year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0032
  article-title: Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2020.2994459
– volume: 98
  year: 2021
  ident: 10.1016/j.patrec.2021.08.018_bib0033
  article-title: The ensemble deep learning model for novel COVID-19 on CT images
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106885
– volume: 24
  start-page: 179
  issue: 2
  year: 2002
  ident: 10.1016/j.patrec.2021.08.018_bib0007
  article-title: Bounded-depth threshold circuits for computer-assisted CT image classification
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/S0933-3657(01)00101-4
– ident: 10.1016/j.patrec.2021.08.018_bib0019
  doi: 10.1016/j.irbm.2021.01.004
– volume: 7
  start-page: 2480
  issue: 6
  year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0029
  article-title: APPLICATION OF SOFT COMPUTING TECHNIQUES IN THE ANALYSIS OF COVID–19: A REVIEW
  publication-title: European Journal of Molecular & Clinical Medicine
– start-page: 1
  year: 2017
  ident: 10.1016/j.patrec.2021.08.018_bib0040
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
– start-page: 1
  year: 2021
  ident: 10.1016/j.patrec.2021.08.018_bib0003
  article-title: IoT enabled depthwise separable convolution neural network with deep support vector machine for COVID-19 diagnosis and classification
  publication-title: International Journal of Machine Learning and Cybernetics
– ident: 10.1016/j.patrec.2021.08.018_bib0018
  doi: 10.1016/j.artmed.2021.102114
– ident: 10.1016/j.patrec.2021.08.018_bib0035
  doi: 10.1016/j.asoc.2020.106742
– start-page: 282
  year: 2006
  ident: 10.1016/j.patrec.2021.08.018_bib0017
  article-title: Mining X-ray images of SARS patients
– volume: 44
  start-page: 3173
  issue: 4
  year: 2019
  ident: 10.1016/j.patrec.2021.08.018_bib0009
  article-title: A novel liver image classification method using perceptual hash-based convolutional neural network
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-018-3454-1
– volume: 92
  start-page: 374
  year: 2019
  ident: 10.1016/j.patrec.2021.08.018_bib0011
  article-title: Optimal deep learning model for classification of lung cancer on CT images
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2018.10.009
– volume: 12
  start-page: 168
  year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0027
  article-title: COVID-19 prediction and detection using deep learning
  publication-title: International Journal of Computer Information Systems and Industrial Management Applications
– year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0031
  article-title: Accurate prediction of COVID-19 using chest x-ray images through deep feature learning model with smote and machine learning classifiers
  publication-title: MedRxiv
– ident: 10.1016/j.patrec.2021.08.018_bib0022
– volume: 140
  year: 2020
  ident: 10.1016/j.patrec.2021.08.018_bib0030
  article-title: Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.110071
SSID ssj0006398
Score 2.6007965
Snippet •Design a novel Unsupervised DL model for COVID-19 Diagnosis and Classification•Propose a Parameter Tuned Adagrad with Inception v4 model as feature...
At present times, COVID-19 has become a global illness and infected people has increased exponentially and it is difficult to control due to the...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 267
SubjectTerms Artificial intelligence
Classification
Computer vision
Coronaviruses
COVID-19
Deep learning
Experimentation
Feature extraction
Image classification
Image enhancement
Image quality
Learning algorithms
Machine learning
Unsupervised learning
Variational autoencoder
Wiener filtering
Title Unsupervised Deep Learning based Variational Autoencoder Model for COVID-19 Diagnosis and Classification
URI https://dx.doi.org/10.1016/j.patrec.2021.08.018
https://www.ncbi.nlm.nih.gov/pubmed/34566223
https://www.proquest.com/docview/2592349637
https://www.proquest.com/docview/2576915928
https://pubmed.ncbi.nlm.nih.gov/PMC8455283
Volume 151
WOSCitedRecordID wos000704882700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6lLQc4sJQtUKpBQlwiI-9jH6OSllYh7SGJcrO8jNuU1DFxUvXP8d94z7PEIYLCASmyIm-Z-H1-y8x73yPkA7jgjs_sxHBc3zRcP_WNxHFiI4S9SZj6eVIzMY37bDAIJpPwotX6oWphbmesKIK7u7D8r6KGfSBsLJ39B3Hrm8IO-A5Chy2IHbZ_JfhRUa1K1AAVxyRjXioO1csOmqysM4bwWE0BdlfLOVJZIqMEtkWrqxk7R-fj08-GFYJCrBPxpoLIuW6gialFa2lKt_aiZunEyhiZjgSYmtWFQtpl_wo2EYYvsrlvMMtA5xT3KgiBASPGCTwWvliISe2zeSVW8XWKUHwTL-q2SB3Rnne61DblZFUKNxj_cPytOZdhW7KoT0-wqSIbpdfWmU313CfodKyjFaZL6OuAQYDgCApJrdAlha1UyaLdx5apELMW159wzYEjmaUtyFylOdhg5h6cR8ejfj8a9ibDj-V3A5uW4eK-7OCyQ_Zs5oVgF_a6p73JmXYFwP0LFLk8jlzVbtYJhts__DvfaDv2-TWFt-ETDZ-SxzKYoV0BwmekxYt98kQ1CqHy-e6TRw3Wy-fkqolQigKjCqG0RihtIJQ2EEprhFJAKFUIpRqhFBBKNxH6goyOe8OjL4Zs-GGkbmgtDXDtY56arpX5qZkEKYYzeZCbHCcmuBknWcgyMECgeHIv4L4XmyxMGAeXM0Pb5Lwku8W84K8JBR2UxnnmMddOICbxE_Ds8cPyJE5d32oTRz3qKJVs-NiUZRaptMfrSAgoQgFF2KvVCtrE0FeVgg3mnvOZkmIkPVrhqUaAwnuuPFBCj6RyqSLbg3DMBZPJ2uS9Pgz2ABf54oLPV3gO80OIUWy4xSuBET1UB6IlH-IBGNYGevQJyDW_eaSYXtWc84HrIQ3Umz8P6y15uH6tD8jucrHi78iD9HY5rRaHZIdNgkP5jvwEPxH1-w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Deep+Learning+based+Variational+Autoencoder+Model+for+COVID-19+Diagnosis+and+Classification&rft.jtitle=Pattern+recognition+letters&rft.au=Mansour%2C+Romany+F&rft.au=Escorcia-Gutierrez%2C+Jos%C3%A9&rft.au=Gamarra%2C+Margarita&rft.au=Gupta%2C+Deepak&rft.date=2021-11-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=151&rft.spage=267&rft_id=info:doi/10.1016%2Fj.patrec.2021.08.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon